
Research Article
A Real-Time Baseband Processor for Li-Fi Internet Access

Erwin Setiawan,1 Trio Adiono,1,2 Rahmat Mulyawan ,1,2 Nana Sutisna ,1,2

Infall Syafalni,1,2 and Wasiu O. Popoola3

1University Center of Excellence on Microelectronics, Bandung Institute of Technology, Indonesia
2School of Electrical Engineering and Informatics, Bandung Institute of Technology, Indonesia
3School of Engineering, The University of Edinburgh, UK

Correspondence should be addressed to Rahmat Mulyawan; rahmat.mulyawan@itb.ac.id

Received 16 November 2021; Revised 15 August 2022; Accepted 21 September 2022; Published 8 November 2022

Academic Editor: Parameshachari B D

Copyright © 2022 Erwin Setiawan et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In the past years, light fidelity (Li-Fi) has been gaining popularity in the research. However, many researches have done only
offline transmission with laboratory instruments. As a result, it is not practical to be used in commercial product, due to its
cost and size. Therefore, the objective of this paper is to address problems that arise from the real-time implementation of Li-
Fi system using the commercial off-the-shelf components. The implementation was developed on a low-cost system-on-chip
(SoC) field-programmable gate array (FPGA). The implementation supports orthogonal frequency division multiplexing
(OFDM) modulation including time synchronization. In order to build a system that is more practical to be used in
commercial product, the network stack that supports TCP and ICMP was also developed. As a result, the user client can easily
access the Internet using the available web browsers. The results showed that the system is functionally verified enabling it for
real-time transmission to be used to access the Internet. According to the result, our baseband processor can transfer data with
a maximum throughput of 1Mbps at 125Mhz of FPGA.

1. Introduction

Light fidelity (Li-Fi) is a new wireless communication technol-
ogy that uses light as its medium. Instead of RF spectrum, Li-
Fi uses the infrared and visible light spectrum as an attempt to
address the RF spectrum congestion. Therefore, Li-Fi is often
referred as visible light communication (VLC). Li-Fi is pro-
posed as a 5th generation (5G) technology. It is a complemen-
tary technology to the RF technology [1].

Over the past years, there are a lot of researches demon-
strating data transmission using visible light. However, the
demonstrators are mostly based on offline signal processing
[2, 3], i.e., they use an arbitrary waveform generator (AWG)
at the transmit side and an oscilloscope at the receive side.
Even though they achieved Gbps of data rate, there are still
problems on how to implement that as consumer product.

In the context of developing Li-Fi device for consumer
products, the Li-Fi should be able to do real-time transmis-
sion, as an example for high speed Internet access. There

are several challenges that arise from real-time implementa-
tion of Li-Fi. One of the examples is the cost of the compo-
nent. Expensive laboratory instruments or components will
certainly not work. For example, laboratory instruments rely
on GSPS ADC that may be too expensive for commercial
products.

In this work, we propose a Li-Fi baseband processor. The
processor was implemented on low-cost FPGA. The design
can be easily retargeted to ASIC technology. We propose Li-
Fi system architecture that uses HW/SW codesign methodol-
ogy, in order to realize a complete network stack. Our pro-
posed architecture has been tested for Internet access using
the standard available web browsers. We also discuss several
challenges that arise from real-time implementation of Li-Fi.

2. Related Works

There are several VLC demonstrators found in the literature.
As the works in [2, 3], in which it was possible to achieve a

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 6154495, 15 pages
https://doi.org/10.1155/2022/6154495

https://orcid.org/0000-0002-3009-0022
https://orcid.org/0000-0002-8435-9242
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6154495

data rate of Gbps. However, an AWG and oscilloscope was
used in the demonstrator.

In [2], a VLC demonstrator was developed and it
achieved 11.28Gbps of data rate using wavelength division
multiplexing orthogonal frequency division multiplexing
(WDM-OFDM) modulation, but it is based on offline signal
processing. In [3], a VLC demonstrator that achieved 2Gbps
using OFDM was demonstrated, but it is also based on off-
line signal processing.

There are several VLC demonstrators that are based on
real-time signal processing, i.e., they use FPGA or digital sig-
nal processor (DSP) at both transmit and receive side. In [4],
a VLC demonstrator was developed and achieved 150Mbps.
The system relies on the Xilinx Virtex-6 FPGA. They use
system generator to convert the design from high level pro-
gramming language to the hardware description language
(HDL). However, the network layer was not implemented
yet. In [5], a real-time VLC demonstrator was developed. It
achieved a data rate of 2.5Gbps. However, it relies on the
high-end and high cost instrument, and also the network
layer was not implemented yet.

Even though the works in [4, 5] have demonstrated real-
time transmission, their focus is on the PHY layer. There is
still problem that needs to be addressed on the network
layer. In work [6], a real-time VLC demonstrator was devel-
oped, and it can send real-time data through the channel,
but it is limited to text data. In works [7, 8], they have dem-
onstrated real-time VLC transmission that employed SoC
FPGA, but the modulation is different. Both works use
OOK modulation, but our works use OFDM.

