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With the accumulation and development of medical multimodal data as well as the breakthrough in the theory and practice of
artificial neural network and deep learning algorithm, the deep integration of multimodal data and artificial intelligence based
on the Internet has become an important goal of the Internet of Medical Things. The deep application of the latest
technologies in the medical field, such as artificial intelligence, machine learning, multimodal data, and advanced sensors, has a
profound impact on the development of medical research. Artificial intelligence can achieve low-consumption and high-
efficiency screening of specific markers due to its powerful data integration and processing capabilities, and its advantages are
fully demonstrated in the construction of disease-related risk prediction models. In this study, multi-type cloud data were used
as research objects to explore the potential of alternative CpG sites and establish a high-quality prognosis model of cervical
cancer DNA methylation big data. 14,419 strict differentially methylated CpG sites (DMCs) were identified by ChAMP
methylation analysis and presented these distributions based on different genomic regions and relation to island. Further,
rbsurv and Cox regression analyses were performed to construct a prognostic model integrating these four methylated CpG
sites that could adequately predict the survival of patients (AUC = 0:833, P < 0:001). The low- and high-risk patient groups,
divided by risk score, showed significantly different overall survival (OS) in both the training (P < 0:001) and validation
datasets (P < 0:005). Moreover, the model has an independent predictive value for FIGO stage and age and is more suitable for
predicting survival time in patients with histological type (SCC) and histologic grade (G2/G3). Finally, the model exhibited
much higher predictive accuracy compared to other known models and the corresponding expression of genes. The proposed
model provides a novel signature to predict the prognosis, which can serve as a useful guide for increasing the accuracy of
predicting overall survival of cervical cancer patients.

1. Introduction

The Internet of Things (IoT) is a perceptual network of
everything connected based on computer network technol-
ogy [1]. Its main supporting technologies are sensor network
technology and Internet technology, which belongs to the
lower and upper layers of network architecture, respectively.
Artificial intelligence (AI) is a form of intelligence based on
computer systems that simulate inanimate objects. AI is
analogous to software and requires the IoT as the carrier,
while the IoT is similar to hardware and requires artificial

intelligence to drive it. With the in-depth excavation of the
IoT and AI technology, the IoT technology has been widely
used in intelligent transportation, intelligent fire protection,
intelligent agriculture, environmental protection, water
monitoring, and medical and health care [2, 3]. Medicine
as an important application field, the IoT technology is used
to collect, transmit, and store diversified medical informa-
tion, so as to realize the intelligence of resources, informa-
tion sharing, and interconnection, also known as the
Internet of Medical Things (IoMT). Simultaneously, AI is
able to process, integrate, and analyze multisource and
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multimode medical data to achieve large-scale multimodal
disease data fusion and promote accurate analysis of disease
data. Therefore, the effective integration of the two means is
an important means to promote “4P”medicine, namely, pre-
ventive, predictive, personalized, and participatory medicine.

