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Sports competition is one of the most popular programs for many audiences. Tracking the players in sports game videos from
broadcasts is a nontrivial challenge for computer vision researchers. In sports videos, the direction of an athlete’s movement
changes quickly and unpredictably. Mutual occlusion between athletes is also more frequent in team competitions. However,
the rich temporal contexts among the adjacent frames have been excluded from consideration. To address this dilemma, we
propose an online transformer-based learnable framework in an end-to-end fashion. We use a transformer architecture to
extract the temporal contexts between the successive frames and add them to the network training, which is robust to
occlusion and complex direction changes in multiplayer tracking. We demonstrate the effectiveness of our method on three
sports video datasets by comparing them with recently advanced multiplayer trackers.

1. Introduction

With the increasing number of spectators who prefer sports
games, video analysis of sports games has received more and
more increasing attention in the field of computer vision.
Multiple player tracking has become an urgent demand for
sports video analysis, which has substantial benefits for intel-
ligently editing game videos. For example, the identity infor-
mation and movement information of athletes obtained by
automatic tracking can be visualized and quantified. The
audience can quickly focus on interested athletes and obtain
more interactivity from the sports game. If tracking informa-
tion can be obtained in real time, broadcasters can use them
to assist in broadcasting, editing the highlight clips, and
commenting on the game. The scope and amount of move-
ment for each player can provide objective clues for asses-
sing the player’s abilities and formulating specific
strategies. It is essential to correctly track multiple players
even under various challenging conditions.

Several efforts have beenmade to address this issue. The tra-
ditional method uses Bayesian inference to solve the association

problem. For instance, associating the identities of the isolated
tracks by exploiting the graph constraints and similarity mea-
sures [1]. They formulate it as a Bayesian network inference
problem. Reference [2] proposed a dual-mode two-way Bayes-
ian inference approach that dynamically switches between an
offline general model and an online dedicated model to address
single isolated object tracking and multiple occluded objects
tracking integrally by forward filtering and backwards smooth-
ing. With the development of CNNs, researchers have begun to
use deep learning to extract features. Reference [3] first utilized
Faster R-CNN [4] to generate an initial detection, and the asso-
ciating step is modeled as a minimum-cost network flow prob-
lem. An adaptive multiple scale sampling scheme based on
spatially proximate foreground regions [5] is very helpful for
preserving the underlying states of tracked objects even with
severe occlusions. Despite some success, multiplayer tracking
has a few problems. For example, most of the previous methods
are offline, which cannot meet real-time requirements due to
the use of information after the current frame. In addition, they
all follow the standards of tracking by detection. Having the two
models separately executed may lead to efficiency problems. In
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the real scene, there are still some difficulties in sports game
video broadcasts. In the case of live broadcasts, athletes need
to be tracked in real time so that player analysis and highlight
editing can be quickly presented to the audience.

Multiobject tracking generally refers to pedestrians or
vehicles. Compared with multiobject tracking where the
movement direction is relatively stable, multiplayer tracking
has additional difficulties. Multiplayer tracking has rapid
and frequent changes in the direction of a player’s move-
ment, and there are frequent occlusion and disappearance-
reproduction problems in team sports. To effectively deal
with these problems, most of the previous multiplayer track-
ing methods are offline and not end-to-end. In this paper, we
propose an end-to-end online multiplayer tracking model
using a transformer structure to extract the temporal
domain information between adjacent frames and add it to
the model training, which better solves the occlusion and
the problem of sudden changes in direction.

Our contribution in this work can be summarized as
follows:

(a) Temporal contextual information among the succes-
sive frames is optimized by the transformer structure

(b) The previous frames’ feature map is reused as an
input of the current frame encoder, which can quickly
and effectively associate the tracking box and reduce
the missed tracking

(c) Our method is online and end-to-end, which is more
concise and robust compared with previous multi-
player tracking models

We use the MOT challenge evaluation metrics to per-
form comparative experiments on three sports datasets.
Our model performs well on some indicators.

2. Related Work

2.1. Multiple Object Tracking. In the generalized MOT, the
tracked objects include pedestrians, vehicles, animals, ath-
letes, cells, and some rigid objects. MPT is a more specific
task of research objects in the field of MOT. We first review
the related work on player tracking, including both multiob-
ject tracking and multiplayer tracking. Then, we briefly dis-
cuss the differences between multiple object tracking (MOT)
and multiple player tracking (MPT). Finally, we also discuss
the application of transformer architecture in the computer
vision community.