3. System Design

3.1. Overview. The system block diagram of the Li-Fi system
is shown in Figure 1. It consists of two devices for access
point (AP) and user equipment (UE). The AP device is con-

nected to the Internet, and the UE device is connected to the
client. The downlink channel was designed using the OFDM
modulation, and the uplink channel was designed using
UART protocol. The UART protocol, which is not designed
for Li-Fi, was used in this work for uplink because the main
focus of this work is on the downlink using OFDM. More-
over, due to the limited resource element of the FPGA, it is
not possible to incorporate both OFDM TX and RX designs
into one FPGA. The problem regarding the modulation that
is suitable for uplink still needs to be addressed in the future
work.

3.2. System Architecture. Figure 2 shows the proposed SoC
architecture for Li-Fi baseband processor. The architecture
was implemented on the Red Pitaya board that uses Xilinx
Zynq-7000 programmable SoC. It consists of processing sys-
tem (PS) part and programmable logic (PL) or FPGA part.
On the PS, the important component is the dual core
ARM Cortex-A9 processor, in which the network layer was
implemented as software. The Ethernet peripheral is also
important because it connects the system to the Internet,
in case of AP, and to the client, in case of UE. Ethernet
was chosen in this architecture because it is widely used as
an interface in computer network. The rest of the periph-
erals, such as USB, UART, and GPIO were used for debug-
ging purposes.

On the PL, the PHY layer was implemented. The PHY
layer is the baseband processor for OFDM and UART pro-
cessing. The baseband processor was integrated to the main
processor by using AXI4 bus. The AXI4 bus was chosen
because it is an industry standard. It is a widely used bus
for on-chip communication because it is based on the popu-
lar processor architecture, ARM.

3.3. Hardware Software Stack. Figure 3 shows the stack that
was used to implement the complete network stack. On the

Downlink
OFDM

LiFi access point

Uplink
UART

Internet

Software

Hardware

Network

MAC

PHY

Network

MAC

PHY
Client

LiFi user equipment

Figure 1: Proposed Li-Fi system for Internet access.

2 Wireless Communications and Mobile Computing

hardware part, the baseband processor is a memory-mapped
component, so it has physical address space that can be
accessed from the main processor. The memory manage-
ment unit (MMU) was used because a Linux operating sys-
tem (OS) was used in this system. The MMU maps the
physical address of the baseband processor to the virtual
address of the network layer program. Therefore, the base-
band processor can be accessed from the network layer
program.

Dual core ARM cortex-A9

M
M
U

M
M
U

CPU
core 0

CPU
core 1

32 KB L1 cache

512 KB L2 cache 256 KB SRAM

32 KB L1 cache

Snoop control unit (SCU)

Zynq-7000 SoC

Processing system
AXI

DDR3
memory
interface

Dual core
ARM cortex-A9

Clock
and
reset

512 MB
DDR3

memory

APB
bridge

SDIO

AHB APB

ETH UART GPIOUSB
host

Micro
SD

USB
port

Ether-
net
port

USB
bridge LED

FPGA

LiFi PHY
(OFDM
& UART

Figure 2: Proposed SoC architecture of the Li-Fi baseband processor.

User
space

Kernel
space

FPGAPHY IP core

Memory management
unit (MMU)

Linux kernel

MAC & network layer
program

Processor

Memory-mapped I/O

mmap system call

Figure 3: Hardware and software stack of the Li-Fi system.

Table 1: Red Pitaya Specifications.

Parameters Value

Processor Dual Core ARM cortex-A9

FPGA Xilinx 28 nm Artix-7

Connectivity Ethernet 1Gbit, USB 2.0

DAC 14 bit, 125MS/s

ADC 14 bit, 125MS/s

Analog bandwidth 50MHz

3Wireless Communications and Mobile Computing

3.4. Development Platform. The selection of development plat-
form has an important factor. In this work, Red Pitaya [9]
development board was used. This board was chosen because

it has small form factor and relatively low cost. It also has main
components required to implement the system, which are the
main processor, FPGA, Ethernet, digital-to-analog converter

0 1000 2000 3000 4000 5000 6000 7000

8000

6000

4000

2000

–2000

–4000

–6000

–8000

0

Preamble symbol
(64 sample)

Data symbol
(64 sample)

CP CPPR PR PR PR Data Guard interval

Figure 5: One OFDM frame.

Bitstream
from CPU

Bitstream
to CPU

16-QAM
mapper

16-QAM
demapper

64-point
IFFT

64-point
FFT

Cyclic prefix &
preamble

Cyclic prefix
remover

Upsample &
pulse shaping

DAC &
analog LPF

ADC &
analog LPF

Analog
output

Analog
input

Synchronizer &
downsample

(a)

Digital
output

Digital
input

Bitstream
from CPU

Bitstream
to CPU

UART
transmitter

UART
receiver

(b)

Figure 4: Proposed baseband processor block diagram: (a) downlink block diagram, (b) uplink block diagram.

4 Wireless Communications and Mobile Computing

(DAC), and analog-to-digital converter (ADC). The specifica-
tions of the board are shown in Table 1.