In the field of tumor research, with the rapid develop-
ment of second-generation sequencing and computer analy-
sis technology in recent years, the exponential growth of
genome, transcriptome, epigenome, proteome, and other
data has been recorded, and biomedical data has been
boosted to the PB era [4]. The sharing of biomedical big data
on a global scale has led to a fundamental revolution in med-
ical research models [5]. Since IoMT and AI algorithm have
spilled over into the field of medical research, medical
researchers have begun to try to take advantage of AI tech-
nology, especially the classification algorithm of machine
learning, to integrate, process, and analyze biomedical
high-dimensional data of tumor so as to reveal the inherent
mechanism of tumor development, thereby providing a the-
oretical basis for the realization of individualized precision
diagnosis and treatment of tumor [6]. As is known, machine
learning, an important component of AI algorithms, is
aimed at generating an informed assessment by using
numerical algorithms to detect relationships in information,
which has the advantage of being able to computerize the
hypothesis construction methods and, in some cases, opti-
mize traditional statistical methods [7]. Machine learning
possesses obvious advantages in mining and analyzing com-
plex multimode big data, as well as potential clinical applica-
tion value in constructing tumor-related risk models [8, 9].
Therefore, the application of relevant AI algorithms to ana-
lyze multilevel and multiform data is playing an increasingly
important role in tumor diagnosis and prognosis evaluation.
M. Gupta and B. Gupta fused gene sequencing and clinico-
pathological data and used machine learning to extract the
genes which were the most significantly related to the occur-
rence of breast cancer and analyze the selected genes, which
was conducive to reducing the cost and time of early diagno-
sis of breast cancer [10]. Zhang et al. applied machine learn-
ing algorithm to analyze the expression profile of lung
cancer miRNA in The Cancer Genome Atlas (TCGA) data-
base, thereby obtaining the characteristic miRNA and classi-
fication model related to lung cancer through difference
analysis and model training of miRNA expression profile
of lung cancer and healthy individuals, so as to achieve accu-
rate diagnosis of lung cancer at the level of DNA computa-
tion [11]. At present, many studies have suggested that the
construction of gene model is of great significance for the
prediction of clinical outcome and treatment guidance of
cervical cancer (CC) [12, 13]. Regrettably, there is no uni-
form and high-efficiency prediction model of gene that has
been proved to be effective in practical application. DNA
methylation is a stable target and allows for flexibility of
assay development. Certain DNA methylation sites have
been shown to affect the expression of genes and be associ-
ated with the prognosis of cervical cancer [14]. However,
there is still a lack of thorough exploration of genome-wide
DNA methylation data of cervical cancer based on AI algo-
rithm. Therefore, it is an indispensable research direction

for accurate diagnosis and treatment of cervical cancer
through analyzing and processing DNA methylation and
clinical data by AI algorithm and discovering specific prog-
nostic DNA methylation markers.

In the present study, we used AI algorithm to analyze
genome-wide DNA methylation profile data of CC from
TCGA database in order to obtain specific differentially
methylated CpG sites (DMCs) and distribution features
and construct a prediction model of DMCs to evaluate the
prognosis of CC. Clinical information, single methylation
site, and known valid prognostic biomarkers were compared
with the proposed one to evaluate the performance of this
prediction model. Further validation to identify this predic-
tion model can accurately and effectively predict the progno-
sis of CC without relying on clinicopathological parameters.

2. Materials and Methods

2.1. Data Sources. The intensity data (IDAT) files of DNA
methylation and clinical information were downloaded from
TCGA database (http://cancergenome.nih.gov). The RSEM-
normalized mRNA datasets and preprocessed mature
miRNA-normalized expression profiles were accessed from
the Firebrowse portal (http://firebrowse.org/). Both mRNA
and miRNA data were transformed by the transformation
log2 (Exp+1), where Exp was the original expression value.
The inclusion criteria for samples were set as follows: (1)
DNA methylation, gene expression, miRNA expression,
and clinical information were available; (2) specimens were
the primary tumor tissue; (3) complete prognostic follow-
up data were available. Finally, a cohort of 299 patients with
CC, which included 3 pairs of matched cancer and adjacent
cervical tissues, was identified.

2.2. Identification of Differentially Methylated CpG Sites
(DMCs). DMCs were identified using the Chip Analysis
Methylation Pipeline (ChAMP) methylation analysis pack-
age. The algorithm of DMCs mainly applied the robust
empirical Bayes machine learning [15]. In short, the proce-
dure involved loading the data from the IDAT files, filtering
it using predetermined settings, quality control, and normal-
ization using the “Functional Normalization”method. A sta-
tistical cut-off of Benjamini-Hochberg (BH)/adjusted
P < 0:05, and ∣Δβ ∣ >0:2 was used to select associated
DMCs. In addition, to identify the most significant and rel-
evant cancer-specific DMCs, ∣Δβ ∣ >0:2 and average tumor
tissuemethylation level > 0:6 or average normal tissue
methylation level < 0:2 was used as a strict filtering criteria
for selection.