Object tracking is a vital and basic task in computer
vision. It has been applied in various real-world areas, such
as security monitoring systems, autonomous driving, and
video understanding. Single-object tracking (SOT) mainly
provides the position information of the object to be tracked
in the first frame and locates the object in the following con-
secutive video frames. However, MOT has no prior knowl-
edge. The position coordinates of all objects in each frame
and the corresponding identity ID to each object need to
be labeled in the MOT task to distinguish the objects in
the inner classification.

The current mainstream MOT algorithms are divided
into two categories. The tracking-by-detection method, such
as SORT [6] and Deep SORT [7]. First, a series of bounding
boxes are extracted through conventional object detection
methods, and then, based on the relationship between the
previous and subsequent frames, the bounding boxes con-
taining the same object are assigned the same ID. Recently,
there have also been many studies on jointly learning the
detector and data association, including JDE [8] and Fair-
MOT [9]. Our transformer-based method allows object
detection and appearance embedding to be learned in an
end-to-end model. Thanks to the attention architecture in
the transformers [10], the method we propose can learn effi-
ciently and obtain the bounding box and identity ID
simultaneously.

The MOT algorithm can also be divided into offline and
online methods. When trying to determine the object loca-
tion and ID information in a certain frame, the offline track-
ing algorithm [11–13] can use the information after the
current frame. Because of the availability of more global
information, offline algorithm results are often more accu-
rate, but they generally consume more time. In contrast,
online tracking algorithms [14–17] can only use current
and past information to predict the current frame. The
online tracking method is very suitable for automatic driv-
ing, navigation, program live broadcasting, and other tasks
that require high real-time performance. Compared with off-
line methods, the performance of online methods tends to be
less accurate because the methods cannot use future infor-
mation to repair previous errors. To some extent, the multi-
player tracking studied in this paper belongs to MOT.
However, compared with ordinary pedestrian and vehicle
tracking, multiple player tracking has difficulties, such as a
more similar appearance within the class, unstable move-
ment direction and speed, and more occlusions and colli-
sions. By making use of the attention’s unique structure,
which correlates the entire input sequence, we carefully
modify the classic transformer structure to obtain an online
multiplayer tracking model. Additionally, our model is in an
end-to-end form.

2.2. Multiple Player Tracking. Some contributions have been
proposed in previous studies on soccer player tracking [18,
19]. However, as mentioned above, there are three main dif-
ferences between player tracking and pedestrian tracking.

(1) The appearance of the athletes is more similar. Most
pedestrian clothes are diverse in color and style. In
contrast, athletes, especially those from the same
team, wear the same uniform. However, the jersey
number can be used as a clue feature to distinguish
the players

(2) Pedestrians generally move in a uniform speed and
in a straight line, while the athlete’s movement direc-
tion and speed are unpredictable due to their fre-
quent drastic swerves and sudden speed changes,
which will increase the difficulty of tracking due to
severe deformation
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(3) In addition, compared to pedestrians, athletes will
crash into each other and collide more frequently

To resolve these difficult problems, previous researchers
have made some developments. Pallavi et al. [18] is a
tracking-by-detection method that solves the problems of
player detection, labeling, and tracking in broadcast soccer
videos. To accommodate the frequent disappearance and
reappearance of targets, [20] views the date association in
multiplayer tracking as a Markov Chain Monte Carlo
(MCMC) problem. A dual-mode two-way Bayesian infer-
ence approach was proposed in [2] that dynamically
switches between an offline general model and an online
dedicated model to deal with single isolated object tracking
and multiple occluded players tracking integrally by forward
filtering and backwards smoothing. Liu et al. [21] extracted a
set of “Game Context Features” from the video with off-field
interference removed to represent the current state of the
field. Then, a random decision forest combining the current
trajectory and the context features selects the best affinity
model for a certain athlete at a certain moment.