4. Baseband Processor Design

4.1. OFDM Model. In this work, the OFDM modulation was
proposed for the downlink channel. Figure 4(a) shows the

proposed OFDM block diagram. At the transmit side, the
OFDM baseband model consists of several blocks: QAM
mapper, IFFT, cyclic prefix and preamble, and upsample
and pulse shaping. On the receive side, the OFDM baseband
model consists of several blocks: synchronizer and down-
sample, cyclic prefix remover, FFT, and QAM demapper.
The DAC and ADC convert the baseband signal from digital

Axis_bpsk_mod/axis_qpsk_mod/axis_qam16_mod

data_mem
(31 × 1-bit/
 31 × 2-bit/
 31 × 4-bit)

bpsk_mod/
qpsk_mod/
qam16_mod Subcar_mem

64 × 32-bit

Axis_controller

s_axis_tdata
[31:0]

(1/2/4 trnsactions)

s_axis_tvalid
s_axis_tlast

s_axis_tready

Data_conj
[31 : 0]

Data_mod
[31 : 0]Data_in

[0/1/3 : 0]
m_axis_tdata

[31:0]

m_axis_tvalid
m_axis_tlast

m_axis_tready

(64 transactions)

(a)

s_axis_tdata
[47 : 0]

m_axis_tdata
[31 : 0]

s_axis_tdata
[15 : 0]

s_axis_tdata
[39 : 24]

m_axis_tready

Axis_controller

bpsk_
demod/
qpsk_

demod/
qam16_
demod

m_axis_tvalid

m_axis_tlast

s_axis_tready
s_axis_tvalid

s_axis_tlast

Data_demod
[0/1/3 : 0]

Data_demod
(31×1-bit,
31×2-bit,
31×4-bit)

(1/2/4 transactions)(64 transactions)

Axis_bpsk_demod/ axis_qpsk_demod/ axis_qam 16_demod

Data_in_re
[15 : 0]

Data_in_im
[15 : 0]

(b)

Figure 7: (a) QAM mapper block and (b) QAM demapper block.

AXI read write control

Read
controller

Stream
controller

Config.
register

Data
register

Write
controller

S_AXI

aclk

Aresetn

Config

M_AXIS
/S_AXIS

Figure 6: AXI read and write controller block.

5Wireless Communications and Mobile Computing

to analog and vice versa. For the uplink channel, the UART
protocol block diagram is shown in Figure 4(b). It consists of
UART transmitter and receiver.

4.1.1. QAM Mapper and Demapper. The function of mapper
block is for mapping the source bit stream from the main

processor to the M-QAM (M = 2, 4, 16) complex symbols.
At the receiver, the demapper block reverses the mapper
operation. The received complex symbols from FFT are
demapped back into the bit stream and are sent to the main
processor of the receiver. Let X½n� be the complex symbols
obtained after mapping process. It is an n-dimensional

m_axis_tdata
[15 : 0]

(144-360 transactions)

m_ axis _ tready
m_ axis _ tvalid
m_ axis _ tlast

done _ tick

Axis_controller

tx_mem
360 × 12-bit

s_axis _tdata
[11 : 0]

Axis _ preamble _ generator

s _axis _tdata
[31 : 0]

(72 transactions)

s_axis_tready

s_axis _tvalid

s_axis_tlast
Guard_interval [7 : 0]

Figure 8: Preamble insertion block.

125 MHz

5 MHz

2-port RAM

8192×32-bit

Coarse trigger

Control
Synced valid

ADC data Coarse
correlation

Fine trigger

Fine
correlation

Downsampled data

Downsample
Synced data

Ring
buffer

Figure 9: Synchronizer block.

16

16 16

16 161632

X

X

– abs

Pipeline
register

Pipeline
register

Pipeline
register

Pipeline
register

N = Oversampling factor

Z–(16.N)

Z–(16.N)

Z–1

trunc

Figure 10: Autocorrelation block.

6 Wireless Communications and Mobile Computing

vector, where n = 24,28,30 corresponds to M = 2, 4, 16,
respectively.

x = x0, x1,⋯,xn−2, xn−1½ �: ð1Þ

4.1.2. IFFT and FFT. The complex symbols from QAM
mapper are grouped into one OFDM symbol in frequency
domain. Then, it is sent to the IFFT block. This block trans-
forms one OFDM from frequency domain to time domain.
A technique called Hermitian symmetry was employed to
obtain a real valued signal in time domain [10]. Let XHM
be the complex symbols after Hermitian symmetry inser-
tion [11]. Where N is defined as the IFFT/FFT size. This

Hermitian symmetry forces the output of IFFT to be real
valued.

XHM k½ � = X 0½ �,⋯,X N
2 − 1

� �
, X∗ N

2 − 1
� �

,⋯,X∗ 0½ �
� �

: ð2Þ

The real valued time domain signal is given by [11]

x n½ � = 1
N

〠
N−1

k=0
X k½ �ej2π kn/N : ð3Þ

At the receiver, the FFT block reverses the IFFT opera-
tion. It transforms the received time domain signal back to

LiFi access point

Downlink (Visible light)

Uplink (Infrared)

Uplink (Infrared)

Ring
buffer

Ring
buffer

Ring
buffer

Ring
buffer

Downlink (Visible light)
Lifi user equipment

Ethernet

WiFi

Internet

Client

Receive
ethernet
thread

Send
ethernet
thread

Receive
ethernet
thread

Send
ethernet
thread

Send LiFi
thread

2048 × 1518-bytes

Receive LiFi
thread

Send lifi
thread

2048 × 1518-bytes

Receive lifi
thread

LiFi
MAC

Lifi
MAC

IR Visible

LiFi
PHY

Lifi
PHY

Figure 11: Software architecture of network layer program.

