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The problem of energy shortage in sensor nodes caused by frequent data interactions is one of the major constraints on the
development of twin workshops. A backscatter-assisted wireless powered communication network (BAWPCN) has been
deemed a potential solution for addressing the problem of energy shortage in twin workshops. How to effectively ensure the
link energy efficiency (EE) while satisfying the quality of servers for each user has been of high interest, while it has not been
well studied in previous works. Inspired by this, in this paper, we propose a resource allocation scheme based on the max–min
criterion, considering the user quality of service and energy-causality constraints. The optimization problem is formulated as a
mixed-integer nonconvex fractional planning problem which is aimed at maximizing the minimum EE of each link. The
generalized fractional theory is used to transform the nonconvex fractional planning problem into an equivalent mixed-integer
nonconvex subtraction optimization problem, and then, the mixed-integer nonconvex subtractive optimization problem is
transformed into an equivalent nonconvex optimization problem by introducing relaxation variables to eliminate the integer
programming problem arising from the maximum-minimum function. Based on this, the block coordinate descent method is
used to decompose the transformation problem into two convex subproblems, and an iterative algorithm is proposed to solve
the transformation problem. Simulation results verify the fast convergence of the proposed iterative algorithm and show that
the proposed resource allocation method can effectively guarantee the fairness of the energy efficiency of the system in twin
workshops.

1. Introduction

Industry 4.0 refers to using the Cyberphysical System (CPS) to
digitize and intellectualize the supply, manufacturing, and sales
information in production and finally achieves fast, effective,
and personalized product supply. The core of Industry 4.0 is
the interconnection and intelligent operation of the physical
and information worlds of manufacturing. The combination
of intelligent automation (e.g., robotics) and a new generation
of information technology (e.g., Internet of Things and artificial
intelligence) produces the digital twin workshop, which is one
of the current trends in manufacturing in the context of Indus-
try 4.0 [1]. Digital twin (DT) is driven by the multidimensional
virtual model and fused data and realizes monitoring, simula-

tion, prediction, optimization, and other actual functional ser-
vices and application requirements through virtual and real
closed-loop interaction [2], as shown in Figure 1. Digital twin
workshops (DTW), as an important enabling way to realize dig-
ital transformation, promote intelligent upgrading, and acceler-
ate Industry 4.0, have moved from theoretical research to the
practical application stage, among which the development of
Internet of Things technology is the key driving force.

With the development of Internet of Things (IoT) technol-
ogy and its wide application in the manufacturing industry, it
greatly enhances the real-time data acquisition ability and the
transmission ability of production factors in twin workshops.
The realization of ubiquitous IoT requires the deployment of
numerous low-power sensors, but the frequent data interaction
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will greatly consume sensor energy [4]. One way to solve the
problem is replacing the battery, but the deployment of sensors
in an industrial production environment cannot meet the
demand to frequently replace the battery. At the same time, as
the power consumption and volume of wireless sensor nodes
become smaller and smaller, the advantages of small and flexi-
ble wireless sensor nodes will be limited if they only rely on their
own power supply. Therefore, the energy shortage of sensor
nodes caused by frequent data interaction is one of the impor-
tant factors restricting the development of twin workshops. In
recent years, thanks to the progress of science and technology,
scholars have proposed wireless power communication net-
work (WPCN) and backscatter communication technologies
to solve the energy limitation problem of sensor nodes. The
WPCN deploys dedicated energy stations to provide the energy
resource to the sensor nodes through the wireless energy trans-
fer (WET) technology, and the nodes leverage the harvested
energy to transmit information. Therefore, the core of WPCN
design lies in the joint allocation of energy and time resource.
The authors in [5] proposed the harvest-then-transmit (HTT)
protocol by incorporating WET into wireless communication
networks, which is the main basis for the operation of current
WPCNs. In [6], the half-duplex mode is extended to the full-
duplex mode, and the base station contains two antennas so
that it can simultaneously transmit energy signals and receive
transmission data. However, the transmitter performs active
transmission (AT) by the HTT protocol, which leads to high
power consumptions. Thus, the transmitter has to allocate a
long period to harvest sufficient energy but leaves a short period
to transmit information. Backscatter communication (Back-
Com) technology adopts a relatively simplemodulationmethod
to load its information to external RF signals for transmission.
Thus, BackCom avoids power-consuming components, provid-
ing a transmission strategy with low power consumption and
low transmission rate for IoT scenarios [7]. The long period
for HTT to harvest energy is available for BackCom to increase
the throughput. Thus, BackCom can be combined with HTT to
achieve different tradeoffs between energy harvesting (EH) and
data transmission.