2.3. Construction of the Prognostic Model for CC. All of the
samples were randomly distributed to a training dataset,
and the validation dataset ratio was set to 6 : 4. Cox propor-
tional hazard regression analysis was used to develop the
proposed hazard model. First, univariate Cox regression
analysis was applied to screen the CpG sites for those signif-
icantly related to the prognosis of CC in the training dataset
(P < 0:05). Following this, robust likelihood-based survival
modeling (rbsurv in R) was used to identify the more
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significant CpG sites from the results of the univariate
analysis [16]. All of the alternative CpG sites were sub-
jected to multivariable Cox regression analysis to further
filter the markers associated with OS. According to P <
0:05, several markers were screened out as covariates to
construct the model. The predicted risk score of the model
was constructed to predict OS by using the regression
coefficient (β) from the multivariate Cox regression model
as follows:

Risk score = 〠
n

i=1
Exp ið Þ ∗ β ið Þð Þ: ð1Þ

Optimization risk score cut-off threshold values were
selected based on the concordance index (C-index) by
plotting cross-validated time-dependent receiver operating
characteristic (ROC) curves.

2.4. Validation of the Prognostic Model for CC. Patients were
classified into “high-risk” and “low-risk” groups based on
their prognostic risk score cut-off value. The survival condi-
tions of the two groups were compared with the log-rank
tests conducted in the training dataset and validation data-
set. The survival curves were then plotted using the “sur-
vival” R package. The effect of the model was further
evaluated by differentiating subgroups according to different
clinicopathological characteristics. The “pROC” package was
used to perform ROC analysis. Moreover, by comparing
with other known biomarkers and corresponding RNA, we
establish the performance of the four-CpG site biomarker
using the Z test.

3. Results

3.1. Characterization of the Study Population. The workflow
was performed as indicated in Figure 1.

A total of 299 samples of patients diagnosed with CC
were used in this study. The sample sizes of the training
and validation datasets were 180 and 119, respectively. The
median age of the patients at the point of initial diagnosis
was 46.5 years (age range, 20–88 years). The median survival
time was 2,888 days. The characteristics of the patients have
been summarized in Table 1.

3.2. Identification of DMCs in CC. The methylation expres-
sion matrix was obtained by data washing as described, and
364,001methylation sites were used for analysis. Focal analysis
identified 34,389 DMCs in the CC samples using a fixed statis-
tical cut-off (adjusted P < 0:05 and ∣Δβ ∣ > 0:2). Tumor tissue
had a greater number of hypermethylated CpG sites as com-
pared to hypomethylated sites (Figure 2(a)). Due to the strict
filtering criteria, the number of DMCs dwindled to 14,419.
All DMC distributions of the autosomal chromosomes were
depicted using the P < 1 × 10−7 as a cut-off point in the circu-
lar plot (Figure 2(b)). The percentage of hypermethylated CpG
sites located in the gene body region was far greater than that
of other genomic regions. Conversely, in hypomethylated
CpG sites, intergenic regions (IGRs) had similar proportions
with gene body regions. We also found that the proportion
of DMCs in opensea regions was the largest in each type of
relation to island compared to that of other non-CpG island
regions (Figure 2(c)).

3.3. Confirmation of the Four-CpG Biomarker Model Closely
Related to the OS of Patients in the Training Dataset. A total
of 1,707 CpG sites out of all the candidate sites were
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identified in univariable Cox regression analysis (P < 0:05).
After robust likelihood-based survival modeling analysis, the
first 17 significant prognosis-related CpG sites were chosen
(P < 0:05). Subsequently, in the multivariable Cox regression
analysis, the four most significant CpG sites (cg06661994,
cg07281370, cg07141215, and cg11256152) were screened
out to construct a multivariate hazard ratio (HR) model.

The corresponding gene symbols of these four CpG sites
were C20orf195, MIR125B1, TFAP4, and TRAPPC9, respec-
tively. Only the methylation level of cg06661994 presented
directly proportional to the risk of death, with an HR of
6.752, while the other three CpG sites were presented as pro-
tective factors. The site information of the four CpG sites
and related their risk coefficients are shown in Table 2.

