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Within the scope of this project, a spectroscopy-dependent machine learning (ML) method will be utilized to estimate the optimal
harvest time for mung bean, which will be used to examine the changes in physical and chemical attributes of the bean as it
develops. It was decided to harvest mung bean from the R5 (initial seed), R6 (full seed), and R7 (beginning maturity) stages.
The spectral reflectance of the pods was measured, and their physical and chemical characteristics were characterized. The
experiment was carried out using a spectrophotometer with a wavelength range of 360-740 nm. On the basis of the qualities
that have been identified so far in the study, early, ready, and late specimens have all been included. The results showed that
the pod/bean weight and pod thickness reached their maximum at R6. After that, everything remained the same as before.
Around R6, there was an increase in sugar, carbs, amino acids, and glycine, among other things. The ML approach (random
forest classification) achieved an accuracy of 0.95 for the classification of pods dependent on their spectral reflectance.
Specimens can be classed as “early” or “late” depending on whether or not they are “ready” or “not ready” when they are
collected or processed. As a result, this procedure is the most effective choice available. It can figure out when the best time is

to harvest mung bean.

1. Introduction

One of the most popular soy products in the United States is
mung bean, which has been consumed in East Asia for mil-
lennia and is represented in Figure 1. Isoflavones and other
nutrients such as vitamins C and E and monounsaturated
fatty acids are found in significant concentrations in this
food [1]. Although several factors contribute to the nutri-
tional value and eating quality of mung bean [2, 3], these
quality characteristics change over time as the bean matures
into an adult bean. Mung bean’s high marketability and cus-
tomer acceptance can be attributed in part to the fact that it
is harvested at the height of morphological and eating qual-
ity at the optimal period, according to some authors [3]. It is

also easier to process mung bean if it is dependably good
quality. Picking during the R6 and R7 growth phases, when
the pods are beginning to turn yellow and when moisture
and bean weight are nearing their maximum values, will
ensure the highest yield and quality.

Collecting mung bean outside of the right harvest win-
dow has the potential to diminish its economic viability
due to the dynamic nature of bean growth during the R6
and R7 phases. Picking beans too soon may result in a lower
quality bean, while harvesting them too late results in fibrous
and yellow beans (as opposed to green ones) [5]. Farmers are
limited in the time they have to harvest mung bean [5] due
to the fact that they have only a one-week window after they
reach their optimal harvest time. It is possible to distinguish
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FIGURE 1: Mung bean.

a plant in the R6 growth stage from one in R7 by the pres-
ence of pods that have beans that have completely filled
the pod cavity [6]. There are a number of biological varia-
tions during the transition from R6 to R7, which indicate
that reproductive growth has been completed and that
senescence has begun (R8). Bean growth takes up 85-90%
of the limited pod space, leaves, pods, and beans turn yellow,
and sugars and other chemical elements accumulate in the
early beans, to name a few of the changes.

In this work, we propose a framework in order to predict
the harvest time using the spectral machine learning tech-
nique which is a standard computation procedure that
encompasses the random forest classification technique.

2. Related Works

Research on mung bean and soybean has been conducted at
various stages of development in order to better understand
their physical properties and chemical contents. The physi-
cal, chemical, and antinutritional characteristics of mung
beans were studied by [7], who investigated the effects of
mung bean development on the beans themselves. [8] Pro-
tein, oil, starch, and soluble saccharides in soybean seeds,
as well as differences in seed length, were analyzed for mod-
ification content ranging from R1 to R8. The oil, protein,
carbohydrates, starches, organic acids, and amino acids of
growing soybean seeds were examined in a study by [9].
The metabolism and accumulation of oligosaccharides in
the plant were studied during the development of soybeans.
The physical and chemical features of mung bean or soybean
seeds that alter over the course of their reproductive life were
well depicted by all of these studies. However, just a few
researches have looked at using these differences to predict
the best harvest period for mung bean.

Mung bean growers’ capacity to notice changes in the
plant’s look, texture, or flavor is the basis for most present
harvesting systems for mung beans. Inexperienced or inex-
perienced mung bean growers may find it difficult to use
these approaches due to their subjective character, and they
may suffer financially as a result of the lower grade mung
bean harvested outside of the optimal window. As a result,
it would be excellent if technologies for quickly, consistently,
and uniformly establishing the appropriate harvest time
could be developed. Strawberries [11], cherry tomatoes
[12], and apples [11] have all recently had their optimal har-
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vest times established using spectroscopic methods [13].
This is an important drawback of our study because no pre-
vious research has used spectroscopic methods to estimate
the optimal harvest time for mung bean. Portable spectro-
scopic equipment also shows promise because it gives a
short (typically a few seconds) way for picking the best time
to harvest mung bean in the field, as opposed to the longer
chemical investigation. Even more minute differences in
pod color during mung bean growth can be detected via
spectroscopic analysis, which is otherwise impossible to see
with the naked eye. Secondarily, in order to establish the best
harvest time for the crops of mung beans, spectroscopy-
dependent analysis must be calibrated against an appropri-
ate reference technique. Multivariate regression testing is
frequently used for calibration, but because spectra are so
complicated, it does not always provide satisfactory results
[5]. Despite this, recent improvements in machine learning
techniques have provided a chance to analyze the complex
spectroscopic information in order to deliver accurate and
trustworthy calibration [14]. “Random forest” (RF) is an
ensemble learning technique that has grown in popularity
in recent years due to its high classification accuracy and
speed when applied to huge datasets, according to [15].
Radiofrequency (RF) technology has been used to classify
various types of food using multispectral and hyperspectral
data. As an example, infrared spectroscopy was used to
distinguish between genuine and fake nutmeg, and the
results showed that RF was superior to other classification
approaches, such as partial least squares-discriminant analy-
sis (PLS-DA) and soft independent modeling of class analo-
gies (SIMCA). For the second time, a machine learning
study was done to categorize bananas into separate categories
dependent on their measurable features (i.e., artificial neural
network, random forest, and support vector machines). Fol-
lowing the experiments, it was shown that the RF strategy
had the best classification accuracy among the three machine
learning methods.

