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In recent years, with the rise of Internet of Things (IoT), a majority of smart technologies, such as autonomous vehicles, smart
healthcare, and urban surveillance, require a huge number of images of high quality and resolution. Currently, image
superresolution reconstruction technologies are widely used for obtaining high quality images. Unfortunately, the existing
methods generally focus on the whole image without highlighting foreground information and lack visual focus. Also, they
have low utilization of shallow features and numerous training parameters. In this paper, we propose a feature extraction
module that focuses on foreground information: the parallel attention module (PAM). PAM computes channel and spatial
attention in parallel, inputs the obtained attention values into a cascaded gated network, and dynamically adjusts the weights
of both using nonuniform joint loss to focus on image foreground information and detail features to improve the
reconstructed image’s foreground sharpness. To further improve the performance, we propose to connect multiple PAM
modules in series with skip connections and call it PAMNet. PAMNet can better leverage the shallow residual features, and the
reconstructed images are closer to ground truth. Thereby, the applications in the urban image processing IoT systems can
obtain high-resolution images more quickly and precisely. The comprehensive experimental results show that PAMNet

performs better than the state-of-the-art technologies.

1. Introduction

With the rapid development of artificial intelligence (AI)
[1-5] and 5G [6, 7], many emerging technologies, such as
Internet of Things [8-17], blockchain [18-21] autonomous
vehicles [22-24], smart healthcare [25-31], and urban sur-
veillance, that meet people’s aspirations for a better life, are
developing very fast. In these smart technologies, image pro-
cessing IoT applications such as autonomous vehicles, smart
healthcare, and urban surveillance are playing important
roles in the upcoming smart society. Figure 1 shows the
application of urban IoT systems.

However, due to the heterogenous properties of the smart
camera devices and complicated network environment, the
smart applications deployed in the remote cloud can often
only obtain low-resolution images, which largely limit the
usage of the smart applications. For example, (1) high-speed
cars need to recognize the contents of road signs as early as

possible, but due to the long shooting distance and small road
signs, it is necessary to convert the captured low-resolution
images into high-resolution images with the help of image
superresolution methods. (2) In suburban community hospi-
tals, we need to superresolve the transmitted low-resolution
images to improve the accuracy of doctors’ remote diagnosis
due to the poor quality of the captured equipment. (3) Police
often tracks the trajectory of suspects through urban surveil-
lance systems, and after image superresolution reconstruction,
get a clearer picture of the suspect’s appearance and character-
istics to speed up the process of crime solving. In summary,
image superresolution reconstruction has broad applications
in urban IoT systems.

Single image superresolution (SISR) is the task of gener-
ating high-resolution images using a single low-resolution
image [32]. SISR algorithms are divided into three main cat-
egories: interpolation-based methods [33], reconstruction-
based methods [34, 35], and learning-based methods [36,


https://orcid.org/0000-0003-0472-4543
https://orcid.org/0000-0001-6093-4583
https://orcid.org/0000-0003-2728-5619
https://orcid.org/0000-0003-0817-9327
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6196810

Heterogeneous Dynamic
ToT devices network
environment

b
/

o (fA:)
2 >

Image super-resolution /

reconstruction model

Wireless Communications and Mobile Computing

Image processing IoT

systems

Autonomous
vehicles

0.

((A:) %

(a3

Smart
healthcare

N7

)

= (SA:)

v R
\

Urban
surveillance

F1GURE 1: Image superresolution reconstruction for image processing IoT systems in Smart City.

37]. Learning-based methods are one of the most widely
used methods at present. In particular, with the development
of deep learning and generative adversarial networks, image
superresolution has made great progress.

Dong et al. [38] proposed an SRCNN method that has
realized end-to-end super resolution image reconstruction
and better performance compared with other previous
methods. However, the simple network structure limits its
ability to extract features, and the MSE loss used by SRCNN
stresses improving the image objective index, ignoring the
subjective effect of the image. The detailed features of the
blurred reconstructed images are VDSRs—depth models
based on residual learning, which were proposed by Kim
et al. [39]—that improve the model performance by intro-
ducing a residual structure, but there are problems such as
large number of training parameters and unclear back-
ground of reconstructed images. EDSR proposed by Lim
et al. [40] removes the BN layer and superimposes more
layers to improve the reconstructed image quality by reduc-
ing the memory consumption of the BN layer. However,
since L1 loss is used for training, the objective index of the
reconstructed image is low.