The authors of [8] take the wireless digital TV signal as an
example to show that the sensor can maintain communication
by using the existing wireless signal without batteries. In [9, 10],
the authors combined BackCom with WPCN and proposed a
backscatter-assisted wireless powered communication network
(BAWPCN). For the BAWPCNs, the authors of [11] consid-
ered a network combining multimode backscatter communica-
tion and HTT and proposed a time slot resource allocation
scheme to maximize subuser link capacity. In [12], the authors
studied the optimal time allocation of energy harvesting, back-
scatter, and wireless transmission to maximize the throughput.
The authors of [13] proposed a resource allocation scheme to
maximize the throughput by jointly optimizing the transmis-
sion time, reflection coefficient, and transmit power in the
full-duplex BackCom. The authors of [14] considered the sce-
nario of nonorthogonal multiple access and maximized the
throughput by jointly optimizing the backscatter time and
reflection coefficient, subject to the constraints of energy collec-
tion threshold and signal-to-noise ratio. Energy efficiency (EE)
is also one of the important indicators of wireless communica-

tion networks; the authors in [15] studied the resource alloca-
tion method to maximize the user EE in the BAWPCNs.
Then, users’ EE was also studied in an unmanned aerial
vehicle-based WPCN with backscatter communications [16].
Based on the analysis of existing literature, it can be seen that
there are many researches on BAWPCNs from the evaluation
of network outage capacity or spectral efficiency, while there
are few researches from the perspective of energy efficiency.
Meanwhile, the following three problems still exist in the
research process: (1) there are only single nodes in BackCom;
(2) only the time dimension is considered in the design of
resource allocation, while the power resource allocation is
ignored; and (3) the energy harvesting model adopts the linear
mode. However, in the case of a multiuser network in the twin
workshop, the communication network composed of multiple
nodes should be considered. A large number of nonlinear com-
ponents such as photoelectric sensors and Hall sensors are used
in twin workshops, and the actual energy harvesting circuit pre-
sents nonlinear characteristics. At the same time, power
resources also affect the level of energy efficiency. Inspired by
the above three problems, aiming at the energy shortage caused
by frequent data exchange of each sensor node in the twin
workshop, this paper introduces a BAWPCN to study the
time-power two-dimension resource allocation method for
multiple users and optimize the energy efficiency of the com-
munication link. Our main contributions are summarized as
follows.

(i) A joint energy efficiency/fairness time-power two-
dimensional resource optimization model for the
system based on the max–min criterion is proposed.
The proposed optimization model not only ensures
fair access to communication resources for users but
also considers the optimization of the time slot,
transmit power of the power beacon, and nodes
simultaneously
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Figure 1: Digital twin model [3].
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(ii) The joint optimization of time slot and power leads to
coupling of multiple variables and a fractional form of
the objective function. In addition, there is a max–min
function of the objective function. The proposed opti-
mization model is therefore a mixed-integer noncon-
vex fractional programming problem and cannot be
solved directly using the existing tools such as CVX

(iii) The proposed iterative algorithm is verified to con-
verge quickly through simulation and is shown to
achieve better fairness of the link EE when com-
pared with similar algorithms

The rest of this paper is organized as follows. In Section
2, the system model for BAWPCN is introduced. In Section
3, we formulate the problem to maximize the minimum
links’ EE and solve it for the EE fairness resource allocation
scheme. In Section 4, the simulations are conducted to eval-
uate the performance of the proposed scheme. Section 5
concludes this paper.

2. System Model

Consider a BAWPCN as shown in Figure 2, the network
consists of a gateway (GW) to receive information, a dedi-
cated power beacon (PB) to provide energy, and M power-
limited users (EUs).

The EUs need to upload their data to the gateway within
time slot T . The PB was deployed to provide radio frequency
(RF) signals to EUs who can use the received RF signals for
backscatter communication and energy harvesting.