Mung bean’s physical and chemical properties will be
studied to identify when to harvest, and spectroscopy-
dependent machine learning will be used to make this deter-
mination. The physical and chemical features of mung bean
harvested at various stages, ranging from R5 to R7, were
examined in this study. Pod weight, 20-bean weight, pod
dimensions (width, length, and thickness), and color were
among the physical characteristics. Sucrose, fructose, glu-
cose, alanine, glycine, oligosaccharides (raffinose and sta-
chyose), moisture of fresh beans, protein and starch,
neutral detergent fiber (NDF), and ash were all included in
the chemical compositions. Mung bean harvesting can be
improved by using the physical and chemical features of har-
vested beans to determine the optimal harvesting stage and
to identify the beans that were harvested “too early” and
“too late.” In addition, handheld, portable spectrophotome-
ters were used to measure the reflectance of the harvested
mung bean pods between 360 and 740 nm. A machine learn-
ing approach was utilized to evaluate whether the mung
bean harvesting was ready dependent on the gathered spec-
tral reflectance, using the observed spectra. For the first time,
researchers have used spectroscopy to develop a method for
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FIGURE 2: Reproductive phases of mung bean.

quickly and correctly determining the best time to pick
mung bean, a step necessary to ensuring a steady supply of
marketable, high-quality soybeans.

3. Methodologies

3.1. Basic Material of Mung Bean Plant. Plantings of R15-
10280, V16-0547, and the UA-Kirksey variety were made
at Kentland Farm, Whitethorne, VA, in May 2019. A ran-
domized complete block design (RCBD) with 7-m-long rows
and 76-cm spacing between each row was used for the plots.
The planting rate is around 18 seeds every meter; thus, there
are 126 seeds per row in total. Rows include roughly 95
plants with an emergence rate of 75%. There were a total
of three replications in the study. The first nine feet of each
entry were tagged with three dates once blossoming had
begun. Depending on the genotype’s flower availability, any-
thing from 25 to 30 nodes was marked in each replication.
As a result of all genotypes being in maturity group V and
having been planted in the same field on the same date,
the duration phases of all genotypes are comparable. To
make things even more interesting, the three genotypes’
flower tagging dates were only two days apart. Genotypes
R15-10280, V16-0547, and UA-Kirksey had blooming tag
dates of October 5 and 11 and July 30 for the following years.
When necessary, the nodes were cleaned to remove all of the
younger flowers, making harvesting easier and allowing us to
accurately track the flowering time of each node. At six sep-
arate times, pods were hand-harvested. There were six har-
vests in 2020 corresponding to R5-1, R5-2, R6-1, R6-2, R7-
1, and R7-2 of the growth stages (Figure 2).

It is important to note that the morphological and chem-
ical features of pods and beans changed swiftly due to the
dry weather and a drought field, as there was only a one-
day difference between R7-1 and R7-2 growth phases.
Table 1 presented offer specifics on when to sow and harvest
soybeans. For each of the six harvest periods, a total of 10
pods were selected from each genotype in all three replica-
tions, resulting in a total of 90 pods per harvest period. Six
harvests yielded a total of 540 pods. In order to eliminate
any dirt or debris from the pods, they were brushed off dur-
ing harvest, although they were not thoroughly cleaned. So
that the pubescence could be preserved and the pod’s color
would not be altered by possible harm, this was done.

Once harvested, the samples were stored in Ziplock bags
and brought to the lab where their physical parameters were
measured using an ice pack in a chiller. Plantings of R15-
10280, V16-0547, and the UA-Kirksey variety were made

3
TaBLE 1: Various harvest phases with planting date.

Dates Harvest phase Days from the planting
21.02.2021  First harvest phase (R5-1) 0
19.06.2021 Second harvest phase (R5-2) 119
25.06.2021 Third harvest phase (R6-1) 125
30.06.2021 Fourth harvest phase (R6-2) 130
05.10.2021 Fifth harvest phase (R7-1[) 135
11.10.2021 = Sixth harvest phase (R7-2) 141

at Kentland Farm, Whitethorne, VA, in May 2019. A ran-
domized complete block design (RCBD) with 7-m-long rows
and 76-cm spacing between each row was used for the plots.
The planting rate is around 18 seeds every meter; thus, there
are 126 seeds per row in total. Rows include roughly 95
plants with an emergence rate of 75%. There were a total
of three replications in the study. The first nine feet of each
entry were tagged with three dates once blossoming had
begun. Depending on the genotype’s flower availability, any-
thing from 25 to 30 nodes was marked in each replication.
As a result of all genotypes being in maturity group V and
having been planted in the same field on the same date,
the duration phases of all genotypes are comparable.

3.2. Physical Properties. A computerized fractional caliper
was used to measure the pods’ length, width, and thickness
in the lab (Husky Tools). From the thickest to the tiniest sec-
tion of each pod, it was measured. Additionally, pod weight
was determined using analytical balances. In order to get a
20-bean weight, random pods from each genotype and rep-
lication were opened. Sample lightness (+)/darkness (), red-
ness (+)/greenness (), and yellowness (+)/blueness were
measured with a portable Konica Minolta CM-700 Spectro-
photometer. The pods were returned to the ultra-low freezer
at 80 C and labeled Ziploc bags until further chemical com-
position testing could be undertaken.