1 OFDM symbol 0-102 OFDM symbols

0-1518 Bytes

Data

8 Bytes

MAC preamble

4 Bytes

Total number of
OFDM symbol

(a)

4 Bytes

MAC preamble

2 Bytes

Total number of
data (In bytes)

0-1518 Bytes

Data

(b)

Figure 12: Li-Fi packets: (a) downlink packet and (b) uplink packet.

7Wireless Communications and Mobile Computing

Receive
ethernet frame
from internet

Pop ethernet
frame from

buffer

Push ethernet
frame to buffer

Create new
ICMP/TCP

packet header

Create LiFi
downlink frame

Send LiFi frame
to UE

START

PHY and socket
initialization

Threads that run concurrently

Receive LiFi
uplink frame

from UE

Push LiFi frame
to buffer

Pop LiFi frame
from buffer

Create new
ICMP/TCP

packet header

Create ethernet
uplink frame

Send ethernet
frame to
internet

Downlink Uplink

Figure 13: Flowchart of the network program for AP.

UplinkDownlink

Threads that run concurrently

PHY and socket
initialization

START

Receive LiFi
frame from
access point

Pop LiFi frame
from buffer

Push LiFi frame
to buffer

Create new
ICMP/TCP

packet header

Create ethernet
downlink frame

Send ethernet
frame to client

 Receive
ethernet frame

from client

Pop ethernet
frame from

buffer

Create new
ICMP/TCP

packet header

Create LiFi
uplink frame

Send LiFi frame
to access point

Push ethernet
frame to buffer

Figure 14: Flowchart of the network program for UE.

8 Wireless Communications and Mobile Computing

the frequency domain. Then, the obtained complex symbols
are sent to the demapper block.

The transformation of the time domain signal to the fre-
quency domain signal is given by [11]

X k½ � = 〠
N−1

n=0
x n½ �e−j2π kn/N : ð4Þ

4.1.3. Cyclic Prefix and Preamble Insertion. Cyclic prefix is
inserted in front of every OFDM data symbol. It is a copy
of several samples of the OFDM data symbol. Let xCP be
the time domain signal after the cyclic prefix is applied.
Where L is defined as the length of cyclic prefix.

xCP n½ � = x N − L + 1½ �,⋯,x N − 1½ �, x 0½ �,⋯,x N − 1½ �ð Þ: ð5Þ

Preamble is inserted in front of the data symbol after
cyclic prefix xCP. The time domain signal after preamble
insertion is defined as

xPR+CP = xPR, xCPð Þ: ð6Þ

One OFDM frame consists of preamble, data, and guard
interval as shown in Figure 5. The preamble has 64 samples
that are constructed from four-repeated sequence, in which
each of the sequence has 16 samples.

4.1.4. Upsample and Pulse Shaping.One OFDM frame is sent
to the upsample block. This block upsamples the OFDM
samples with an oversampling factor of 25. Pulse shaping fil-
ter is employed to filter the upsampled OFDM frame before
sending it through the DAC.

4.1.5. Synchronizer and Downsample. The main function of
synchronizer is for detecting the start sample of the OFDM
frame. The synchronizer module consists of coarse and fine
correlation. The coarse correlation is applied using

White
LED

Lens

FPGA TX FPGA RX

Lens Blue

Photo
diode

Analog
receiver

Analog
transmitter

1 m

LED
driver TIA

Figure 15: Analog and optical block diagram.

LED
driver Lens

1 m
Lens +

blue filter TIA

Figure 16: Photograph of analog and optical setup.

Figure 17: Photograph of real-time OFDM reception.

Table 2: AP and UE baseband processor’s FPGA utilization.

Resource Utilization (%)

AP baseband processor

(i) LUT 32.57

(ii) LUTRAM 5.90

(iii) FF 32.63

(iv) BRAM 21.67

(v) DSP 18.75

UE baseband processor

(i) LUT 26.77

(ii) LUTRAM 21.03

(iii) FF 16.85

(iv) BRAM 60.83

(v) DSP 36.25

9Wireless Communications and Mobile Computing

autocorrelation [12]. The received signal and the delayed
version of it is auto correlated which is defined as

Ycoarse n½ � = 〠
R−1

r=0
y n − r½ �y n − r − L½ �

�����
�����, ð7Þ

where R is the repetition interval in preamble and L is the
delay length in samples. Both R and L in our system is 16.
After the signal is downsampled, the fine correlation is
applied using cross correlation. The received signal and the

preamble that is stored in memory is cross correlated which
is defined as

Y fine n½ � = 〠
R−1

r=0
ydown n − r½ �yrom r½ �: ð8Þ

4.2. RTL Implementation. The register transfer level (RTL) of
the baseband processor was implemented using Verilog
HDL.

Dynamic: 1.714 W

0.031 W

0.038 W

0.019 W

0.018 W

0.018 W

0.107 W

0.201 W

1.282 W

(92%)