In order to avoid interference between EUs, time division
multiple access is adopted to decompose the whole time slot
T into multiple small time slots, as shown in Figure 2. In αT,
PB broadcasts the unmodulated RF signals, and all EUs can
use the received RF signals for energy harvesting or backscatter
information. Specifically, in τ0, all EUs work in the energy har-
vesting mode. At the time slot τm (m = 1, 2,⋯,M), EU m
transmits data to the GW through backscatter technology while
the other EUs continue to harvest energy. In ð1 − αÞT, the PB
remains silent and EU m transmits its data to the GW in slot
τm by active communication. The signal received by the mth
EU in αT can be expressed as

yτ0m =wm +
ffiffiffiffiffi
P0

p
gmx, ð1Þ

where P0 represents the transmitted power of the PB, x denotes
RF signals transmitted by PB and E½jxj2� = 1,wm represents the
receiving noise of mth EU and follows a Gaussian distribution
with the mean of 0 and variance of σ2, and gm represents the
channel coefficient from PB to mth EU. Using the nonlinear
energy harvesting model proposed in [17], the energy harvested
by EU m within time slot αT can be expressed as follows:

Φtotal
m P0, α, τmð Þ = αT − τmð ÞEmax

1 − exp −cP0 gmj j2� �

1 + exp −cP0 gmj j2 + cd
� � ,

ð2Þ

where Emax is the maximum harvested power of the energy col-
lector, c and d are parameters of the nonlinear energy model,
and their values can be obtained by fitting the actual measured
data. Since the value of harvested energy is positive, the value of
cmustmeet the requirement 1 − exp ð−cP0jgmj2Þ > 0. It should
be noted that the time for EUm to harvest energy is ðαT − τmÞ,
not αT, because EUm operates in the backscattering communi-
cation mode within the τm time slot. It should be pointed out
that the energy collected in formula (2) will be used for mth
EU’s backscatter communication and HTT energy dissipation
in τm and tm time slots. In τm, EU m backscatters information
to the gateway via the backscattering communication tech-
nique, where the instantaneous power of the reflected signal
received by the gateway from mth EU can be expressed as

Pτm
P0ð Þ = 4P0 gmj j2 hmj j2ε2 Γ0 − Γ1ð Þ2

π2 , ð3Þ

where ε is the scattering efficiency of the backscattering com-
munication module, hm denotes the channel coefficient from
mth EU to the gateway, and Γ0 and Γ1 denote the reflection
coefficient. The Fries transfer formula is used to model the
channel gain, jgmj2 =GpGhλ

2/ð4πd0mÞ2, jhmj2 =GhGrλ
2/

ð4πd1mÞ2, where λ denotes the wavelength; Gp, Gh, Gr denote
the antenna gain of the PB, the EUs, and the gateway, respec-
tively; and d0m and d1m denote the distance from the PB to m
th EU and mth EU to the gateway, respectively. According to
Equation (3) and Shannon’s capacity theorem, the achievable
throughput of mth EU at τm can be calculated as follows:

CBack
τm

τm, P0ð Þ = B0τm log2 1 +
ξPτm

P0ð Þ
σ2

� �
, ð4Þ

where B0 denotes bandwidth. Since backscatter communication
uses simplemodulation, its channel capacity is smaller than that
of conventional communication modes. In this paper, we use
the same approach as in [18] to characterize this difference in
channel capacity, i.e., multiplying the signal reception signal-
to-noise ratio by a nonnegative real number ζ with a factor less
than 1 (0 < ζ < 1). In ð1 − αÞT, mth EU transmits data to the
gateway in time slot tm in the traditional communicationmode,
so the throughput that mth EU can accomplish is expressed as

CHTT
tm

tm, Ptm

� �
= B0tm log2 1 +

Ptm
hmj j2
σ2

 !
, ð5Þ

where Ptm
denotes the transmit power of mth EU during time

slot tm. Thus, the total throughput bymth EU during the entire
time slot T can be expressed as

Ctotal
m τm, tm, Ptm

, P0
� �

= B0 τmlog2 1 +
ξPτm

P0ð Þ
σ2

� �
+ tmlog2 1 +

Ptm
hmj j2
σ2

 ! ! !
:

ð6Þ

According to Equation (18) in [19], the EU EE is the ratio of
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the total throughput achieved by the user to the consumed
energy. Equation (6) already gives the total throughput that
can be completed by userm throughout the time slot. Next, this
section analyses the energy consumed by mth EU throughout
the time slot and the expression of EE.