3.3. Chemical Composition

3.3.1. Alanine, Glycine, and Free Sugars. Hand-shelling and
freeze-drying mung bean from the pods yielded freeze-
dried mung bean. A blender was utilized to crush the dry
beans into a powder, which was then analyzed for chemical
composition using a 500-m sieve. All of the sugars and
amino acids were extracted using the technique reported
by [19] with minor adjustments, as well as the raffinose
and stachyose oligosaccharides (alanine, glycine, and fruc-
tose). In a 2-mL centrifuge tube, dried samples weighing
0.15g were combined with 1.5mL of deionized water (DI
water). After 2 hours of shaking at room temperature, the
combination was centrifuged for 10 minutes at a speed of
13,500 g. After that, 750 L of supernatant and 750 L of aceto-
nitrile were collected and combined. At room temperature,
the mixture was mixed for ten minutes before being centri-
fuged for a further 10 minutes. This was followed by the
use of high-performance liquid chromatography (HPLC)



TABLE 2: Relative sweet of certain amino acids.

Amino acids Relative sweet

Alanine 0.95-1.65
Glycine 0.45-1.15
Glucose 0.35-0.75
Fructose 0.95-1.70
Sucrose 0.99

with an index detector (RID) to analyze 750 L of supernatant
(Agilent Technologies, Santa Clara, CA, USA).

3.3.2. Total Sweet Taste. The sweet of various free sugars and
amino acids varies. The sweet of various sugars and com-
pounds was compared to sucrose in Table 2 to determine
their relative sweet (RS), which was then used to compute
the overall sweet. The following equation was used to deter-
mine the overall sweet taste as shown in equation (1).

Sum Total(sweet) = RSAlanine X CAlamine + RSGlycine

x CGlycine * RSFructose x CFructose 1
+ RSSucrose x CSucrose + RSGlucose

X CGlucose .

3.3.3. Moisture, Protein, Fat, Neutral Detergent Fiber (NDF),
Starch, and Ash Assessment. Oven drying at 105°C for an
hour and a half was used to measure fresh bean moisture
levels [18]. According to [18], total nitrogen content was
determined by multiplying 6.25 times (equation (2)) the pro-
tein conversion factor to get the total protein content
(AOAC, 2001.11). The fat content was measured using
AOAC 2003.05.

Total Nitrogen = 6.25 * total protein content{AOAC]. (2)

The fat content was assessed using AOAC 2003.05. The
fat content was extracted using petroleum ether and deter-
mined using AOAC 2003.05. The ANKOM fiber analyzer
was used to determine the amount of NDF present
(ANKOM Technology, Macedon, NY, USA). Using the
digested dry weight, the NDF content was estimated after
the nonfiber portion was removed using a neutral detergent
solution [21]. According to AOAC 942.05, the weight differ-
ence before and after incineration was used to calculate the
ash content in a muffle furnace operating at 550°C for 12
hours as shown in equation (3). Measurement of hydrolyzed
glucose was done using the HPLC with RID and Bio-Rad
Aminex HPX-87H, as reported by [22].

Total Ash Content at 550°C
= weight of AOAC (before) — weight of AOAC(after).

(3)

3.4. Prediction of Harvest Time Using the Spectral Machine
Learning Technique
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FIGURE 3: Steps in prediction of harvest time depends on spectral
ML technique.

3.4.1. Spectral Machine Learning. Before presenting our pri-
mary findings, we briefly review the various spectral
approaches used in machine learning and explain how our
findings apply to both traditional and modern algorithms.
Let x1, -+, xn be a set of Rm data points.

Spectral approaches are classified by their reliance on:

Outer point cloud properties: these include PCA and
Fisher discriminant analysis. That is, they need spectral anal-
ysis of a positive-definite kernel of dimension m.

MDS and newer variations rely on it (more or less) to
execute an embedding of the data points. They require spec-
troscopic features of a point cloud of dimension n. Large
datasets (intrinsic or extrinsic) make spectrum analysis diffi-
cult. Our essay focuses on obtaining the optimum rank-k
approximation to a symmetric, positive semidefinite (SPSD)
matrix for methods like PCA and MDS.

The forecasting of the harvest time depends on the spec-
tral machine learning method which consists of four steps as
shown in Figure 3:

3.4.2. Data Preprocessing. Each sample was categorized into
three categories: “early class,” “ready class,” and “late class”
depending on physical and chemical data gathered from
the sample. Every one of the ten pods in every sample was
given the same class label in order to match the spectral
reflectance dataset (n = 10 for each sample). As a result, the
data set comprises of mung bean pod spectral reflectance
readings in the 540-nm range. Some 220 of these datasets
were delayed class, 180 early class, and 140 ready-class
observations. To train and evaluate the RF classifier, we
employed a feature matrix that included both the core spec-
tral data and the first-order derivatives (FOD). It is standard
procedure to use FOD transformations of the spectral curve
in order to enhance spectral characteristics and reduce ran-
dom noise in order to improve classification quality.

3.4.3. Random Forest Classification. A data mining technique
known as random forest (RF) can be used to solve classifica-
tion and regression issues. Voting to determine the class type
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and then growing a group of trees has greatly increased clas-
sification accuracy. These ensembles are grown using ran-
dom vectors. Using a random set of vectors, a tree is
created for each one. Classification and regression trees are
used in RF. Trees are used to address classification difficul-
ties. The RF prediction is determined by the majority of class
votes. Since overfitting does not occur in big RFs, the gener-
alization error merges to a limiting number when adding
more trees to the RF [26]. To improve accuracy, it is essen-
tial to have low bias and correlation. With no pruning and
randomization of variables applied at each node, low corre-
lation can be achieved in the trees. The following summa-
rizes the RF’s general growth and voting process:

Each RF tree is created from a bootstrap sample taken
from the training data. The remaining one-third of samples
is used to calculate out-of-bag (OOB) error, with the
remaining two-thirds of samples being utilized to develop
each tree.