Hazard ratios (HRs) of the four-CpG biomarker by the
Cox regression analysis were significantly correlated with
the OS of all samples (P < 0:001, HR = 2:97, and 95% CI
1.97–4.47). The risk-score formula was as follows:

Risk score = 6:752 × β value of cg06661994 – 2:490
× β value of cg07281370 – 3:328
× β value of cg07141215 – 6:480
× β value of cg11256152:

ð2Þ

Furthermore, we evaluated the multivariable hazard
model using the proportional hazard (PH) assumption.

The P value of the global model was 0.660, illustrating that
the PH hypothesis was established (Table 3).

Accordingly, a Cox regressionmodel was successfully estab-
lished. The AUC was 0.833 (P < 0:001), demonstrating that a
model composed of these four CpG sites presented high sensi-
tivity and specificity in predicting the prognosis of patients with
CC. Meanwhile, according to the C-index, 1.067 was selected as
the optimal cut-off risk score for the model, which was more
relevant in predicting survival (Figure 3(a)).

3.4. Validation of the Prognostic Value of the Four-CpG
Biomarker Model. According to the optimal risk score cut-
off value, the biomarker composed of four CpG sites was
used to categorize the patients into either the high-risk
(n = 132) or low-risk (n = 167) group. The individual meth-
ylation levels of these four CpG sites were assessed in both
groups. The result illustrated that these four candidate
CpG sites could differentiate between patients with high-
and low-risk of CC (Figure 3(b)). Kaplan–Meier analysis
was performed to verify the predictive value of the prognos-
tic hazard model composed of the four-CpG biomarker
model. The OS of the low-risk group was significantly better
than that of the high-risk group in both the training and val-
idation datasets (Figure 3(c)).

3.5. The Predictive Value of the Four-CpG Biomarker Model
in Prognosis Based on Various Clinical Risk Factors. Several
clinicopathological characteristics are associated with poor
prognosis of CC including age, FIGO stage, tumor size,

Table 1: Clinicopathological characteristics of cervical cancer patients.

Characteristics Groups
Patients

Total (N = 299) Training dataset (N = 180) Validation dataset (N = 119)

Age at initial diagnosis

Median 46.5 47 46

Range 20-88 24-81 20-88

<50 177 102 (57.63) 75 (42.37)

≥50 122 78 (63.93) 44 (36.07)

FIGO stage

I 158 96 (60.76) 62 (39.24)

II 5 3 (60.00) 2 (40.00)

IIA 21 13 (61.90) 8 (38.10)

IIB 43 24 (55.81) 19 (44.19)

III 44 23 (52.27) 21 (47.73)

IV 21 15 (71.43) 6 (28.57)

Unknown 7 6 (85.71) 1 (14.29)

Histological type

SCC 247 142 (57.49) 105 (42.51)

Adenocarcinoma 46 33 (71.74) 13 (28.26)

Adenosquamous 6 5 (83.33) 1 (16.67)

Histologic grade

G1 16 8 (50.00) 8 (50.00)

G2 131 78 (59.54) 53 (40.46)

G3 120 71 (59.17) 49 (40.83)

Others 32 23 (71.88) 9 (28.12)

Neoplasm statue

Tumor free 186 112 (60.22) 74 (39.78)

With tumor 71 45 (63.38) 26 (36.62)

Unknown 42 23 (54.76) 19 (45.24)

G: grade; SCC: squamous cell carcinoma. Values are shown as n (%) unless otherwise specified.
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lymph node metastasis, histological type, and histological
grade. According to the different principles of therapy, 292
patients with known staging were divided into two sets:
FIGO stages I–IIA2 (n = 182, 60.88%) and IIB–IV (n = 110,
36.79%). Five patients were diagnosed as FIGO stage II,
according to TNM staging; three patients identified as T2a
were assigned to the former set, and two patients diagnosed
as T2b were assigned to the latter set. As determined by the
Kaplan–Meier analysis, the low-risk patients had better sur-
vival ratio than the high-risk risk patients regardless of sub-
group (P < 0:001). The AUC values of the four-CpG
biomarker model in the two FIGO stage sets were 0.693
and 0.676, respectively (Figure 4).