During time slots τ0 and τm, mth EU collects energy
from a dedicated energy station. During time slots τm and
tm, the mth EU needs to consume energy. During time slot
τm, there is only circuit loss as the mth EU modulates its
own information to the received RF signal (i.e., the RF signal
emitted by the energy source) and does not need to generate
its own carrier. During time slot tm, the mth EU uses a con-
ventional communication mode to transmit data, so its
energy consumption consists of two components: the energy
consumed by the transmit power and the circuit losses. In
summary, the total system energy consumed by mth EU is

Etotal
m τm, tm, Ptm

, P0
� �

= P0 τ0 + τmð Þ + pHTT
m,c + Ptm

� �
tm + pBackm,c τm,

ð7Þ

where pBackm,c denotes the circuit loss whenmth EU operates in
the backscatter communication mode, pHTT

m,c denotes the cir-
cuit loss whenmth EU is operating in the conventional com-
munication mode, and Ptm

denotes the transmit power of m
th EU in time slot tm.

Combining Equations (6) and (7), the link EE of mth EU
can be expressed as

ηm τm, tm, Ptm
, P0

� �
=
Ctotal
m τm, tm, Ptm

, P0
� �

Etotal
m τm, tm, Ptm

� � : ð8Þ

3. Resource Allocation Method for Energy
Efficiency Fairness of the System

3.1. Problem Formulation. In this subsection, we propose a
resource allocation scheme that can effectively guarantee
the EE fairness of communication links. The max–min crite-
rion is an effective way to guarantee user fairness [20], so
that the resource allocation method for guaranteeing
energy-efficient fairness of links among EUs can be achieved
by solving the following optimization problem, namely,

max
τmf g, tmf g, Ptmf g,P0,β,τ0

min
m

ηm τm, tm, Ptm
, P0

� �
,

C1 : τ0 + 〠
M

m=1
τm ≤ αT ,

C2 : 〠
M

m=1
tm ≤ 1 − αð ÞT ,

C3 : pBackm,c τm + pHTT
m,c + Ptm

� �
tm ≤Φtotal

m P0, α, τmð Þ,∀m,

C4 : 0 ≤ Ptm
≤ Pmax

m ,∀m,

C5 : Ctotal
m τm, tm, Ptm

, P0
� �

≥ Cmin
m ,∀m,

C6 : 0 ≤ P0 ≤ Pmax
0 ,

C7 : τ0 > 0, τm ≥ 0, tm ≥ 0,∀m:

ð9Þ

C3 ensures that the harvested energy is greater than the
energy consumed by user m. C4 constrains the maximum
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Figure 2: System model.
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transmit power of the mth EU when working in the tradi-
tional information transmission mode. C5 indicates that
the throughput achieved by mth EU in the whole time slot
T cannot be less than the given minimum value, i.e., the
communication service quality of user m is guaranteed. C6
constrains the maximum transmit power of the PB.

As can be seen from the objective function, the EE of m
th link ηm is a fraction function, which contains multiple
coupled variables, such as the variables Ptm and tm, P0, τ0,
and τm. Secondly, since the max–min criterion is adopted,
the integer variable M needs to be optimized. Therefore,
the optimization problem (9) is a mixed-integer nonconvex
fractional programming optimization problem. Therefore,
the existing optimization tools such as CVX cannot be
directly used to solve the original problem.

3.2. Problem Transformation. For the mixed-integer noncon-
vex fractional programming problem in Equation (9), we
divide three steps to obtain its optimal solution. Firstly, the
nonconvex fractional programming problem is transformed
into an equivalent mixed-integer nonconvex subtractive opti-
mization problem by using the generalized fractional pro-
gramming theory. Secondly, the integer programming
problem caused by the max–min function is eliminated by
introducing relaxation variables; that is, the mixed-integer
nonconvex subtraction optimization problem is transformed
into an equivalent nonconvex optimization problem. Finally,
the block coordinate descent (BCD) technology was used to
decompose the transformation problem into two convex sub-
problems [21], and then, an iterative algorithm was designed
to solve the transformation problem.