(i) A random sample of » variables is chosen from a
pool of N variables during the tree-growing process

(ii) As a starting point, log 2(N) + 1 or N can be chosen,
and various values can be attempted until the least
OBB error is obtained. Each node uses only one of
the n specified variables to make the best split possi-
ble. Trees can be tested using OOB datasets once

Accuracy =

True negative + True positive

they have been grown. The OOB data collection is
used by RF to compute an unbiased error estimate
as more trees are planted. It is also used to calculate
the relevance of variables in RF classification using
OOB data set

An adaptation of the RF analysis approach was devel-
oped using the R programming language and VSURF/caret
packages [23]. The general equation is

n

RFC = EZ(ri ~a,). (4)

nia

From equation (4), # indicates the total data points, r;
indicates the returned value by the model, and the actual
value of data point is represented by a;.

We used 10-fold repeated cross-validation on the train-
ing data and divided the dataset 80:20 between training
and test data. This procedure was repeated 100 times, and
the mean accuracy was obtained. In this study, RF classifiers
trained to assign each spectrum to one of the three classes or
two classes (e.g., early vs. late) were used to compare the
model performance as evaluated by classifier accuracy
depending on cross-validation findings. In order to figure
out accuracy, we used

The 39 predictor factors were used to classify the three
groups (waveband at 10-nm resolution). According to train-
ing data, the best classifier was found to have an mtry of 30
and n-tree of 2000. The VSURF program was used to pick
the characteristics, and the accuracy of the forecast was
assessed using specified spectral bands.

4. Experimental Analysis

4.1. Physical Properties. Weight of pods, 20-bean weight,
size, and color of pods, as well as the breadth and length of
pods, were all documented as the mung bean grew from
R5 to R7 (Table 3). Childish pods with green beans that
are completely formed are ideal for high-quality mung bean
harvests, and the beans should be dry at the harvest period
[24]. The pod and 20-bean weights of all three genotypes
grew significantly from R5 to R6 and peaked at stage R6-1
or R6-2. The genotypes V16-0547 and UA-Kirksey showed
a minor but not statistically significant decline through stage
R7, while the genotype R15-10280 showed a slight rise from
R7-1 to R7-2. According to the results of pod width and
length measurements, this increase was caused by the selec-
tion at random of larger mung bean pods. Seed filling starts
during stage R5 dependent on soybean growth and develop-

True positive + False Positive + True negative + False Negative '

ment, and dry mass builds at the same time (Purcell et al.,
2014). Growth and dry mass buildup slow to a halt at the
conclusion of R5, which marks the beginning of R6. A mod-
est but not substantial drop in pod and bean weights
occurred when the beans entered stage R7 [26]. Because
the pods had already reached their maximum size and had
a set pod width and length by the end of R4, pod width
and length changes were not as significant as weight
changes. The larger seeds, on the other hand, caused a con-
siderable rise in pod thickness from R5 to R6. Over R7, there
were no notable changes in pod thickness following seed fill-
ing. Consumers like brighter, greener pod [2].

Each of the three genotypes saw a substantial growth in
G =* values from the beginning to the end of the study. The
weight of the pods increased as they grew, as indicated by
the increase in the G value. There were no significant
changes in x * values between R5-1 and R6-2, which indi-
cated that the pods were green. All three R6-2 to R7-2 geno-
types showed an increase in x =, but only the R15-10280 and
UA-Kirksey genotypes were statistically significant. This
shows that the green color was preserved until R7-1, at
which point it began to fade away. Over the course of pod
growth, y * values rose as shown in equation (6). A rise in
genotype V16-0547 was significant, but not for R15-10280
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TaBLE 3: Calculated physical properties of mung bean in various harvest phase.

Harvest phase Pod weight/g 20 bean weight/g Pod thickness/mm Pod length/mm Pod width/mm
R15-10280 (genotype phase)

R5-1 0.85+0.11* 3.85+0.31" 10.85 +0.53* 40.85 £ 0.76* 5.85+0.43"
R5-2 1.35+0.23" 5.35+0.53" 11.35+0.63" 41.35 +0.54" 7.35+0.93"
Ré6-1 1.97 £0.41% 8.97 £ 0.61* 12.97 +0.43% 45.97 + 0.64* 6.97 +£0.74*
R6-2 1.79 +0.13Y 7.79 £0.53% 11.79 +£0.54Y 43.79 +£0.78% 8.79 +0.48Y
R7-1 1.49 +£0.03% 11.49 +0.303Y 12.49 £ 0.76™ 42.49 +0.64Y 5.49 +0.35"
R7-2 1.90 £ 0.19% 10.90 + 0.14% 10.90 + 0.76% 46.90 £ 0.63" 8.90 £ 0.90%
V16-0547 (genotype phase)

R5-1 0.97 +£0.29” 8.97 +0.23" 10.97 +1.76" 40.97 £ 0.54" 7.97 £ 0.49"
R5-2 1.31+0.13" 3.31 £0.33" 12.31 +0.83" 47.31 +0.43% 6.31 +£0.63"
R6-1 1.93 +£0.29% 6.93 £ 0.39% 13.93 +0.87% 43.93+0.76" 7.93 +0.89"
R6-2 2.20+0.31% 4.20+0.61% 12.20 +£0.37* 42.20 +0.65* 8.20 £0.91%
R7-1 1.79 +£0.23% 9.79 £ 0.34Y 11.79 + 0.54% 41.79 £ 0.56" 9.79 £ 0.13Y
R7-2 1.71 £0.23% 5.71 +0.342% 13.71 £0.72% 44.71 £ 0.86" 5.71+0.33Y
UA- Kirksey (genotype phase)