Thanks to the generative adversarial networks proposed
by Goodfellow et al. [41], the image superresolution task has
opened a new chapter dominated by generative adversarial
structures. SRGAN proposed by Ledig et al. [42] uses gener-
ative adversarial networks for image superresolution while
using perceptual loss and adversarial loss to improve the
realism of the reconstructed image, which makes the recon-
structed image and the ground truth closer in semantics and
style. However, the reconstructed image loses some high-
frequency information due to the mere use of MSE loss to
train the generator. ESRGAN proposed by Wang et al. [43]
removes the BN layer based on SRGAN and introduces
dense connections to avoid artifacts. VGG features before
activation are used to improve perceptual loss and to make
the edges and details of the reconstructed images clearer.
The idea of relativistic GAN [44] is applied for reference to
judge the probability that real images are more realistic than

generated images in the discriminator, greatly enhancing the
subjective effect of reconstructed images. Nevertheless, ESR-
GAN has many parameters and a long training time. RFB-
ESRGAN proposed by Shang et al. [45] introduces a multi-
scale receptive field module to extract edge features of
images and alternately uses nearest-neighbor interpolation
[46] and pixel-shuffle [47] in the upsampling module to pro-
mote the information interaction between network space
and depth. However, asymmetric convolution in the multi-
scale module can reduce the parameters and affect the accu-
racy of feature extraction, which is not conducive to
restoring the original image’s detailed features.

Due to the good performance of attention mechanisms
in computer vision tasks represented by image classification
[48], object detection [49], and semantic segmentation [50],
Zhang et al. [51] first introduced channel attention into the
image superresolution reconstruction task and proposed
RCAN, which highlights the foreground information of
reconstructed images to some extent. The SAN proposed
by Dai et al. [52] uses a second-order attention network to
capture distant spatial features, leveraging the underlying
image features, and the reconstructed image color is closer
to the original image. Liu et al. [53] proposed RFANet based
on EDSR’s proposed RFA module to exploit shallow residual
features to achieve a good balance between model perfor-
mance and parameter number and proposed an ESA spatial
domain attention module to extract spatial domain features
using stride length convolution and pooling instead of dila-
tion convolution for dimensionality reduction to avoid the
lack of image detail information caused by dilated convolu-
tion and achieve better results.

Although the above methods have achieved good results
in image superresolution tasks, there remain problems such
as the image foreground not being highlighted, lack of visual
focus, etc. In this paper, we innovatively propose the parallel
attention module (PAM) and use it as the basis to introduce
skip connection and group convolution to build PAMNet,
aiming to design a high-performance, high-quality image
superresolution model that attends more to image
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foreground information and detailed features and has a
smaller number of training parameters. The main contribu-
tions of this paper are as follows:

(1) Proposing a generic module named PAM, which
computes channel attention and spatial attention in
parallel on the residual block’s residual branch, and
then dynamically adjusts the weights of both using
gated networks and nonuniform joint loss, so that
the PAM module focuses on the attention domain
with higher weights and thus can extract foreground
information deeply

(2) Based on the PAM modules, we proposed PAMNet.
By concatenating multiple PAM modules in PAM-
Net and introducing skip connections, the residual
features from all the preceding PAM modules are
fed directly to the PAM module at the end of the
network for aggregation to leverage the shallow
residual features, and the reconstructed images are
closer to ground truth. In addition, by using group
convolution, PAMNet is more lightweight than
other methods

The reminder of the paper is organized as follows. Sec-
tion 2 describes the PAM module, PAMNet, and the loss
function of this paper in detail. Section 3 verifies the effec-
tiveness and generality of this paper’s method through abla-
tion experiments and comparison experiments. Finally,
Section 4 presents the conclusion of this study.