The BCD algorithm encompasses a wider range of tradi-
tional alternating optimization algorithms as well as coordi-
nate descent algorithms. The BCD algorithm is usually
applied to optimization problems with nonconvex objective
functions or feasible domains, but when the optimization
variables are blocked, the objective functions and feasible
domains of such optimization problems are convex with
respect to the blocks of variables. In addition, the scope of
the BCD algorithm can be extended, for example, by using
approximate optimization for nonconvex objective functions
and feasible domains after blocking the variables, where the
BCD algorithm is also feasible [22].

The specific processing steps are described below.

(1) Let the variable Q denote the value of the objective
function of problem (9), i.e., the max–min EE.
According to the generalized fractional program-
ming theory, the sufficient condition for obtaining
the optimal solution to the optimization problem
(9) is that Equation (10) holds when the C1-C7 con-
straints are satisfied:

max
τmf g, tmf g, Ptmf g,P0,β,τ0

min
m

Ctotal
m τm, tm, Ptm

, P0
� �

−Q ∗ Etotal
m τm, tm, Ptm

� �

=min
m

Ctotal
m τ∗m, t

∗
m, P

∗
tm
, P∗

0

� �
−Q ∗ Etotal

m τ∗m, t
∗
m, P

∗
tm

� �h i
= 0:

ð10Þ

We can obtain the optimal solution to the original prob-
lem by solving the optimization problem (10). However, in
practice, Q∗ is often unknown, but we can obtain Q by con-
tinuously updating the value of Q∗, which is shown in
Algorithm 1.

According to Algorithm 1, the core of solving the orig-
inal problem (9) is to solve the optimization problem.
Compared to the original problem (9), the objective func-
tion of optimization problem does not have a fractional
form, but it is still a mixed-integer nonconvex optimiza-
tion problem.

(2) A relaxation variable is introduced to transform the
mixed-integer nonconvex optimization problem into
the following optimization problem, namely,

max
τmf g, tmf g, Ptmf g,P0,α,τ0

θ

s:t:C1 − C7,

C8 : Ctotal
m τm, tm, Ptm

, P0
� �

−QEtotal
m τm, tm, Ptm

� �
≥ θ,∀m:

ð11Þ

In the optimization problem (11), the optimization
objective is a linear function and the constraints C1, C2,
C4, C6, and C7 are linear constraints, but the remaining
constraints C3, C5, and C8 are nonconvex, so the optimiza-
tion problem (11) is a nonconvex problem.

(3) The optimization problem (11) is transformed into
two subproblems using the BCD technique as
follows:

(1) Given PðlÞ
0 , solve for τðlÞm , tðlÞm , PðlÞ

tm
, τðlÞ0 , αðlÞ by the

following problem:

max
τmf g, tmf g, Ptmf g,α,τ0

θ

s:t:C1, C2, C4, C7,

C3 : pBackm,c τm + pHTT
m,c + Ptm

� �
tm ≤Φtotal

m P lð Þ
0 , α, τm

� �
,∀m,

C5 : Ctotal
m τm, tm, Ptm

, P lð Þ
0

� �
≥ Cmin

m ,∀m,

C6 : 0 ≤ P lð Þ
0 ≤ Pmax

0 ,

C8 : Ctotal
m τm, tm, Ptm

, P lð Þ
0

� �
−QEtotal

m τm, tm, Ptm
, P lð Þ

0

� �
≥ θ,∀m:

ð12Þ

In the optimization problem (12), constraints C3, C5,
and C8 still exist in the coupled variable and are jointly non-
convex. Specifically, in C3 and C8, the variable Ptm

and tm
are coupled; in C5 and C8, the joint nonconvexity is present
in tm log2ð1 + Ptm

jhmj2/σ2Þ. To solve the above problem, we
introduce auxiliary variable xm = Ptm

tm and bring them into
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the optimization problem (13) to obtain the equivalent opti-
mization problem as follows, i.e.,

(2) Given τðlÞm , tmðlÞ , P
ðlÞ
tm
, τðlÞ0 , αðlÞ, we can obtain PðlÞ

0 by
solving the following optimization problem:

Lemma 1. The optimization problem (13) is a convex
problem.

Proof. Please see the appendix.
According to Lemma 1, we can use the CVX tool to obtain

the optimal solution to solve the optimization problem (13).