Signals:

Logic:

BRAM:
DSP:

MMCM:

I/O:

PS7:

75%

92%

100% (100%)PL Static:

Static: 0.141 W

0.141 W

(8%)

8%

12%

6%

Clocks: (2%)

(1%)

(1%)

(1%)

(6%)

(12%)

(75%)

(2%)

(a)

3%

79%

7%

3%

8%

91%

Dynamic:

Singals:

Logic:

Clocks:

1.622 W

0.032 W (2%)

(91%)

(2%)

(2%)

(2%)

(3%)

(3%)

(7%)

(79%)

0.037 W

0.027 W

0.052 W

0.037 W

0.106 W

0.049 W

1.282 W

BRAM:

DSP:

I/O:

MMCM:

100%

(8%)

(100%)

0.142 W

0.142 W

Static:

PL Static:

PS7:

(b)

Figure 18: (a) AP and (b) UE on-chip power consumption.

10 Wireless Communications and Mobile Computing

4.2.1. AXI Read and Write. This RTL block was designed as
interfaces between the main processor and PHY block. The
block diagram of this block is shown in Figure 6. It imple-
ments the AXI4-lite and AXI4-stream protocol. It converts
the memory-mapped data to the stream data. The slave port
S_AXI is connected to the main processor through the mas-
ter port of the AXI interconnect. Then, the M_AXIS or S_
AXIS is connected to PHY block. The data are temporarily
stored in the data register.

4.2.2. Mapper and Demapper. Figure 7(a) shows the block
diagram of the mapper. It receives stream data from the
AXI read and write controller. Firstly, the data are stored
in the data_mem buffer. Secondly, the data are mapped into
complex symbols. It is implemented using a look-up table
(LUT). Finally, the mapped data are stored in the subcar_
mem buffer. The controller arranges the mapped data into
one OFDM subcarrier, in which the Hermitian data are
included.

ClientInternet

(a)

Client
Internet

WiFi Ethernet

LiFi
network

layer
software

Red pitaya board

(b)

Red pitaya board 1

Red pitaya board 2

WiFi

Ethernet LiFi PHY
layer

LiFi PHY
layer

LiFi
network
& MAC

layer

LiFi
network
& MAC

layer

Client

Internet

(c)

Figure 19: Experiment setup 1 (a), 2 (b), and 3 (c).

11Wireless Communications and Mobile Computing

Figure 7(b) shows the block diagram of the demapper.
Firstly, it receives data from FFT. Secondly, the received data
are demapped. Finally, the demapped data are stored in
data_demod buffer.

4.2.3. Preamble Insertion. Figure 8 shows the block diagram of
preamble insertion. It receives the time domain data from
IFFT. Then, the received data are stored in tx_mem buffer.
The received data are concatenated with the preamble
samples.

4.2.4. Synchronizer. Figure 9 shows the block diagram of the
synchronizer. The coarse correlation block is the implemen-
tation of Equation (7) and the fine correlation block is the
implementation of Equation (8). Firstly, the data input comes
from the ADC at rate of 125MHz. Then, the data are stored
inside the 2-port RAM, and at the same time, coarse correla-
tion is calculated using coarse correlation block. At the end
peak of coarse correlation output, a trigger signal is generated
to start the the controller. After coarse trigger is detected, the
data are read from the 2-port RAM. Then, the data enter the

In
te

rn
et

 sp
ee

d
(M

bi
t/s

)
25

20

15

10

5
0 1 2 3 4 5 6 7 8 9

Time (Min)

Uplink SW loopback speed
Downlink SW loopback speed

Downlink ISP speed
Uplink ISP speed

(a)

350

150

50

300

200

100

0
0 1 2 3 4 5 6 7 8 9

250

Time (Min)

N
et

w
or

k
lat

en
cy

 (m
s)

×
× ×

×
×

×
×

×

×
×

×

×
×

× ×

×

×

×

×

SW loopback unloaded
network latency

ISP unloaded
network latency

SW loopback loaded
network latency
ISP loaded
network latency

×

×

(b)

Figure 20: Internet speed (a) and latency (b) comparison between experiment setup 1 and 2.

30

25

20

15

10

5

0
0 1 2 3 4

Time (Min)

In
te

rn
et

 sp
ee

d
(M

bi
t/s

)

5 6 7 8 9

Downlink ISP speed
Uplink ISP speedUplink LiFi speed

Downlink LiFi speed

(a)

1000

800

600

200

0
0 1 2 3 4

Time (Min)

N
et

w
or

k
lat

en
cy

 (M
s)

65 7 8 9

400

LiFi unloaded
network latency

ISP unloaded
network latency

×

× × × × × × × × ××

×

×

×
×

×
×

×

×

ISP unloaded
network latency

×

LiFi unloaded
network latency

×

×

(b)

Figure 21: Internet speed (a) and latency (b) comparison between experiment setup 1 and 3.

12 Wireless Communications and Mobile Computing

downsample block with a factor of 25. Finally, fine correlation
is calculated on this downsampled data in order to get the fine
trigger. Then, the controller sends valid signal indicating the
start of OFDM data symbol.