Next, in the two subgroups of age, OS was also signifi-
cantly increased in the low-risk group compared with that
of the high-risk group (P < 0:001). Additionally, in squa-
mous cell carcinoma, we found that the low-risk group had
a longer OS (P < 0:001), while the AUC also revealed that

the model had a high diagnostic value. However, potentially
due to the low number of adenocarcinomas, its diagnostic
applicability could not be determined using the ROC curve
even though Kaplan–Meier analysis showed differences
between the two groups. With respect to the histological
grade, due to the restrictions in the number of samples, G2
and G3 were selected to verify the predictive power. The
patients in the high-risk group demonstrated shorter OS,
and the AUCs were 0.627 and 0.762 for G2 and G3, respec-
tively. A summary analysis has been presented in Table 4.

Thus, the four-CpG biomarker model revealed suitable
applicability when patients were stratified with respect to
different clinicopathological characteristics. This suggests
that the biomarker has an independent predictive value of
the OS for patients with CC.

3.6. Comparison of the Four-CpG Biomarker Model with
Other Biomarkers. Several biomarkers and their prognostic
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roles in CC have been illustrated in previous studies. The
hypermethylation of VIM and RASSF2 has been reported
as a favorable biomarker for the prognosis of cervical
squamous cell carcinoma [17, 18]. Moreover, the methyla-
tion status of LRIG1, an important tumor suppressor,
combined with gene loss is a poor prognostic factor in
CC [19]. Therefore, to verify the reliability and stability
of the four-CpG biomarker model in forecasting patient
survival, ROC analyses were performed on these biomark-
ers, as well as the corresponding expression of the three-
mRNAs (C20orf195, TFAP4, and TRAPPC9) and one
microRNA (MIR125B1) in the validation dataset. The
four-CpG biomarker model revealed optimal performance
when compared with the other biomarkers (P < 0:05).
The AUCs of all biomarkers have been shown in
Figure 5. The results demonstrated that the four-CpG bio-
marker model played an important role in prognosis eval-
uation and presented better specificity and sensitivity in
predicting the OS of patients with CC.

4. Discussion

The advantage of AI is that it can deal with complex and
data-rich problems stably and flexibly, which makes its
application in medical bioinformatics take a qualitative leap
[20, 21]. In recent years, AI has shown higher accuracy in
clinical prediction modeling of tumor genomics and is
expected to become a promising tool for tumor diagnosis
and prognosis evaluation [22, 23]. Numerous research
results have suggested that using artificial intelligence algo-
rithm to construct multigene models based on RNA or pro-
tein levels has the indispensable clinical value of earlier
diagnosis and prognosis estimation in cervical cancer. An
independent prognostic model composed by SPP1, EFNA1,
MMP1, ITM2A, and DSG2 has shown high efficiency in dis-

tinguishing survival outcomes for cervical cancer patients
[24]. And a combination of the four miRNAs (miR-502,
miR-145, miR-142, and miR-33b) based on the public data-
base was identified as an independent prognostic signature
of cervical cancer [25]. However, due to the natural defects
of tumors, such as the highly dynamic nature of RNA and
proteins and the physicochemical fragility of biological spec-
imens, problems such as unstable access to information and
poor practicability sometimes occur. In this regard, DNA
methylation information is relatively stable, especially the
tumor-associated DNA methylation patterns are relatively
conserved and DNA preservation is more stable than RNA
and protein. And changes in DNA methylation of specific
genes accumulate with disease progression, and detection
of specific gene DNA methylation levels is helpful to deter-
mine disease progression [26, 27]. Therefore, it has great
clinical significance to understand the status of genome-
wide methylation profile characteristics of cervical cancer
and construct an accurate and stable biomarker model for
prognosis.