In the optimization problem (14), the objective function
is linear and C1, C2, C4, and C7 are independent of the opti-
mization variables. C6 is a linear constraint. Meanwhile, C3
and C5 are convex constraints. The left-hand side of C8 is
shaped as f ðxÞ = C log2ð1 +DxÞ − ax + b, where a, b, C,
and D are all constants and greater than zero. The second-

max
τmf g, tmf g, xmf g,α,τ0

θ

s:t:C1, C2, C7,

C3 : pBackm,c τm + pHTT
m,c tm + xm ≤Φtotal

m P lð Þ
0 , α, τm

� �
,∀m,

C4 : 0 ≤ xm ≤ Pmax
m tm,

C5 : B0τm log2 1 +
ξPτm

P lð Þ
0

� �

σ2

0
@

1
A 1 +

xm hmj j2
tmσ2

 !0
@

1
A ≥ Cmin

m ,∀m,

C6 : 0 ≤ P lð Þ
0 ≤ Pmax

0 ,

C8 : B0τm log2 1 +
ξPτm

P lð Þ
0

� �

σ2

0
@

1
A 1 +

xm hmj j2
tmσ2

 !0
@

1
A −Q P lð Þ

0 τ0 + τmð Þ + pBackm,c τm + pHTT
m,c tm + xm

� �
≥ θ,∀m:

ð13Þ

max
P0

θ

s:t:C1 : τ
lð Þ
0 + 〠

M

m=1
τ lð Þ

m ≤ α lð ÞT ,

C2 : 〠
M

m=1
t lð Þ

m ≤ 1 − α lð Þ
� �

T ,

C3 : pBackm,c τ lð Þ
m + pHTT

m,c t lð Þ
m + x lð Þ

m ≤Φtotal
m P0, α lð Þ, τ lð Þ

m

� �
,∀m,

C4 : 0 ≤ x lð Þ
m ≤ Pmax

m t lð Þ
m ,

C5 : B0τ
lð Þ
m log2 1 +

ξPτm
P0ð Þ

σ2

� �
1 +

x lð Þ
m hmj j2
t lð Þ
m σ2

 ! !
≥ Cmin

m ,∀m,

C6 : 0 ≤ P0 ≤ Pmax
0 ,

C7 : τ
lð Þ
0 > 0, τ lð Þ

m ≥ 0, t lð Þ
m ≥ 0,∀m,

C8 : B0τ
lð Þ
m log2 1 +

ξPτm
P0ð Þ

σ2

� �
1 +

x lð Þ
m hmj j2
t lð Þ
m σ2

 ! !
−Q P0 τ

lð Þ
0 + τ lð Þ

m

� �
+ pBackm,c τ lð Þ

m + pHTT
m,c t lð Þ

m + x lð Þ
m

� �
≥ θ,∀m:

ð14Þ
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order derivative of f ðxÞ can be calculated as f ′′ðxÞ = −CD2

/ð1 +DxÞ2 ln 2. f ′′ðxÞ < 0, so C8 is a convex constraint.
Therefore, the optimization problem (14) is convex, and
we can use the CVX tool to obtain the optimal solution to
the optimization problem (14).

Based on the above analysis, the optimization problem
can be solved by an iterative BCD-based algorithm, as
described in Algorithm 2.

As the optimization problems (13) and (14) are convex,
the convergence of Algorithm 2 is guaranteed [23]. The
overall algorithm of the link energy efficiency fairness
resource allocation scheme can be described as Algorithm 3.

4. Simulation Results and Analysis

In this section, we provide simulation results to evaluate the
performance of the proposed iterative algorithm. In addi-
tion, we illustrate the advantages of the proposed resource
allocation scheme based on the max–min criterion to guar-
antee energy efficiency fairness by comparing with the total
energy efficiency maximization scheme. Unless otherwise
stated, the parameters listed in Table 1 are used in this sec-
tion. In addition, the distance between the gateway and the

PB is assumed to be 52m; the distance between the three
EUs and the PB is 1.8m, 1.6m, and 1.4m, respectively.
Based on the simulated channel gains jgmj2 and jhmj2 and
the energy harvesting circuits, dedicated power stations pro-
duced by the powercast company, the antenna gains of the
PB and gateways assume as 5 dBi, and the antenna gain of
each EU is 2 dBi in this paper. Assume a carrier frequency
of 915MHz.

The convergence performance of the proposed resource
allocation algorithm is shown in Figure 3. It can be seen that
the proposed iterative algorithm converges to a certain con-
stant after roughly three to four iterations, which validates
the fast convergence of Algorithm 1. Secondly, we can see
that ζ has an important influence on the energy efficiency
of the system link. As in Equation (4), the max–min EE
should increase with the ζ. And we can see that the larger
the ζ, the greater the max–min EE from the figure.