Figure 10 shows the block diagram of the autocorrelation
datapath. This is the implementation of autocorrelation in
recursive form [12]. To reduce size of the circuit, we use
16-bit fixed-point operation. We have improved the circuit
by applying 4 stage pipeline register in order to increase
the throughput. The throughput is improved by a factor of
three [13].

5. Network Layer Design

5.1. Software Architecture. The software architecture of the
network layer program is shown in Figure 11. Network layer
was implemented as a program that runs on the ARM pro-
cessor of Zynq SoC. Specifically, it is a user space program
that forwards data from baseband processor (LiFi PHY) to
the Ethernet/WLAN interface, and vice versa. The program
was designed to be a multithreaded program. So, the pro-
gram is capable to process more than one task in parallel.
The ring buffer was used to hold the Ethernet packet and
also it was used as a transfer mechanism between threads.

On the AP side, there are four threads and two ring
buffers. The first two threads and one ring buffer was used
to read the downlink Ethernet packets from the Internet,
convert them to the Li-Fi packets, and send them to the
Li-Fi PHY layer. The last two threads and the last ring buffer
was used to read the uplink packets from the Li-Fi PHY
layer, convert them to Ethernet packets, and send them to
the Internet. The Li-Fi MAC layer was designed for packet
conversion from the Ethernet packets to the Li-Fi packets.

On the UE side, there are also four threads and two ring
buffers. The first two threads and one ring buffer was used to

receive the uplink Ethernet packets from client, convert
them to Li-Fi packets, and send them to the Li-Fi PHY layer.
The last two threads and the last ring buffer was used to read
the downlink packets from the Li-Fi PHY layer, convert
them to Ethernet packets, and send them to the client.

5.2. Packets Format. Figure 12(a) shows the packet format
for the Li-Fi downlink MAC. It starts with 8 bytes of MAC
preamble. It is used to identify the start of each MAC packet.
Then, the 4 bytes after preamble is total number of OFDM
symbol (0-102) corresponds to the data size (0-1518 bytes).
Figure 12(b) shows the packet format for the Li-Fi uplink
MAC. It starts with 4 bytes of MAC preamble and 2 bytes
contain total number of data size (0-1518 bytes).

5.3. Network Layer Flowcharts. Figure 13 shows the flow-
chart of the AP. The PHY layer and the socket for Ethernet
are initialized. There are four tasks that run in parallel to
process the downlink and uplink frames. The first thread
receives an Ethernet frame from the Internet and push it
to the first ring buffer. The second thread pops an Ethernet
frame from the same ring buffer. Then, the Ethernet frame
is converted to the Li-Fi downlink frame. Finally, the Li-Fi
downlink frame is sent to the Li-Fi PHY layer. The third
thread receives a Li-Fi uplink frame from the UE and pushes
it to the second ring buffer. The last thread pops a Li-Fi
uplink frame from the same ring buffer. Then, it is converted
to the Ethernet frame. Finally, it is sent to the Internet as an
Ethernet uplink frame.

Figure 14 shows the flowchart of the UE. The flow is sim-
ilar to the flow of AP. The PHY layer and the socket for Ether-
net are initialized. There are four tasks that run in parallel to
process the downlink and uplink frames. The first thread
receives a Li-Fi frame from the AP and pushes it to the first
ring buffer. The second thread pops a Li-Fi frame from the
same ring buffer. Then, the Li-Fi frame is converted to the
Ethernet downlink frame. Finally, the Ethernet downlink
frame is sent to the client. The third thread receives an Ether-
net uplink frame from the client and pushes it to the second
ring buffer. The last thread pops an Ethernet uplink frame
from the same ring buffer. Then, it is converted to the Li-Fi
frame. Finally, it is sent to the AP as a Li-Fi uplink frame.

6. Integration with Analog and Optical Front-
End

Figure 15 shows the analog and optical block diagram. On the
transmitter side, the OFDM baseband signal from FPGA is
sent to the LED driver circuit. The circuit adds DC bias to
the signal, so that the LED operates in the linear region. On
the receiver side, the light passes through the lens in order to
focus the incoming light. Then, the light passes through the
blue filter to filter out the yellow component of the white light.
After that, the received signal is sent to the transimpedance
amplifier (TIA) circuit. The circuit removes the DC bias and
amplifies the signal. Finally, the signal is sent to the FPGA.

The details of the integration and experiment have been
published in [14]. Figure 16 shows the photograph of exper-
iment. The distance between TX and RX is 1m. The 3 dB

Experiment setup 1
Experiment setup 2
Experiment setup 3

D
ow

nl
oa

d
sp

ee
d

U
pl

oa
d

sp
ee

d

U
nl

oa
de

d
lat

en
cy

Lo
ad

ed
 la

te
nc

y

100

80

60

40

20

0

Pe
rfo

rm
an

ce
 (%

)

Figure 22: Normalized performance of all experiment setups.

13Wireless Communications and Mobile Computing

bandwidth of this VLC link is 4MHz. Figure 17 shows the
photograph of real-time OFDM reception using MATLAB.
It shows the time domain OFDM signal, correlation, and
QAM16 constellation.