R5-1 0.85+0.11* 7.85+0.432° 10.85+0.11* 0.85+0.57* 6.85+0.617
R5-2 1.11 £0.17" 11.11 +0.343%* 13.11 +£0.17"* 1.11 +£0.23%* 8.11+0.87"
R6-1 1.69 +0.25* 10.69 + 0.43* 12.69 +0.98* 1.69 +0.98* 5.69 +0.25*
Ré6-2 1.76 £ 0.98% 8.76 £ 0.32% 11.76 £ 0.25% 1.76 + 0.56™ 9.76 £ 0.45"
R7-1 1.65 +0.24"* 9.65 +0.54" 13.65 +0.34"* 1.65+0.72%* 5.65 + 0.94"*
R7-2 1.96 +0.02* 4.96 +0.54" 12.96 +0.87* 1.96 +0.23* 7.96 +0.22%

Depending on one-way ANOVA with Tukey’s HSD analysis (p less than 0.05), various letters (xyz) from each column show a statistically significant variation.

or UA-Kirksey (both of which remained stable at 32.62 and
35.98) (32.88 to 39.43). Mung bean growth resulted in yel-
lower pods as seen by rising y * values (a measure of yellow-
ness).

HSD test = [G x a x b] of edamame in various harvest phase.

(6)

Overall, the pods’ colors became lighter, less green, and
more yellow as they matured. Odds are the green chloro-
phyll catabolites in mung bean that have decreased from
R6 to R8 [27] as shown in Table 4.

4.2. Alanine, Glycine, and Free Sugars

4.2.1. Various Free Sugars and Amino Acids That Contribute
to Sweetness. After R6-1, the amount of sucrose in the blood
decreased. Sucrose concentrations in R15-10280 and V16-
0547 genotypes were 82.0mg/g at R5-1, but jumped to
1253 mg/g and 111.54mg/g, respectively, at R6-1. Free
sugars (sucrose, fructose, and glucose) and sweet are the
content of mung bean. There were more sucrose molecules
than fructose and glucose in mung bean [18]. Even though
sucrose concentration began to decline after R6-1, samples
obtained at R6-2 showed no significant difference from those
harvested at R6-1. Immediately following R6, the sugar con-
centration decreased precipitously. UA-Kirksey showed the
same sucrose changes as R15-10280 and V16-0547, starting

at 68.7 mg/g at R5-1, climbing to 76.3 mg/g at R6-1, and then
decreasing at R7-2. It was less noticeable in this group com-
pared to the other two genotypes (R15-10280 and V16-
0547). Sucrose content peaked in the early stages of R6 and
then began to fall as time went on. In the growing bean
embryos, most of the sugar is sucrose, and it builds up in
the beans during the filling process [28]. The seed’s metabo-
lism and storage are influenced by a variety of enzyme
changes throughout its growth [29]. Sucrose synthase activ-
ity was shown to be correlated with mung bean sucrose con-
centrations, according to [3]. As the beans progressed from
stage R4 to R6, sucrose synthase activity increased five-fold,
according to a study published in [10]. The increased activity
of sucrose synthase led to an increase in sucrose content
from R5 to R6. During bean growth, the sucrose concentra-
tion decreases as sucrose is converted to alternative storage
sugars such raffinose and stachyose. When oligosaccharide
levels are examined further, a change in galactinol synthase
activity may also account for the drop in sucrose content.
The fructose and glucose concentrations of all three geno-
types were substantially lower than sucrose. When com-
pared to the other three genotypes, genotypes R15-10280,
V16-0547, and UA-Kirksey had the highest fructose
(17.0mg/g) and glucose (6.4mg/g) levels at R5. UA-
Kirksey R5-2, R6-1, and R6-2 genotypes all showed signifi-
cant declines in fructose and glucose over time. There was
no change in these two sugars until R7-2, when they
dropped along the same stage. Free alanine and glycine have
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TaBLE 4: Calculated color of [G # a * b x| value of mung bean in
varijous harvest phases.

Harvest phase G * a* b=

R5-1 70.45+4.26"™  8.97+0.61%  35.87 +2.542%
R5-2 68.45+1.69%  7.79+0.53% 23.32+7.23"
R6-1 58.45+0.23°  6.93+0.39Y 33.12 + 4.54%
R6-2 64.54 +0.347 420+0.61%  32.87 +2.542%
R7-1 43.76 £1.53%  5.49 +0.35 23.32+7.23"
R7-2 68.45 + 1.69" 3.85+0.31"  32.87 +£2.542%
R8-1 69.76 £1.43%  7.90+£0.61% 35.12 + 4.54**
R8-2 57.45+1.39%  4.79+0.53%  32.87 +2.542%
R5-2 58.45 +0.23* 8.97 £0.61%  34.87 +2.542%
R6-1 64.54 + 0.34" 6.97 £ 0.74* 39.45 +1.43"
Ré6-2 43.76 £ 1.53"%  8.79+0.48%  32.87 +2.542*
R7-1 68.45+1.69° 5.49+0.35%  33.87 +2.542%
R7-2 58.45+0.23* 7.93+0.897  38.87 +2.342%
R8-1 59.76 + 1.53%  8.97 +0.61* 32.12 + 4.54**
R8-2 47.45+1.69°  4.79 +0.54Y 36.87 +2.92%
R5-1 64.54 +0.347 8.20 £ 0.81* 23.72 £9.23"
R5-2 43.76 £1.53%  9.79 +£0.13% 33.87+1.2%
Ré6-1 68.45 + 1.69" 420+0.61% 36.87 + 0.42%
R6-2 58.45+0.23* 3.31+0.33"*  34.87 +£0.982%
R7-1 64.54 +0.34" 3.85+0.31* 39.45 +1.43"
R7-2 43.76 £1.53% 12.49+0.76Y  23.32+£7.23"
R8-1 71.76 £1.63%  6.97 +0.71% 32.12 £5.53%
R8-2 59.45+1.69% 11.79+0.33" 31.87 +2.459™