Figure 4 shows the achieved EE versus the performance
gap ζ. We compare the max–min link EE achieved by the
proposed transmission strategy and the transmission strate-
gies of the HTT mode and backscatter communication
mode. As can be seen in Figure 4, the proposed transmission
strategy achieves the max–min link EE no worse than these

1: Solve the optimal solution of the optimization problem given any Q greater than zero
2: Substitute the optimal solution obtained in the first step into the objective function of the optimization problem (9) to update Q ð0Þ
3: If Q does not converge, let Q =Qð0Þ and repeat the first step; if not, let Q∗ =Q, and the optimal solution in the first step is the
optimal solution of the original problem (9):

max
fτmg,ftmg,fPð2Þtm

g,P0,α,τ0
min
m

Ctotal
m ðτm, tm, Ptm

, P0Þ −QEtotal
m ðτm, tm, Ptm

Þ

s:t:C1 − C7

Algorithm 1: The link EE fairness resource allocation algorithm.

1: Initialize the system parameters, given PðlÞ
0 , the convergence accuracy δ, and the maximum iteration number L

2: Repeat

3: For given PðlÞ
0 , solve the problem (13) by using CVX to obtain τðl+1Þm , tðl+1Þm , xðl+1Þm , τðl+1Þ0 , αl+1

4: For given τðl+1Þm , tðl+1Þm , xðl+1Þm , τðl+1Þ0 , αl+1, solve the problem (14) by using CVX to obtain Pðl+1Þ
0

5: Until θðl+1Þ − θðlÞ ≤ δ or l = L

6: Return the optimal solutions: τ∗m = τðl+1Þm , t∗m = tðl+1Þm , τ∗0 = τðl+1Þ0 , α∗ = αðl+1Þ, P∗
tm
= Pðl+1Þ

tm
, P∗

0 = Pðl+1Þ
0

Algorithm 2: Iterative algorithm for solving optimization problem.

1: Given any Qð0Þ greater than zero, use Algorithm 2 to obtain an optimal solution to the optimization problem (14)
2: Update Q by bringing the optimal solution obtained in the first step into the objective function of the optimization problem (9)
3: If Q does not converge, let Qð0Þ =Q and repeat the first step; if not, let Q∗ =Q, and the solution obtained in the first step is the
solution to the original problem (9)

Algorithm 3: The overall algorithm of link EE fairness resource allocation scheme.
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transmission strategies regardless of the value of ζ. It is noted
that the proposed hybrid transmission strategy can be degraded
to these two transmission modes by adjusting parameters. It is
consistent that the two transmission modes are special cases
of the transmission strategy, and there is a tradeoff between
the BackCom and HTT mode in the proposed resource alloca-
tion scheme as in theoretical analysis. Specifically, when ζ is less
than or equal to -18dB, the max–min link EE achieved by the
proposed transmission strategy is the same as themax–min link
EE in the HTT mode. When ζ is greater than -18dB and less
than -14dB, the proposed transmission strategy makes EUs
work in both backscatter and HTTmodes in a full transmission
time slot; when ζ is greater than -14dB, it can be seen that the
max–min EE accomplished by the proposed transmission strat-
egy is the same as the max–min link EE in the backscatter com-
munication mode, which means that when ζ is larger, the
proposed transmission strategy degrades to the backscattered

communication mode. In addition, compared to the through-
put maximization resource allocation scheme, the EE by the
proposed max–min fairness scheme presents better perfor-
mance. The reason is that the throughputmaximization scheme
maximizing UE throughput in a BAWPCN does not take into
account the factor of EE; the achieved EE is lower than that of
the proposed max–min EE fairness scheme. The above analysis
shows that the BAWPCNs can indeed combine the advantages
of both backscatter and WPCNs, allowing them to adaptively
adjust their parameters to meet the different communication
goals in complex communication demands.