2.3. Transformer. The transformer structure was first pro-
posed in the machine translation task. Transformer architec-
tures are based on a self-attention mechanism that learns the
relationships between elements of a sequence. In [10], the
transformer abandons the traditional CNN and RNN, and
the entire network uses the attention mechanism. More pre-
cisely, the transformer only consists of self-attention and a
feedforward neural network. In contrast from the sequential
structure of the RNN, the parallel computing system of the
transformer structure has better parallelism and conforms
to the GPU framework. Since then, the transformer model
has gained increasing popularity in NLP tasks, such as text
classification, machine translation, and question answering.
Breakthroughs from transformer networks in Natural Lan-
guage Processing (NLP) domain have sparked great interest
in the computer vision community to adapt these models for
vision tasks. Transformers are gradually being used in many
vision tasks, such as image recognition, image enhancement,
target detection, and image segmentation. To bridge the gap
between the fields, many studies have made some modifica-
tions when introducing the transformers and their variant
transfer learning into visual tasks. For example, [22] focused
on completely migrating the transformer to the image classi-
fication task and completely abandoned the CNN. The input
image is divided into patches, and then, each patch is flat-
tened. The subsequent operation is similar to the BERT
[23] in machine translation. Based on the CNN and the
transformer, [24] completely removed the postprocessing
steps of the previous detection algorithms that rely on artifi-
cial a priori for NMS, anchor generators, and constructs a
completely end-to-end target detection framework. The
aforementioned methods merely use the transformer struc-
ture in image-level vision tasks. After that, [25] also intro-
duced transformers to the visual tracking community for
the first time. By virtue of the key-query mechanism in the
attention architecture, they can track new targets in the joint

detection and tracking pipeline. Inspired by [25], we care-
fully adjusted the structure of the transformer to adapt to
the task of multiplayer tracking, and we obtained a compet-
itive result.

3. Approach

As mentioned above, MPT can be regarded as a MOT prob-
lem where the tracking objects are athletes, and the purpose
is to obtain the position coordinates and identity informa-
tion of all athletes in consecutive frames. We offer a mathe-
matical formulation of MPT. Given an image frames
sequence as the input, devoted by Ι = fI1, I2,⋯,It ,⋯g, where
It is the tth frame. We employ St = fS1t , S2t ,⋯,Sit ,⋯,Smt g to
devote the state of the tth frame, where m represents the
total number of athletes in the tth frame, and Smt is the state
of the ith athlete in the tth frame. Athlete’s state include
position, size, speed, direction, and appearance. The trained
model is given a sequence of frames and outputs the trajec-
tory T , identity d, and position and size information ðx, y,
w, hÞ of all athlete targets in each frame. We employ pit = ð
T , d, x, y,w, hÞ to denote the output result of the ith athlete
in the tth frame.

To solve the serious deformation and similar appearance
of athletes in the MPT task, it is necessary to obtain more
accurate identity information and position coordinates of
the athletes. In this section, we introduce our proposed
model in detail. After that, the settings in the training and
inference process are discussed.

3.1. Framework. There are four core components in our
model, which are the backbone network to extract the fea-
ture map, the encoder component, the decoder tracking
component, and the matching component, as shown in
Figure 1.

Thanks to the transformer architecture [10], we can
exploit the rich temporal contexts among the adjacent
frames in the video flow via an encoder-decoder structure.
An overview of our transformer-based architecture is illus-
trated in Figure 2. The encoder part is simple and the same
as the classic transformer encoder structure. The encoder
takes the feature maps of two consecutive frames as a pair
of inputs. The feature map calculated in the previous frame
is retained and reused as part of the input of the current
encoder, which can reduce computational consumption.
Specifically, in the self-attention structures, we use the classic
dot-product to calculate the correlation. The add and norm
represent residual connection and instance normalization
[26], respectively. In the decoder module, we use the same
decoder structure to complete object detection and tracking
propagation. The difference between the two decoder opera-
tions is the input query. The detection branch is the same as
DETR [24], which is the learned query, while the query of
the tracking propagation branch is the feature of the target
provided by the tracker in the previous frame. In the decod-
ing process, the cross-attention block bridges features from
the previous frame and the current frame to propagate tem-
poral contexts.
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(1) Encoder

In the encoder part, the global feature map gt−1 of the
previous frame is retained. We combine gt−1 and the global
feature map of the current frame gt in the series, denoted by
G. The similarity matrix AG⟶G is calculated by the self-
attention block as follows:

AG⟶G = Attention G,Gð Þ: ð1Þ

AttentionðG,GÞ represents the self-attention operation,
as shown in the green box in Figure 2. Then, the assembled

global feature G is transformed through AG⟶GG. As shown
in Figure 2, the next operation is residual connection and
instance normalization as follows:

G′ = Ins:Norm AG⟶GG +Gð Þ: ð2Þ

We use instance normalization, denoted by Ins:Norm in
our encoder-decoder structure. In the following experi-
ments, we compare several mainstream normalization
methods. Experimental results show that instance normali-
zation is the best performer among them. G′ is the output
of the hidden layer after residual connection and instance
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Figure 1: The transformer-based framework of the proposed. The CNN module is used to extract the features of the input frame. The global
feature maps of the previous frame and the current frame are fed to the encoder, and then, the combined global feature map of two
consecutive frames is input into the decoder as a common key. The temporal mask is beneficial for suppressing the background changes
transformed from the previous frame temporally and concentrates on the target player. The object detection features of the current
frame and the tracked object features of the previous frame are input into two decoders with a shared structure, and then, we obtain
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normalization. According to [24], the encoder and decoder
include a fully connected feed forward network after the
attention block. The feed forward network consists of two
linear transformations with a ReLU activation in between
as follows:

FFN G′
� �

= ReLU G′W1 + b1
� �

W2 + b2: ð3Þ

Obtained by Equations (2) and (3), the output of the
encoder denoted by Ĝ is as follows:

Ĝ = Ins:Norm FFN G′
� �

+ G′
� �

: ð4Þ

By virtue of the self-attention structure, the global fea-
ture map of two consecutive frames can be aggregated to
generate Ĝ. Ĝ will be input as the common key into the next
two shared decoders.

(2) Decoder

In the decoder, two decoders that share the network
structure—detection decoder and track decoder, as shown
in the orange connection and blue connection, are used to
generate the player track boxes and the player detection
boxes of the current frame, respectively. The orange line in
Figure 2 represents the object decoder. The learnable
detected player feature in the current frame is used as its
input. We concatenate the representation of all the player’s
patches into an object query Fobject in the current frame.
As shown by the orange line in Figure 2, the first self-
attention block, including residual connection and normali-
zation, outputs the middle layer feature Fobject′ , which is
expressed as follows:

Fobject′ = Ins:Norm AFobject⟶Fobject
Fobject + Fobject

� �
: ð5Þ

Based on the common feature Ĝ in Equation (4) and the
middle layer feature Fobject′ in Equation (5), we can compute
the similarity matrix as follows:

AĜ⟶Fobject′ = Attention Ĝ, Fobject′
� �

: ð6Þ

Then, the cross-attention matrix AĜ⟶Fobject
is fed to the

residual connection and normalization layer as follows:

Fobject′ ′ = Ins:Norm AĜ⟶Fobject′ Ĝ + Fobject′
� �

, ð7Þ

where Fobject′ ′ is the middle feature exported by the cross-
attention block, including the residual connection and nor-
malization. Furthermore, the feed forward network is added
to the end of the decoder. In the detection encoder, we
finally calculate the object feature, which is detected from
the aggregated global feature map Ĝ by the object query.
This object feature dFobject is the next frame’s track query as

follows:

dFobject = Ins:Norm FFN Fobject′ ′
� �

+ Fobject′ ′
� �

: ð8Þ

The blue connection represents the track decoder, as
seen in Figure 2. The detected object feature map of the pre-
vious frame is fed to the track decoder as the track query
Ftrack of the current frame. Similar to the first self-attention
block in the aforementioned detection decoder, Ftrack′ is the
feature of the middle layer as follows:

Ftrack′ = Ins:Norm AFtrack⟶Ftrack
Ftrack + Ftrack

À Á
: ð9Þ

To leverage the temporal context information between
the two consecutive frames and transform the temporal
motion prior [27], we construct a Gaussian Radial Basis
Function—temporal feature for the track query as follows:

m yð Þ = exp −
y − ck k2
2σ2

� �
, ð10Þ

where c is the ground truth of the object position. Temporal
mask matrixMtemp is the temporal feature ensemble. Similar
to the aforementioned detection decoder, after the cross-
attention block, we obtain the middle layer feature as fol-
lows:

Ftrack′ ′ = Ins:Norm AĜ⟶Ftrack
Ĝ + Ftrack′ ⊗Mtemp

� �
, ð11Þ

where ⊗ is the elementwise multiplication. Finally, Ftrack′ ′ is
fed to the feed forward network block, and the final output
of the track decoder is dFtrack as follows:

dFtrack = Ins:Norm FFN Ftrack′ ′
� �

+ Ftrack′ ′
� �

: ð12Þ

3.2. Training. As shown in Figure 1, a pair of adjacent frames
are fed to our model during training, which comes from the
same clip video. If the input is a single picture, translation
conversion and other operations must be performed on the
original picture to generate an input that simulates adjacent
frames. The output of the backbone is the feature map of the
current frame. The encoder module takes the feature map of
the previous frame and the feature map of the current frame
as input. These features come from the output of the feature
extraction module. The feature map of the previous frame is
retained and reused for current tracking. Cross-attention is
the information exchange between the encoder and the
decoder. Both decoder operations are detection tasks. On
the one hand, the loss of the detection branch is the same
as that of DETR, and the set prediction loss is used for the
distribution of the ground truth during training. Then, the
regression and classification loss are calculated. On the other
hand, for the branch of the track, there is no need to allocate
ground truth again when there are track characteristics, and
the classification and regression loss are directly calculated.
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The final matching loss is defined as follows:

Ltrack = λcls · Lcls + λL1 · L1 + λiou · Liou, ð13Þ

where Lcls is the focal loss of the predicted classifications and
ground truth category labels. L1 is the L1 loss, and Liou is the
IoU loss between the normalized center coordinates and the
height and width of the predicted boxes and the ground
truth box. Then, λcls, λL1 , and λiou are the coefficients of each
module.

During training, the output of the decoder will minimize
the cross-entropy with the ground truth, but there is no cor-
rect answer in the inference process. To solve this problem
and enable the model to detect new targets in time, we add
exposure bias during the training process.

3.3. Inference. In the inference process, our method first
obtains the global feature map of this frame through the
CNN feature extractor and detects the players in it. Then,
the two global feature maps of the first frame are combined
and input into the model. After that, our method performs
the object transform and box association for the next frames
until the entire video sequence is completed. We use track
rebirth tips [8], which are often used for tracking tasks to
enhance the robustness where athletes’ occlusions and
movement directions change suddenly.

4. Experiments

To evaluate the proposed method, we present the experi-
mental setting and performance compared with several
MOT algorithms. There is no uniform evaluation standard
for multiple tracking tasks. For fairness, we use the metrics
in the MOT challenge. To verify that the encoder-decoder
structure in our method makes good use of the information
between the adjacent frames and the rebroadcasts of the
tracking information of the previous frame to the current
frame, we also perform ablation experiments.

4.1. Datasets

4.1.1. ISSIA-soccer. This dataset [28] is collected for a foot-
ball match broadcast. The resolution is 1920∗1080, and the
frame rate is 25 fps. There are 6 videos, each of which is 2
minutes. At the beginning of every video, the first 300
frames without annotated information are used to remove
the background initialization. Although the resolution of
this dataset is high, the camera is far away from the target
of tracking players, and the characteristics of the athletes
are blurred.

4.1.2. APIDIS. The videos in this dataset [29] come from 7
fixed cameras, 5 of which are ordinary wide-angle cameras
and 2 of which are fish-eye panoramic cameras taken from

Figure 3: Sample tracking results from the APIDIS, EPFL-basketball, and ISSIA CNR-soccer datasets.
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the top of the venue. The size is 1600 × 1200, and the frame
rate is almost 22 fps on average. There are a total of 1500
frames in the dataset with tracking information, including
2 referees and 10 basketball players. However, this dataset
has slightly fewer labeled frames. To enable the dataset to
be trained in the deep network, we expand the annotation
information. We choose a clip with a length of 30 s from 5
ordinary wide-angle camera original videos. Then, we sup-
plement their tracking information. Finally, 4800 frames
can be used for tracking training.

4.1.3. EPFL-basketball. The EPFL-basketball dataset [30] was
taken in the school basketball hall, with 4 fixed cameras
standing on the ground, shooting from the four directions
of the basketball court. There are 4 segments, each of which
is a 6-minute video taken from four views. The resolution is
360∗288, and the frame rate is 25 fps. This dataset has a low
resolution, which poses challenges for detection and
tracking.