sweet tastes, which may increase the sweetness of mung
bean. Table 5 shows the shift in free alanine and glycine
levels from R5 to R7. The amount of free alanine and glycine
in proportion to the number of free sugars was extremely
low. At stage R6-1, R15-alanine 10280’s and glycine concen-
trations were 7.9 mg/g and 1.60 mg/g, respectively. All of the
genotypes showed no significant change in alanine content
between R5 and R7, indicating that the bean’s development
stage had no effect on alanine production. A large rise in gly-
cine content occurred from R5 to R6 and a subsequent fall
by R7 in genotype R15-10280; however, in R6-1 to R6-2
and then no change in genotype UA-Kirksey while growing
beans, the glycine concentration in genotype V16-0547 did
not change. An apparent trend in the alanine and glycine
levels of mung bean could not be identified between devel-
opmental stages 5 and 7. Because alanine and glycine quan-
tities in mung bean are so low, they have no impact on the
flavor.

4.2.2. Sweet Total. According to reports, mung bean with a
superior level of customer acceptance was found [30]. The
total sweetness of mung bean harvested at R6-1 and R6-2
was higher than that of mung bean harvested at R5 and R7
for genotype R15-10280 as shown in equation (7). Samples

from the V16-0547 genotype that had the highest overall
sweetness were picked between R5-2 and R6-2 of the ripen-
ing cycle. The total sweetness of samples taken at different
growth phases did not change significantly for UA-Kirksey.

total sweet of R6 — 1 and R6 — 2 > total sweet of R5 and R7.

(7)

Although all sweet components in mung bean were eval-
uated, the general trend of total sweet was similar to
increases in sucrose concentration, especially for genotypes
R15-10280 and V16-0547.

As sugar content in mung bean is higher than in most
other foods, it has a greater impact on the overall sweet of
the food. Author [18] found a strong connection among
sucrose concentration and overall sweet in a prior study.

4.2.3. Raffinose and Stachyose. Raffinose and stachyose are
galactosyl derivatives of sucrose and belong to the raffinose
family of oligosaccharides (RFOs) [31]. Seeds of legume
plants store energy in the form of oligosaccharides that build
during maturation [32]. There are two galactose molecules
coupled to one sucrose in the raffinose and stachyose struc-
tures, respectively. There are two types of sugars that are not
good for you: raffinose and stachyose, which are not digest-
ible by humans and may cause flatulence or more serious
gastrointestinal problems [18]. Raffinose and stachyose are
change from harvest stage 5 to 7 A major increase of raffi-
nose began in genotype R6-2 for all three genetic lines,
which had previously shown no or very low levels of raffi-
nose. Beans harvested at R6-1 have a trace amount of sta-
chyose; following R6-2, however, the amount increases
significantly. The findings were consistent with previous
investigations by [8], which reported the similar pattern of
buildup of raffinose and stachyose. Because raffinose syn-
thase is ultimately responsible for the RFO synthesis, sucrose
and galactinol are both required for this process. Galantine
synthase activity remained high in ripening soybean from
R6 to R7, which triggered the buildup of galactinol. The
galactinol content in mature soybean increased from practi-
cally 0 to 3.0mg/seed. To produce raffinose, an enzyme
known as raffinose synthase uses the beans’ sucrose and
galactinol as the raw materials. Stachyose was found to be
more abundant than raffinose, as seen in Figures 4 and 5.
In order to make stachyose, raffinose is required as a starting
material, which results in the addition of an extra galactinol
[33]. As a result, stachyose buildup began at R6-1 and esca-
lated after R6-2. Sucrose levels had risen and fallen in lock-
step. Sulfate content reduced after R6-1; a greater decrease
was reported in the next R6-2. Accumulation of raffinose
and stachyose may explain the drop in sucrose following
Ré6-1.

4.2.4. Macronutrient Organization. Mung bean’s macronu-
trient content is just as important to consumers as its look
and sweet. It was for this reason that measurements were
made of the contents of the foodstuff (Table 5). More than
60% of the weight of mung bean was water, making it the
most prevalent component. Among the most essential
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TaBLE 5: Chemical composition of mung bean in various harvest phases.