In Figure 5, we compare the total EE maximization
resource allocation scheme with the proposed max–min link
EE resource allocation scheme, under the case of large and
small interuser channel differences. The major difference
between the two resource allocation schemes is the objective
function. According to Equation (9), the objective function is
the minimum EE for the proposed max–min resource alloca-
tion scheme. For the total EE maximization resource alloca-
tion scheme, the objective function is the sum rates divided
by the sum energy consumptions of M EUs calculated as
∑M

m=1throughput of themth SN/∑M
m=1energy of themth SN. It

can be seen that the difference in EE between the best and
worst EUs under the total EE maximization resource alloca-
tion scheme is significantly greater than that of the proposed
max–min resource allocation scheme. When the channel dif-
ference between users is small, the average EE of users under
the total EE maximization resource allocation scheme is
slightly higher than that under the proposed max–min
resource allocation scheme, but the difference between the
EE of the best and worst users is significantly higher than
the proposed resource allocation scheme. When the channel
difference between users is large, it can be seen that the EE
by the total EEmaximization scheme results in the energy effi-
ciency of the best user being 2.2 times that of the worst link,
but the EE of the best link is about 1.4 times that of the worst
link by the proposed resource allocation scheme, which effec-
tively ensures fair access to resources between EUs. This is
because the total EE maximization resource allocation scheme
inclines the EUs with good channel status to maximize the EE,
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Figure 3: Convergence diagram for Algorithm 1.

Table 1: Simulation parameter settings.

Parameters Symbols Value

The number of EUs M 3

The maximum transmit power of PB P0 3W

The entire transmission time slot T 1 s

Bandwidth B0 10MHz

Circuit loss in backscatter communication mode pBackm,c 400 μW

The maximum transmit power of mth EU Ptm 10mW

Circuit loss of transmitting information in HTT mode pHTT
m,c 1mW

Reflection coefficient Γ0 1

Reflection coefficient Γ1 -1

Scattering efficiency of the backscatter communication module ε -1.1 dB
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while the max–min scheme maximizes the EE of EUs with the
worst link status to ensure fairness. As a result, the max–min
scheme achieves much fairness at the sacrifice of less total EE.

5. Conclusion

This paper introduces a BAWPCN to address the energy
shortage of sensor nodes due to frequent data interactions

in digital twin workshops and proposes a resource allocation
scheme to guarantee fairness in link EE. Considering the
EUs’ minimum rate requirement and energy causality con-
straints, the max–min system link EE optimization problem
was formulated as a mixed-integer nonconvex fractional
programming problem with time-power two-dimension
resource joint optimization. By introducing generalized frac-
tional theory, relaxation variables, BCD, and auxiliary vari-
ables, an iterative algorithm is designed to solve the
transformation problem to obtain the resource allocation
scheme. Finally, the following three conclusions are verified
by simulation: (1) the proposed iterative algorithm can
quickly converge and (2) the proposed resource allocation
scheme can effectively guarantee the fairness of link EE.

Appendix

In the optimization problem (14), the objective function,
constraints C1-C4 and C7 are linear, so we only need to
prove that constraints C5 and C8 are convex constraints.

In C5 and C8, B0τm log2ð1 + ξPτm
ðPðlÞ

0 Þ/σ2Þ and pBackm,c τm +
pHTT
m,c tm + xm are linear, so that a sufficient condition for the
optimization problem (14) to be convex is that the Hessian
matrix is tm log2ð1 + xmjhmj2/tmσ2Þ seminegative definite.
Construct the function f = tm log2ð1 + xmjhmj2/tmσ2Þ, and
its Hessian matrix can be expressed as follows:

∇f 2 =

−
tm hmj j4
σ4 ln 2

tm +
xm hmj j2

σ2

 !−2
xm hmj j4
σ4 ln 2

tm +
hmj j2xm
σ2

 !−2

xm hmj j4
σ4 ln 2

tm +
hmj j2xm
σ2

 !−2

−
xm hmj j4
tmσ4 ln 2

tm +
xm hmj j2

σ2

 !−2

2
6666664

3
7777775
:

ðA:1Þ
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Figure 4: Performance comparison of the four resource allocation schemes.
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The first-order determinant of the Hesse matrix shown
in formula (A.1) is less than 0, and the second-order deter-
minant is equal to 0, so the Hesse matrix is a seminegative
definite matrix. Therefore, both constraints C5 and C8 are
convex constraints. Based on the above analysis, Lemma 1
is proved to be right.

Data Availability

The simulation data used to support the findings of this
study are included within the article. The code used to sup-
port the findings of this study are available from the corre-
sponding author upon request.
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