We analyzed genome-wide DNA methylation profile
data of CC in TCGA database by using ChAMP analysis
and obtained a set of DMCs. Interestingly, we found
DMCs in gene body regions account for the highest pro-
portion, which is related to regulatory mechanisms such
as abnormal DNA methylation of gene bodies involved
in regulating transcriptional activity and thereby increasing
gene expression in tumors. The idea that gene body DNA
methylation correlates with gene expression is widely
accepted. Hypermethylation of DNA methylation sites
cg13600622 and cg14204784 in gene body regions can be
used as biomarkers to predict adverse outcomes in laryn-
geal squamous cell carcinoma [28]. In cervical cancer,
abnormal DNA methylation in a large proportion of gene
body regions also indicates that it also plays an important
regulatory role in the development of CC. In addition,
CpG islands, as classical methylation study regions, are
expected to occupy an important proportion of DMCs in
CC, because their abnormal hypermethylation is closely
related to the inactivation of related genes. Furthermore,
IGRs have been found to account for a large proportion
of cervical cancer DMCs, and this phenomenon has also
been observed in colorectal laterally spreading tumors
(LSTs) [29]. Therefore, the change of IGRs methylation
level plays an important role in the occurrence and devel-
opment of tumors, and the specific mechanism of action
remains to be further explored.

Aberrant DNA methylation of a single gene can be used
as a biomarker for CC prognosis. Compared with single gene

Table 2: The information of the four significantly survival-related CpG sites.

Probe ID Gene symbol Position Genomic features CGI P value∗ Coef# P value#

cg06661994 C20orf195 Chr20: 62184363 TSS200 Shore 2.78E-03 6.752 3.79E-03

cg07281370 MIR125B1 (mir-125b-1) Chr11: 121970768 TSS200 Opensea 6.82E-03 -2.499 2.78E-03

cg07141215 TFAP4 Chr16: 4308070 Body Shelf 3.70E-05 -3.328 1.91E-02

cg11256152 TRAPPC9 Chr8: 141359786 Body Shore 5.51E-04 -6.480 1.72E-04

CGI: CpG island; ∗ is in univariate Cox regression analysis; # is in multivariate Cox regression analysis.

Table 3: The proportional hazard (PH) assumption test of the
four-CpG biomarker model.

Methylation site Rho Chisq P

cg06661994 0.0374 0.0533 0.817∗

cg07281370 0.1923 1.4901 0.222∗

cg07141215 -0.0789 0.1533 0.695∗

cg11256152 0.0438 0.0973 0.755

GLOBAL NA 2.4169 0.660#

∗All the P values of the five covariates were greater than 0.05, indicating that
each variable met the PH assumption. #The P value of global (0.660) was
also not statistically significant; the whole model met the PH assumption.
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DNA methylation as a predictor, the combined use of DNA
methylation sites can obtain higher sensitivity and specific-
ity. In this study, based on DMC analysis, four CpG sites
were identified by Cox regression analysis, which were sig-
nificantly associated with OS in CC patients. Calculating
the patient’s risk score based on this set of biomarkers can
help predict the probability of patient survival time. In sur-
vival analysis, the four-CpG biomarker model proved to be
reliable independent prognostic factors for CC and superior
to other molecular markers, such as RASSF2, LRIG1, and
VIM methylation status. Independent group analysis indi-
cated that this model has an independent predictive value
for FIGO stage and age and is more suitable for predicting
survival time in patients with SCC and G2/G3. Meanwhile,
the four-CpG biomarker model showed superior reliability
and stability in assessing patient survival outcomes com-
pared with their corresponding gene expression, suggesting
that it can be used as an independent risk factor predictor
for CC. Another major advantage of epigenetic features is
their biological significance. MIR125B1 is a member of the
miR-125 family, and hypermethylation of promoter region
leads to gene expression downregulation and increases the
risk of lymph node metastasis and poor prognosis in breast