4.2. Implementation Details. In the feature extraction mod-
ule, we use ResNet-34 [31] as the backbone. We use the
parameters after pretrained on the COCO dataset [32]. For
simplicity, we fix the weight of the pretrained ResNet-34
and only fine-tune the fully connect connected layers. We
train our model with the Adam optimizer for 30 epochs with
a starting learning rate of e−4, and the learning rate decays to

e−5 at 20 epochs. The batch size is set to 12. We use standard
data augmentation techniques, including rotation, scaling,
and color jittering.

4.3. Evaluation Metrics. There is no established standard of
evaluation for multi-player tracking. For the sake of fairness,
it is feasible to utilize the MOT metrics [33, 34] to measure
the multiplayer tracking methods. Multiobject tracking
accuracy (MOTA) mainly considers all object matching
errors in tracking, including the ratio of misses in the
sequence, false positives, and of mismatches. Multiobject
tracking precision (MOTP) represents the accuracy of the
target position. The closer MOTP is to 1, the higher the posi-
tioning accuracy of the tracker. Mostly tracked targets (MT)
mean the ratio of groundtruth trajectories that are covered
by a track hypothesis for at least 80% of their respective life-
span. Mostly lost targets (ML) represent the ratio of ground-
truth trajectories that are covered by a track hypothesis for at
most 20% of their respective lifespan [35]. False positive (FP)
is the total number of false positive, and false negative (FN)
expresses the total number of false negatives. The IDF1 score
is the ratio of correctly identified detections to the average
number of groundtruth and computed detections. Frame
per second (FPS) indicates the speed of tracking processing.
IDS is the number of ID switches, that is, the tracking object
ID is different from its historical ID, which often occurs
when multiple objects block each other.

Table 1: Comparison of tracking performance on the expanded APIDIS basketball dataset.

Methods Mode MOTA↑ MOTP↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ FPS↓

CEM [36] Offline 64.0 76.9 46.7 45.1 23.6 1598 3190 1.1

MHT [14] Offline 73.2 78.6 50.3 54.7 22.9 890 2787 0.8

ELP [37] Offline 74.7 80.4 55.9 55.3 21.4 801 2561 3.6

SORT [6] Online 74.8 80.3 52.0 56.3 22.7 763 2757 17.2

Ours Online 75.3 80.6 56.1 57.0 20.0 767 2538 15.1

Table 2: Comparison of tracking performance on the ISSIA-soccer dataset.

Methods Mode MOTA↑ MOTP↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ FPS↓

CEM [36] Offline 62.8 66.8 38.3 35.9 25.6 1062 2168 1.7

MHT [14] Offline 63.5 68.2 39.8 36.2 22.1 306 2280 1.3

ELP [37] Offline 67.5 65.1 43.6 38.9 24.3 334 2017 3.6

SORT [6] Online 69.1 71.5 46.7 49.1 22.5 329 2033 17.2

Ours Online 72.4 75.7 50.5 53.1 19.5 366 2480 23.2

Table 3: Comparison of tracking performance on the EPFL-basketball dataset.

Methods Mode MOTA↑ MOTP↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ FPS↓

CEM [36] Offline 59.0 63.3 37.9 48.0 41.1 2834 5863 5.4

MHT [14] Offline 61.2 61.0 40.1 47.3 36.4 3037 5974 3.8

ELP [37] Offline 66.4 65.9 45.3 45.6 39.0 2785 5359 6.0

SORT [6] Online 67.1 72.9 52.9 53.8 38.8 2944 4990 21.5

Ours Online 68.7 68.5 50.6 54.5 31.7 2767 4550 19.0
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4.4. Result Analysis.We first compare our method with other
state-of-the-art multiple object tracking and multiple player
tracking pipelines. An example of our multiplayer tracking
result of the proposed method on three sports datasets is
shown in Figure 3. Then, we verified the effect of the pro-
posed method on multiplayer tracking for each component
and evaluated our extracted temporal context tracking by
comparing it to changing the input of the decoder.

4.4.1. Compared with Other Trackers. We compare the pro-
posed method with other commonly classical multiobject
tracking methods CEM [36], MHT [14], ELP [37], and
SORT [6] on three datasets APIDIS, ISSIA-soccer, and
EPFL-basketball. As shown in Tables 1–3, by virtue of the
rich temporal context information between two consecutive
frames, our method suppresses the comparative methods on
MOTA and IDF1 on three datasets. Video is streaming
media, and the temporal context information in it is crucial
for continuous tracking.