7. Result

7.1. FPGA Synthesis. The baseband processor design was
synthesized with the Xilinx Vivado [15] tools. The Zynq-
7000 xc7z010clg400-1 was chosen as the target FPGA.
Table 2 shows the utilization of the AP and UE baseband
processor. From the synthesis result, we obtain the maxi-
mum working frequency of the baseband processor. For
AP baseband processor, the maximum working frequency
is 137MHz, and for UE is 134MHz. Therefore, both of the
AP and UE’s working frequency meets our requirement,
which is 125MHz. Figures 18(a) and 18(b) show the on-
chip power consumption of the AP and UE baseband
processor.

7.2. Internet Access Performance. In this work, three experi-
ment setups were evaluated. The first experiment setup was
carried out to measure the speed of the Internet connection
without our Li-Fi device. This setup is shown in
Figure 19(a). The second experiment setup was carried out
to measure the speed of the Internet connection with only
the network layer of Li-Fi device. This setup is shown in
Figure 19(b). The third experiment setup was carried out
to measure the speed of the Internet connection with our
network and PHY layer of Li-Fi device. This setup is shown
in Figure 19(c).

Figure 20(a) shows the comparison of Internet speed
between experiment setup 1 and 2. The Internet speed of
experiment 2 was lower than experiment 1. This is due to
the fact that network layer program was implemented in
the user space instead of kernel space. For future improve-
ment, the network layer program should be implemented
on the kernel, so it will get highest scheduling priority.

Figure 20(b) shows the comparison of the network
latency between experiment setup 1 and 2. The unloaded
latency and loaded latency was measured. The unloaded
latency was measured as the time required for the round trip
of requests to the server of the speed test website when there
is no other traffics on the device’s network. The loaded
latency was measured as the time required for the round trip

of requests to the server of the speed test website when there
is heavy traffics on the device’s network.

Figure 21(a) shows the comparison of Internet speed
between experiment setup 1 and 3. The measured Internet
speed of experiment 3 was around 1Mbit/s. This is due to
the processing time of the PHY layer and bandwidth limita-
tion of analog and optical front-end. Figure 21(b) shows the
comparison of the network latency between experiment
setup 1 and 3.

Figure 22 shows the normalized performance from the
experiments. The download speed of the experiment setup
2 was 30% slower than the experiment setup 1. This is due
to the network stack program was implemented in user
space instead of the kernel space. Other than that, we have
not employed DMA transfer and interrupt as the typical net-
work interface card (NIC) uses it.

7.3. Comparison with Other Works. Table 3 compares this
work with other works. The related works presented in [2,
3] propose offline VLC transmission using OFDM modula-
tion. Compared to [2, 3], in terms of data rate, our work is
much slower, but our proposed architecture works real-
time. The related works presented in [4, 5] propose real-
time VLC transmission. However, they have not imple-
mented the network stack yet. Compared to [4, 5], which
are also real-time processing, in our proposed architecture,
the network stack has been implemented. As a result, our
proposed architecture can access the network/Internet.

Compared to [6], our work has faster data rate and can
access Internet. This is because our work use FPGA, while
[6] use microcontroller. Compared to [7, 8], which are also
real-time processing and have Internet access, our work
use the OFDM modulation and has a better data rate.

We also compare our work with others in terms of cost
of the TX and RX board. The related works presented in
[2, 3], and [5] use AWG and oscilloscope, therefore we can-
not compare them with our work because the cost difference
would be huge and unfair. Only works [4, 6, 7], and [8] use
development board as its TX and RX.

Work [4] uses a high-end FPGA board Virtex-6 FPGA
ML605 evaluation kit, so the cost is high. Work [6] uses a
microcontroller board STM32F4 discovery, which is not
suitable for high-speed signal processing, so the cost is
very low.

Work [7, 8] use the same FPGA board Zynq-7000 ZYBO
development board. This board is similar to the FPGA board

Table 3: Comparison with other works.

Reference Modulation Data rate Baseband processing Network access Estimated cost

[2] WDM-OFDM 11.28Gbps Offline No —

[3] OFDM 2Gbps Offline No —

[4] OFDM 150mbps Real-time No Us$12919

[5] OFDM 2.5Gbps Real-time No —

[6] OFDM 26.8 kbps Real-time No Us$60

[7] OOK 0.87mbps Real-time Yes Us$498

[8] OOK 0.5mbps Real-time Yes Us$498

Our work OFDM 1mbps Real-time Yes Us$762

14 Wireless Communications and Mobile Computing

we use (Red Pitaya). They use the same FPGA SoC, the
Xilinx Z-7010 chip, so they have same performance. The
main difference is that on the ZYBO board there is no high
speed DAC and ADC. Our work requires DAC and ADC
because the modulation we use is OFDM, so we choose the
Red Pitaya board, which has a cost greater than the ZYBO
board.

8. Conclusion

In this paper, we discuss challenges that arise from real-time
implementation of baseband processor for Li-Fi system. We
apply our proposed implementation methodologies in order
to build a prototype for real-time Internet access using low-
cost FPGA. The system works at 125MHz of clock fre-
quency. The experiment was done using analog and optical
front-end. All layers are successfully implemented using
SoC FPGA. The achieved throughput is still limited to
1Mbps because of optical bandwidth limitation and the
implementation of network stack that not yet at kernel level.