cancer [30]. And it also showed decreased expression in
CC, which is closely related to prognosis [31]. Therefore,
cg07281370 acts as a methylation site of the promoter region
of MIR125B1, altering methylation level may affect gene
expression and might be used as a potential prognostic
marker during CC development. Although the mechanism
of C20orf195 in cervical cancer is still unclear, the samples
were pooled and ranked according to the expression data
of C20orf195, which were divided into high expression
group (n = 73) and low expression group (n = 73). Kaplan–
Meier survival analysis showed that cervical cancer patients
with high expression had significantly worse disease-free
survival than those with low expression (P = 0:026), and
their abnormal hypomethylation status of the promoter
region may have a potential role in promoting gene expres-
sion. In addition, TFAP4 and TRAPPC9, which correspond
to CpG sites in the gene region, are associated with
epithelial-mesenchymal transition [32, 33]. TFAP4, highly
expressed in non-small-cell lung cancer, is closely related
to pathological score, recurrence, and metastasis [34]. While
it is worth noting that TRAPPC9 presents low expression in
CC, this may not be directly related to the hypermethylated
cg11256152 locus. However, hypermethylated loci are the
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Figure 3: Evaluation of the predictive performance of the four-CpG biomarker model. (a) Time-dependent ROC analysis of the predictive
accuracy on the OS of patients in the training set. The AUC reaches 0.833 (P < 0:001), and the optimization risk score cut-off threshold value
is 1.067. (b) The β value of each methylation site in high- and low-risk groups. (c) The Kaplan–Meier curve of the OS between the high- and
low-risk groups in the training (n = 180) and validation datasets (n = 119).
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Figure 4: Kaplan–Meier and ROC analyses of patients in different stage sets. Two sets: FIGO stages I–IIA2 and IIB–IV. (a) ROC curves and
AUC statistics of the four-CpG biomarker model were used to evaluate the predictive efficiency in different stage sets. (b) Kaplan–Meier
curve presented the survival differences between the high- and low-risk groups.

Table 4: Different stratification analyzed on the Kaplan–Meier and ROC.

Stratified factor Group
Cases
N (%)

Kaplan–Meier
P value

AUC (95% CI)

Age at initial diagnosis
<50 177 (59.20%) 1.38e-05 0.717 (0.622-0.81)

≥50 122 (40.80%) 2.37e-04 0.67 (0.555-0.785)

FIGO stage
I-IIA2 182 (60.88%) 1.89e-05 0.693 (0.601-0.785)

IIB-IV 110 (36.79%) 1.93e-04 0.676 (0.556-0.799)

Histological type
SCC 247 (82.61%) 1.76e-08 0.697 (0.615-0.779)

Adenocarcinoma 46 (15.38%) 3.68e-03 0.674 (0.417-0.878)

Histologic grade
G2 131 (43.81%) 2.88e-04 0.627 (0.515-0.738)

G3 120 (40.13%) 13.33e-05 0.762 (0.636-0.888)

95% CI: 95% confidence interval; SCC: squamous cell carcinoma.
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best factors for evaluating prognosis. This is related to the
recent proposal that tumor-specific methylation can lead to
high variability in expression by disrupting heterochromatin
resulting in uncontrolled epigenetic and transcriptional reg-
ulation [35].

Nevertheless, there were several limitations to this study.
Due to incomplete clinical data, we were unable to carry out
comprehensive stratified analysis for some prognostic fac-
tors, such as tumor size, lymph node metastasis, and HPV.
In addition, the results of the study were generated from a
single database; further validation using other CC datasets
is necessary.

5. Conclusions

This work identified 34,389 DMCs and their associated dis-
tribution features by genome-wide DNA methylation differ-
ence analysis of CC using AI algorithm and developed a
novel prognostic biomarker model. Comprehensive survival
analysis indicated that the risk score of the four-CpG bio-
marker model could be used as an independent factor for
the prognosis of patients with CC. The predictive value
was also confirmed with respect to different clinicopatholo-
gical characteristics, including FIGO stage, age, histological
type, and histological grade. Furthermore, the four-CpG bio-
marker model outperforms other known prognostic signa-
tures and can be more useful in predicting the OS of
patients. These results indicate the prediction model could
play an important role as a prognostic marker for forecasting

the survival time of patients with CC. In the future, the func-
tional mechanism and potential carcinogenic association of
these four CpG sites in CC require further elucidation.

Data Availability

The dataset used in this study is from publicly available
datasets. This data can be found here: http://
cancergenome.nih.gov and http://firebrowse.org/.
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