2. Method

2.1. PAM. The PAM module proposed in this paper can
directly replace the residual block in the ResNet [54] back-
bone network, compute channel and spatial attention in par-
allel, splice the results in the channel dimension, and feed
them into the gated network to extract the weight coeffi-
cients. In the backpropagation process, the channel attention
and spatial attention weights are dynamically adjusted by

nonuniform joint loss, focusing on extracting image fore-
ground information in the attention domain with higher
weights. The specific structure of PAM is shown in Figure 2.

In computing channel attention, a structure similar to
SENet [55] is used, and the fully connected layer in SENet
is replaced by 1x1 convolution, which can preserve the
image’s spatial features. The specific computation of channel
attention is given by Eq. (1):

YC =X+ CA(XR), (1)

where X € R“H*W represents the input of the residual block,
XR € R“H*W represents the output after computing the
residuals, CA represents computing channel attention, and
YC represents the final output of the channel attention.
Meanwhile, in this paper, C represents the channel dimen-
sion of the feature map, H represents the height of the fea-
ture map, and W represents the width of the feature map,
so that the three dimensions of a feature map can be repre-
sented as (C, H, W).

Referring to the HDC idea [56], PAM computes spatial
attention using a three-layer cascaded dilation convolution
with dilation rates of 1, 2, and 3. First, we use a 1 x 1 convo-
lution to downscale the feature map with input dimensions
(C,H, W) into a feature map with (C/K, H, W) dimensions,
where K is the downscaling factor, and in this paper, we take
K =4. Second, the feature map after downscaling is convo-
luted with three different expansion rates to expand the per-
ceptual field with the minimum number of parameters in a
finite number of steps to ensure the continuity of the percep-
tual domain and avoid the information loss caused by pool-
ing. Finally, we use a 1x1 convolution to fuse the
information of different channels of the feature map and
go through Sigmoid activation to get the feature map
weights in the (1, H, W) dimension and assign the weights
in the (H, W) dimension to multiply to the input feature
map to focus on the image foreground information. The
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specific computation of spatial attention is given by Eq. (2):
YS=X+SA(XR), (2)

where X € R““H*W represents the input of the residual block,
XR € R&“H*W represents the output after computing the
residuals, SA represents computing spatial attention, and Y
S represents the final output of spatial attention.

After obtaining the channel attention YC and spatial
attention YS using the above method, the two are spliced
in the channel dimension to obtain the input of the gated
networkGIN € RZ“**W Then, we use a 1x 1 convolution
to fuse the information and reduce the GIN dimension of
(C,H, W). Then, two 3 x 3 convolutions for feature extrac-
tion and Sigmoid activation are used to obtain an activation
output o € R&“H*W wyith values in the range (0, 1). Finally,
the final output GOUT € R“*#*W is obtained by multiplying
o by YC and YS as a linear combination of coefficients.
Meanwhile, this weight is continuously updated during the
backpropagation process, and the weights of channel atten-
tion and spatial attention are dynamically assigned in learn-
ing progress, focusing on extracting image foreground
information in the attention domain with higher weights.
The computation is given by Eq. (3):

GOUT = (1-0)YC+0YS. (3)

The specific structure of the gated network module is
shown in Figure 3.

2.2. PAMNet. PAMNet is built with the PAM module as the
core unit and postupsampling as the base structure, using
skip connection, group convolution, and feature fusion.
The network comprises a down-sampling layer, a feature
extraction layer, and an upsampling layer. In this case, the
downsampling layer uses a serial 5x 5 convolution to ini-
tially extract image color, contour, and texture features.
The upsampling layer uses pixel shuffle to enlarge the image.
PAMNet benefits from the PAM module and skips connec-
tion, which focuses more on image foreground information
reconstruction and can leverage shallow residual features,
highlighting the visual focus of reconstructed images. The
specific structure of PAMNet is shown in Figure 4.