Harvest phase Fat (%) Starch (%) Protein (%) Moisture content of fresh beans (%) Ash (%) NDF (%)

R5-1 18.80 +7.23*  11.45+1.43%  39.45+1.43" 69.45 +7.23% 5.08+0.72%  7.08 £0.72*
R5-2 16.16 +7.23"”  10.45 +0.32 40.54 +0.23Y 70.45 + 4.26" 5.34+0.72"  5.34+0.72"
R6-1 11.18 £7.23%  11.45+6.23* 42.45+1.43" 68.45 + 8.527 3.66 +0.43Y 3.66 +0.43Y
R6-2 14.14 +7.23* 12.45 +1.23%  43.45+0.232% 63.45 + 1.45% 4.75+0.32% 5.08 + 0.72%
R7-1 13.08 +7.23"  9.45+2.342Y  44.45+0.87" 62.45 + 6.347 5.32+£0.545" 5.34+0.72"
R7-2 12.19 +7.23% 6.45+5.87" 45.45 +0.54" 66.45 + 8.54% 5.54+0.78"  3.66+0.43Y
R5-1 17.15+7.23V  10.45+9.45"  46.45+1.87% 69.45 +4.78* 5.63 +£0.43”  5.08 £0.72*
R5-2 15.19 £7.23*  10.45 + 6.38% 47.45 + 1.54* 67.45 +9.32% 3.76 £0.23"  5.34+0.72"
R6-1 13.12+7.23%  11.45+8.32%  49.45+0.23% 63.45 + 3.54* 4.65+0.98Y 3.66 +0.43
R6-2 13.17 £7.23%  12.45+0.43%  43.45+0.657 61.45 + 6.3 3.54+0.43" 6.08+0.72%
R7-1 12.15+7.23%  9.45+0.543% 40.45 +0.87* 68.45 + 1.69* 3.76 £0.34Y  7.34+0.72%
R7-2 11.13 £7.23%  8.45+0.342Y 44.45 + 1.54% 58.45 +0.23* 4.76 £ 0.56™  5.66 +0.437
R5-1 16.14 +7.23*  10.45+0.54  39.45 + 0.54" 64.54 +0.347 5.34+0.23"%  7.08+0.72*
R5-2 14.13+7.23%  9.45+1.786 46.45 + 0.34* 43.76 + 1.53% 3.7+£0.26"™ 7.34+£0.72"
R6-1 12.12 +£7.23*  9.45+0.32% 42.45 +0.47% 32.12 £ 4.54* 5.89 +0.45Y 5.66 +0.43Y
R6-2 11.11+£7.23*  9.45+0.543%  44.45+1.23Y 32.87 +2.542% 5.32+0.41* 7.08+0.72%
R7-1 16.14 +7.23Y 8.45 +1.32% 43.45 +0.57" 23.32+7.23" 3.54+0.6" 8.34+0.72"
R7-2 15.11+7.23%  7.45+0.23Y 42.45+1.78% 34.66 +7.23% 4.32+0.5% 5.66 +0.43Y
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FIGURE 4: Analysis of spectral reflectance using machine learning. Average spectral reflectance of mung bean pods that are in the three

categories: early, late, and ready to harvest.

qualities of mung bean is its high moisture content. A high
moisture level of fresh beans was found in all genotypes at
R5-1, and the moisture content subsequently declined
between R5-1 and R7-2. For genotypes V16-0547 and UA-

Kirksey, the reduction from R5-1 to R6-1 was significant,
but not for R15-10280. Mung bean’s chewiness and hardness
are largely due to the starch that makes up the majority of
the seed’s energy storage [34]. In all three genotypes, the
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initial starch level was around 11%; however, the starch con-
tent of genotypes R15-10280 and V16-0547 increased some-
what from R5-1 to R6-1, whereas for UA-Kirksey, the starch
content did not change. From R6-1 to R7-2, the starch con-
tent declined dramatically in all three genotypes. Reports of
this modification were also made. Starch accumulated at the
beginning of the bean’s development and subsequently
decreased dramatically when the bean had nearly filled its
pods in their study. The physical qualities of mung bean
are influenced by the amount of starch they contain after
harvesting. The enzymes in mung bean can be deactivated,
and the shelf life extended by blanching. It softens mung
bean by causing starch and pectin gelatinization and solubi-
lization. The higher the starch content, the softer the mung
bean will be after blanching. Mung bean is a rich source of
vegetable protein because it contains about 39.5% protein
by dry weight. All harvested mung bean samples had protein
levels ranging from 38.9% to 40.90%, with a minor rise of 3-
4% from R5-1 to R7-2.

Researchers [35] found a small rise in this variable
(2011). The protein content of mung bean increased
between R5 and R7 by 2-5 percent. From R5 to R7, the pro-
tein content remained largely consistent across the board.
During the R5-1 stage, the fat content of R15-10280, V16-
0547, and UA-Kirksey was 13.8 percent in R15 and 12.7 per-
cent in V16, respectively. When it collected up to R6-2, no
substantial difference was discovered. Initially, R5-1 had an
NDF concentration of 7% to 8% and an ash content of 6%,
respectively. Genotypes V16-0547 and UA-NDF Kirksey’s
content declined dramatically from R5-1 to R6-1 and then
marginally increased subsequently. There was no substantial
variation in NDF for R15-10280 compared to the other two
genotypes. In all three genotypes, the ash concentration
decreased from R5 to R6 and increased from R6 to R7.

The best time to harvest mung bean is in the early stages
of R6 (R6-1) depending on physical and chemical features.

This phase of mung bean development results in a large bean
size, a pleasant light green color, a higher level of sweetness,
a higher protein and starch content, and lower levels of raf-
finose and stachyose. There was no significant difference in
physical and chemical attributes between the mung bean
that was harvested at R6-2 and that was collected at R6-1.

However, more improvements in accuracy are required
(Figures 6 and 7).Similar spectroscopy-dependent approaches
were previously utilized to predict the time of apple harvest.
To determine the ripeness of the red apple, researchers
employed UV-Vis and near-infrared spectroscopes paired
with partial least square regression to monitor chlorophyll
content (the green hue) on the skin. The biggest distinction
between our study [13] that in our case, the response variable
is categorical rather than uninterrupted. As a result, mung
bean and other vegetables and fruits may be harvested at
the appropriate moment utilizing machine learning technol-
ogies like RF.