For future improvement, we can apply preequalization
circuit to the LED driver to increase the optical bandwidth.
Also, we can implement the driver in kernel module with
DMA and interrupt, so that it can maximize the data trans-
fer between hardware and software. Furthermore, we can
reuse the Linux TCP/IP stack instead of using our own stack.

Data Availability

Data is available on request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research is funded by the Ministry of Education, Cul-
ture, Research, and Technology (Kemendikbudristek) of
the Republic of Indonesia.

References

[1] H. Haas, “LiFi is a paradigm-shifting 5G technology,” Reviews
in Physics, vol. 3, pp. 26–31, 2018.

[2] G. Faulkner, D. Tsonev, E. Xie et al., “Led based wavelength
division multiplexed 10 gb/s visible light communications,”
Journal of Lightwave Technology, vol. 34, pp. 3047–3052, 2016.

[3] Z. Wang, J. Shi, Y. Wang et al., “2.0-gb/s visible light link based
on adaptive bit allocation OFDM of a single phosphorescent
white led,” IEEE Photonics Journal, vol. 7, no. 5, pp. 1–8, 2015.

[4] C. Ribeiro, M. Figueiredo, and L. N. Alves, “Live demonstra-
tion: 150mbps+ DCO-OFDM VLC,” in 2016 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), vol. 457,
Montreal, QC, Canada, May 2016.

[5] Y. Ha, S. Han, C.Wang, G. Li, and N. Chi, “A 2.5 gb/s real-time
visible-light communication system based on phosphorescent
white led,” in 2019 7th International Conference on Informa-
tion, Communication and Networks (ICICN), pp. 140–145,
Macao, 2019.

[6] R. V. W. Putra, W. A. Cahyadi, T. Adiono, A. Pradana, and
Y. H. Chung, “Physical layer design with analog front end for
bidirectional DCO-OFDM visible light communications,”
Optik, vol. 138, pp. 103–118, 2017.

[7] S. Fuada, T. Adiono, and R. A. Saputro, “Rapid development of
system-on-chip (soc) for network-enabled visible light com-
munications,” International Journal of Recent Contributions
from Engineering, Science & IT (iJES), vol. 6, no. 1, pp. 107–
119, 2018.

[8] F. Ismail, S. Fuada, T. Adiono, and E. Setiawan, “Prototyping
the Li-Fi system based on IEEE 802.15.7 PHY.II.1 standard
compliance,” Journal of Communications, vol. 15, pp. 519–
527, 2020.

[9] R. Pitaya, “Red pitaya products,” 2021, https://redpitaya.com.

[10] M. Elamassie, M. Uysal, B. Aly, F. Otosan, and E. Kınav,
“Experimental evaluation of unipolar OFDM VLC system on
software defined platform,” in 2019 15th International Confer-
ence on Telecommunications (ConTEL), Graz, Austria, 2019.

[11] E. Setiawan, T. Adiono, and S. Fuada, “Modelling the OFDM-
based phy layer in soc for visible light communication,” Inter-
national Journal of Recent Contributions from Engineering, Sci-
ence & IT (iJES), vol. 7, no. 3, pp. 79–89, 2019.

[12] P. Y. Tsai, T. D. Chiueh, and I. W. Lai, Baseband Receiver
Design for Wireless MIMO-OFDM Communications, Wiley,
Singapore, 2nd edition, 2012.

[13] E. Setiawan and T. Adiono, “Throughput improvement of an
autocorrelation block for time synchronization in OFDM-
based LiFi,” in 2019 International SoC Design Conference
(ISOCC), Jeju, Korea (South), 2019.

[14] I. N. O. Osahon, E. Setiawan, T. Adiono, and W. O. Popoola,
“Experimental demonstration of visible light communication
using white led, blue filter and soc based test-bed,” in 2019
International Symposium on Electronics and Smart Devices
(ISESD), Indonesia, October 2019.

[15] Xilinx, “Xilinx vivado,” 2021, https://www.xilinx.com/
products/designtools/vivado.html.

15Wireless Communications and Mobile Computing

https://redpitaya.com
https://www.xilinx.com/products/designtools/vivado.html
https://www.xilinx.com/products/designtools/vivado.html

	A Real-Time Baseband Processor for Li-Fi Internet Access
	1. Introduction
	2. Related Works
	3. System Design
	3.1. Overview
	3.2. System Architecture
	3.3. Hardware Software Stack
	3.4. Development Platform

	4. Baseband Processor Design
	4.1. OFDM Model
	4.1.1. QAM Mapper and Demapper
	4.1.2. IFFT and FFT
	4.1.3. Cyclic Prefix and Preamble Insertion
	4.1.4. Upsample and Pulse Shaping
	4.1.5. Synchronizer and Downsample

	4.2. RTL Implementation
	4.2.1. AXI Read and Write
	4.2.2. Mapper and Demapper
	4.2.3. Preamble Insertion
	4.2.4. Synchronizer

	5. Network Layer Design
	5.1. Software Architecture
	5.2. Packets Format
	5.3. Network Layer Flowcharts

	6. Integration with Analog and Optical Front-End
	7. Result
	7.1. FPGA Synthesis
	7.2. Internet Access Performance
	7.3. Comparison with Other Works

	8. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