The downsampling layer initially extracts the image’s
underlying features by two times 5x5 convolution and
increases the number of feature map channels. The feature
extraction layer and the upsampling layer are the core of
PAMNet. The feature extraction layer uses PAM as the basic
unit and serially multiple PAM modules to extract detailed
features. The basic structure of the traditional residual block
is two 3 x 3 same convolutions; serializing multiple blocks
induces many parameters and complex computations, which
seriously slows down the model’s training. Therefore, in this
paper, we use group convolution in the PAMNet feature
extraction layer to reduce the number of parameters and
add 1 x 1 convolution to fuse the group information. Taking
the input feature map XIN € R*H*W output feature map
XOUT € R“M™*W "and convolution kernel F € R“**3 as an
example, the number of parameters of a residual block is
given by Eq. (4):

PN=3x3xCxCx2. (4)

While using group convolution with group number g
and 1 x 1 convolution, the number of parameters is reduced
to Eq. (5):

PG:(3><3><C><C><1+1><1><C><C>><2
g9

1 (5)
=2><C><C><<3><3><—+)1.
g9

According to the reference [57], take C =64 and g = 16,
we can get PN =73728 and PG = 12800; we can see that the
number of parameters using grouped convolution is only
17.36% of the normal convolution, which simplifies the
number of parameters of the model while significantly
increasing the training speed. Since the shallow residual fea-
tures must pass through multiple computations before
reaching the last PAM module, the deeper layers of the net-
work fail to leverage the shallow information and lose some
of the image’s shallow features, which is inconvenient for
reconstructing the image’s color and texture information
and severely limits the model’s image reconstruction capa-
bility. Existing SR methods, such as RFANet, only use skip
connection inside the RFA module, which fails to preserve
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TaBLE 1: Network training parameters.

Parameters Values
Scale 4
Batch size 16
Optimizer Adam
Learning rate 0.0002
PAM channels 64
Group of convolution 16

the shallow features of the image completely. In this study,
we introduce a skip connection within PAMNet, and by skip
connection, we input the residual features of all preceding
PAM modules to the last PAM module in the feature extrac-
tion layer, reducing dimensionality and aggregating shallow
features by 1 x 1 convolution. Compared with the simple
stacking of multiple residual blocks, PAMNet retains the
underlying image information so that it can participate in
the subsequent computation to further extract the high-
level semantic information while sending it directly to the
end PAM module without any interference, which retains
the underlying features and focuses on extracting the high-
level image information.

The upsampling layer acts as the final layer of the net-
work and is responsible for scaling the image to a specified
magnification. Commonly used upsampling methods
include linear interpolation, deconvolution [58], transposed
convolution [59], subpixel convolution [60], and metaups-
cale [61]. Interpolation methods are the fastest, but recon-
structed images are blurred and have low definition.
Deconvolution and transposed convolution reconstruct
images with a field of perception up to the same magnifica-
tion as the image, which is not conducive to obtaining global
features, and the reconstructed images are prone to checker-
board artifacts. Subpixel convolution has a larger field of
perception and more contextual information, and the recon-
structed image is clear in detail. The metaupscale does not
need to determine the scale factor in advance, the image
can be continuously enlarged by any factor, and the recon-
structed image is high definition, which is often used for
video superresolution reconstruction. Due to the faster com-
putation speed of subpixel convolution and the high quality
of reconstructed images, pixel shuffle is used for upsampling
in this paper.

2.3. Loss Function. Similar to existing methods [42, 43,
51-53], this paper trains the network model based on the
generative adversarial structure and optimizes the model
parameters by the joint discriminator loss and generator
loss, where discriminator loss LD is defined as Eq. (6):

LD = —Exr[log (D(xr, xf))] — Exf[log (1 — D(xf, xr)], (6)

where xr is the real image, xf is the reconstructed image, and
D (xr, xf) computes the difference between the real image
and the reconstructed image and uses the Sigmoid restric-
tion D (xr, xf) € (0, 1).

Unlike the above methods, the generator loss in this
paper comprises nonuniform joint loss, adversarial loss,
and content loss. By using nonuniform joint loss, constraint
the network learn image color and texture features while
extracting more discriminative features and detailed infor-
mation, focusing more on the reconstruction of image fore-
ground information.