However, most current trackers [14, 36, 37] tackle the
task by frame-by-frame object tracking, where the temporal
relationship between consecutive frames is largely ignored.
Among them, SORT [6] records the object state from the
previous frame in the object state management in the track-
ing stage, and this idea is widely adopted in the multiobject
tracking model. Although historical frames are considered
in some of the above methods, video frames are still consid-
ered independent and do not contribute to each other. We
directly use the combined features of the previous frame
and the current frame to generate tracking track boxes and

use the interframe context to predict the position of the tar-
get of the previous frame in the current frame. The experi-
mental results show that our method can better manage
the problem of multiobject tracking in sports, such as for
the players with similar appearances and complex move-
ment states. However, our method does not perform as well
as the previous research results on the FPS indicator because
we introduce a more complex transformer structure in the
pipeline, which increases its calculation time.

4.4.2. Temporal Mask. Due to the uniqueness of the atten-
tion mechanism, the transformer pays more attention to
the drastically changing parts of the image, including the
background that should not be highlighted. We leverage
the temporal mask mechanism to suppress the background
changes transformed from the previous frame temporally
and to concentrate on the target player. As we can see from
Table 4, the performance of our approach with the mecha-
nism outperforms that without it, which proves that the
effectiveness of the temporal mask mechanism can suppress
the effect of changing the background on the tracking
results.

4.4.3. Temporal Contexts. We also conduct comparative
experiments on temporal contexts, as shown in Table 5.

Experimental results show that adding the object feature
map of the previous frame has a better effect and reduces the
probability of missing tracking. To verify that the trans-
former structure in our method is conducive to extracting
the temporal contexts between consecutive frames, we test
the use of different feature maps as the input of the encoder
part, and the current feature map is combined into a com-
posite. “Current & Current” means that the two current
frame feature maps are used as a pair of input encoders.
“Translated & Current”means that the current frame is sub-
jected to random scaling and translating operations to the
feature map and the original frame’s feature map as input.
“Previous & Current” is the combination of the global fea-
ture map of the previous frame and the current frame and
the input encoder described above. As seen in Table 5, if
the object feature map of the previous frame is not used,
the MOTA result will be reduced by 7.4-8.6%.

4.4.4. Feature Normalization. If the value range of each
dimension of the input matrix has a large difference, it will
cause a large difference in the slope of the loss function in
each direction, and training will become difficult. To address
this dilemma, previous researchers have proposed a variety
of effective feature normalization methods. To make the
model training more efficient. We conduct comparative
experiments on different normalization methods, and the
results are shown in Table 6. Instance normalization is pix-
elwise to calculate the mean and the standard deviation,
which corresponds to the pixel-to-pixel correspondence
between the two frames in our method of cross-attention.
The results show that instance normalization is more suit-
able for our player tracking task.

Table 4: Ablation study on the temporal mask.

Temporal mask IDF1↑ MOTA↑ MOTP↑ MT↑ ML↓

With 55.3 59.7 77.3 53.1 25.7

Without 56.1 75.3 80.6 57.0 20.0

Table 5: Temporal contexts between consecutive frames can
improve the tracking effect on the expanded APIDIS basketball
dataset.

Adding feature IDF1↑ MOTA↑ MOTP↑ MT↑ ML↓

Current & Current 53.5 67.9 69.0 51.9 25.9

Translated & Current 50.1 66.7 74.1 55.8 23.4

Previous & Current 56.1 75.3 80.6 57.0 20.0

Table 6: Ablation experiment of normalization.

Normalization IDF1↑ MOTA↑ MOTP↑

BatchNorm [38] 61.3 59.7 77.3

LayerNorm [39] 60.7 55.3 79.5

GroupNorm [40] 62.5 66.9 80.4

PowerNorm [41] 62.0 63.4 79.2

InstanceNorm [26] 56.1 75.3 80.6
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5. Conclusion

In this paper, we propose a novel model for multiplayer
tracking in broadcast sports game videos. We take advantage
of the transformer-based structure and make full use of the
temporal contexts between consecutive frames. Extensive
experiments are conducted to demonstrate that after adding
the temporal context information, our model improves the
results in the sports videos. Deep neural networks and trans-
former networks have achieved tremendous success in many
vision applications. We will utilize the tracker for better
sports video analysis.
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