4.2.5. Selected Wavelength Using Three Class Classifiers.
There may be difficulties in gathering data in the field and
repetitive data if a large number of spectral bands are used.
Analyzing massive amounts of data provided by spectro-
scopic techniques is a difficult task. Data analysis can be
improved by picking wavelengths that contain the most use-
tul information with the least amount of unnecessary data.
When assessing the performance of models, 12 wavelengths
from the Prim spectral data and 9 wavelengths from the
FOD spectral data were picked for examination. In the RF
technique, a machine learning process known as feature
selection automatically selected the wavelengths (11 and 8).
Prim and FOD spectral data from these specified wave-
lengths were used to train three-class RF classification
models, and the results are shown in Figure 6 as Prim/Prim,
FOD/FOD, FOD/Prim, and Prim/FOD. Intriguingly, the
accuracy of the models constructed using only a few key
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Figure 7: Classification accuracy of two categories.

wavelengths was comparable (0.65 to 0.73) to that of the
models constructed using all of the available wavelengths.
The precision and recall for the classifier are as shown in
equations (8) and (9):

. True positive
precision = — ., (8)
True positive + False positive
Recall = True positive )

True positive + False negative’

Hyperspectral image systems were used to assess straw-
berry ripeness using support vector machine (SVM) models
constructed on full spectra and chosen ideal spectra [36].
They discovered that SVM models dependent on ideal spec-
tra were superior to models dependent on full spectra in
terms of performance. Unique spectral ranges were used in
their investigation, which is why their results varied from
those of other researchers. Ideal wavelengths between 441.1
and 1013.97 nm produced satisfactory results, while wave-

lengths between 941.46 and 1578.13nm produced inferior
results. Thus, this research shows that the decrease in wave-
length number may be achieved without impacting the accu-
racy of the model for categorizing mung bean at various
maturation stages, as demonstrated by previous studies as
well as overall, the model trained using FOD spectral data
outperforms the model trained with Prim spectral data.
Due to FOD’s superior ability to resolve overlapped wave-
bands and reduce random noise, this discovery was not sur-
prising. According to [37], in a thorough evaluation of
spectral classification algorithms, the least improvement
(over primary spectra) was found in FOD-dependent
approaches for very complex datasets, whereas the most
improvement was found in less complicated datasets. The
use of an RF classifier in conjunction with FOD spectra
improved classification accuracy in this investigation. Pri-
mary spectra and random forest classifiers still have high
classification accuracy. Other research suggests that the
FOD spectra’s ability to increase classification accuracy is
influenced by the technique and number of classes utilized
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in the classification. In spite of this, the FOD spectral data
does not indicate a distinct separation of the curves.

4.2.6. Two Class Classifiers. Spectral data of the “ready” cat-
egory were difficult to distinguish, while early and late data
were easy to tell apart using our approach. Using solely pri-
mary spectral data, two-class classifications were made
between each of the two groups studied. We did not employ
FOD since its visual inspection does not allow us to distin-
guish clearly between the categories of “early” and “late”
(data not shown). When classifying as early or late, the
model accuracy climbs to 0.91, whereas when classifying as
early or ready, the model accuracy rises to 0.88 (Figure 7).
At best, the model’s ability to discern “late” from “ready” is
only 0.69 percent accurate. Twelve wavelengths were
selected as the most important for feature selection. When
utilized to represent the primary spectral data of adzuki
beans, selective wavelength modeling produces similar preci-
sion. It was found that the model had difficulty distinguish-
ing between the “ready” and “late” categories of spectral
data. Using solely primary spectral data, two-class classifica-
tions were made between each of the two groups studied. We
did not employ FOD because its visual inspection does not
distinguish between early versus late stages of development
categorizations of things (data not shown). It climbs to
0.91 for labeling as either early or late, whereas it rises to
0.88 for categorizing as either early or ready. The model
can only tell the difference between “late” and “ready” with
an accuracy of 0.69 percent. After a thorough process of fea-
ture selection, the most significant 12 wavelengths were
determined. When utilized to represent the primary spectral
data of adzuki beans, selective wavelength modeling pro-
duces similar accuracy.

Cucumber chilling injury was detected using a hyperspec-
tral imaging technique (Figure 8), according to [38], and the
increased model accuracy for two-class classifications matched
their findings. There were no errors in any of the two-class cat-
egories, but there were errors in the three-class classifications
(normal, lightly chilling, and severely chilling), with an overall
accuracy of only 91.6 percent. An RF classification system was
found to reasonably identify early, late, and ready stages of
harvesting for the soybean crop based on data from handheld,
portable spectrometers.

5. Conclusions

Using a spectroscopy-dependent machine learning method,
this research examined at how mung bean’s physical and

chemical properties vary over the course of bean growth
with the highest accuracy of 97.8%. At stage R6, pod weight,
bean weight, and pod thickness reach their maximum
values. With age, the greens of mung bean turn a darker
shade of brown. The chemical composition of all genotypes
changes from R5 to R7 in a similar way. Sweetness in mung
beans is associated with higher levels of sucrose, glycine, and
starch in Ré6. In contrast, the fat, NDF, and ash concentra-
tion are minimal at this point in the process. Mung bean
should be harvested at the early R6 (R6-1) stage, which takes
into account all the changes in physical attributes and chem-
ical composition that occur during bean growth. R6-2, on
the other hand, is suitable and even preferable to R5 and
R7 if a longer harvest window is required. Classifying early
and late samples with a spectral reflectance of 0.95 and
0.87, respectively, was achieved using the machine learning
method, which was dependent on pods’ spectral reflectance.
Classifying “late” and “ready” samples, however, yielded a
low accuracy of 0.68. Mung bean harvesting times may be
predicted using machine learning methods dependent on
the spectrum reflectance of pods.
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