The nonuniform joint loss LU is based on L1 loss, and the
reconstructed image and the original image are fed into the
pretrained VGG-19 network to compute L1 loss LVGGI1
before the first pooling layer and L1 loss LVGG2 before the
last pooling layer by adjusting the weights of LVGGI and L
VGG2 to constrain the generator to extract the underlying fea-
tures while learning more detailed information and discrimi-
native features. The specific computation is given by Eq. (7):

LU = aLVGG]1 + fLVGG2, (7)

where « is the weight of LVGG1, and f is the weight of L
VGG2; in this paper, we take « =0.2 and = 1.

The adversarial loss LG is computed as in [11], and the
specific computation is defined by Eq. (8):

LG = —Exr[log (1 - D(xr, xf))] — Exf[log (D(xf,xr)]. (8)

Content loss LC computes the pixel difference between
the real image and the reconstructed image using both L1
loss and L2 loss. Methods such as RFANet only use the L1
loss to compute the content loss, which induces the loss of
some high-frequency information in the reconstructed
images, and L1 loss is prone to sparse solutions and cannot
be derived at the zero point, increasing the instability of
GAN training. SRGAN only uses L2 loss to compute the
content loss, which is influenced by outlier points. Although
the reconstructed image has a higher peak signal-to-noise
ratio (PSNR (dB)) but is prone to artifacts, the visual effect
is poor, which opposes the original intention of image super-
resolution. PAMNet computes content loss using both L1
loss and L2 loss to enhance the method’s robustness while
reducing sparse solutions. The specific computation is given
by Eq. (9):

LC = uL1(xr, xf) + OL2(xr, xf), 9)

where xr represents the ground truth, xf represents the
reconstructed image, and y and 0 represent the weight of
L1 loss and L2 loss, respectively. In this study, we take =
0.75 and 6 =0.25.

In summary, the generator loss is defined by Eq. (10):

L=yLG+ALU +4LC, (10)

where yp, A, and # represent the weights of adversarial
loss, nonuniform joint loss, and content loss. In this paper,
we take y=0.005, A=1, and #=0.1.
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3. Experiment

3.1. Settings. Referring to the existing methods [40, 43,
51-53], to verify the effectiveness of this paper, we select
3450 images from DIV2K [62] and Flickr2K [63] as the
training dataset and randomly select 60,000 subimages as the
training images after cropping and mirror reversal operations
on the original images. Meanwhile, we select Set5 [64], Set14
[65], BSD100 [66], and Urban100 [67] as the test datasets.
The main parameters of the network are shown in Table 1.

This paper is based on PyTorch for experiments with the
following hardware parameters: Intel i7 9700, NVIDIA
2080ti, and 32gRAM.

3.2. Results. In this paper, we focused on SISR reconstruction
on a four-time deflation factor and used Set5, Setl4,
BSD100, and Urbanl00 as the test sets to compare with
existing image superresolution methods from both subjec-

tive and objective aspects. We also embedded the PAM
module into the backbone networks of SRGAN and ESR-
GAN to verify the effectiveness and generality of the module.
Meanwhile, PSNR and SSIM were used as objective indices
to quantify the quality of the reconstructed images.

3.2.1. Effectiveness and Generality of PAM. This section ver-
ifies the effectiveness and generality of the PAM module by
replacing the basic residual block of SRGAN and the RRDB
structure in ESRGAN using the PAM module and keeping
the other structures and loss functions in the original net-
work unchanged. The replaced models are called PAM-
SRGAN and PAM-ESRGAN, and we selected the images
in Set5, Setl4, BSD100, and Urbanl00 for analysis. The
results are shown in Figure 5.

The performance of SRGAN and ESRGAN with embed-
ded PAM modules on different datasets is shown in Table 2.
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TasLE 2: SRGAN, PAM-SRGAN, ESRGAN, and PAM-ESRGAN.
Method Set5 Set14 BSD100 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
SRGAN 29.40/0.847 26.02/0.739 25.16/0.669 24.29/0.661
PAM-SRGAN 31.24/0.883 27.93/0.749 25.91/0.701 24.83/0.692
ESRGAN 32.60/0.901 28.88/0.791 27.76/0.745 26.73/0.815
PAM-ESRGAN 32.74/0.902 28.91/0.787 27.80/0.745 26.94/0.813
TaABLE 3: Numbers of PAM. 30
N Set5 Set14 BSD100 Urban100 28 4 2603
PSNR PSNR PSNR PSNR ’e 26,47
3 22.80 20.15 19.97 19.76 =
5 28.14 24.86 23.93 23.54 g 24-
7 29.98 26.93 25.26 2531 Z 5,
w
9 32.13 28.46 27.48 26.47 A
11 3273 28.93 27.81 26.93 20 1
18 -
As seen in Table 2, PAM-SRGAN improves PSNR by 16 ; ; ; ;

1.84dB, 1.91dB, 0.75dB, and 0.54 dB over SRGAN on the
four test sets; PAM-ESRGAN improves PSNR by 0.14 dB,
0.03dB, 0.04dB, and 0.21 dB over ESRGAN on the four test
sets. The results show that the PAM module improves the
performance of SRGAN and ESRGAN networks with good
generality.

3.2.2. Performance of PAMNet. To give PAMNet the best
performance, we performed the following experiments on
the number of PAM modules in the feature extraction layer.
Let the total number of PAM modules in PAMNet be N and
Ne [3,5, 7,9, 11]. Keeping the other structures in PAMNet
unchanged, the test results on different datasets are shown in
Table 3.

As seen in Table 3, the performance of PAMNet outper-
forms SOTA method RFB-ESRGAN (32.66dB, 28.88dB,
27.79dB, and 26.92dB) and RFANet (32.72dB, 28.91dB,
27.77 dB, and 26.89dB) when N =11.

As the number of PAM modules (N) increases, the
PSNR of PAMNet reconstructed images on different datasets
grows accordingly. The variation relationship is shown in
Figure 6 for the Urban100 dataset, for example.

Figure 6 shows that the PSNR of the reconstructed
images does not continue to improve significantly with the
increase in the number of PAM modules (N), and for a good
balance between model performance and complexity, PAM-
Net takes N =11. After determining the number of PAM
modules and selecting images from the Set5, Setl4,
BSD100, and Urban100 test sets, one image from each test
set was taken for analysis, and the results are shown in
Figure 7.

As can be seen in Figure 7, due to the addition of a gated
network and nonuniform joint loss in PAMNet, our method
can produce sharper foreground information than existing
methods (Figures 7(a) and 7(b)), and the detailed texture
features of the reconstructed images are closer to Ground
Truth (Figures 7(c) and 7(d)). In addition, PAMNet basi-

3 5 7 9 11
PAM numbers (N)

FiGURE 6: PAM numbers vs. PSNR on Urban100.

cally preserves the color and texture features of the image
by introducing skip connection, and the overall image
sharpness is basically on par with SOTA methods such as
RFB-ESRGAN and RFANet.

To verify the effectiveness of PAMNet from an objective
perspective, we selected PSNR and SSIM as objective indices.
The PSNR and SSIM of each image in Figure 7 are shown in
Table 4.

As shown in Table 4, the PSNR and SSIM of PAMNet
reconstructed images outperformed other methods, and
only the RFB-ESRGAN method had slightly higher PSNR
than PAMNet on Figure 6(a). To verify the generalization
performance of PAMNet, the PSNR and SSIM of different
methods on different test sets are shown in Table 5.

As shown in Table 5, the PSNR of PAMNet recon-
structed images outperformed other methods in each test
set, improving 0.01dB, 0.02dB, 0.04dB, and 0.04dB over
RFB-ESRGAN in four test sets and improving 0.07dB,
0.05dB, 0.02dB, and 0.01dB over RFANet, and SSIM was
Set5, and Urban100 datasets were slightly lower than RFB-
ESRGAN. The experimental results show that, thanks to
the PAM module and nonuniform joint loss, PAMNet can
effectively extract image foreground information, improve
the PSNR and SSIM of the reconstructed images, and
enhance the foreground clarity while ensuring a clear back-
ground in the reconstructed images.

3.2.3. The Effect of Skip Connection. In this section, the skip
connection in PAMNet was removed, and the other struc-
tures and loss functions were kept unchanged to investigate
the effect of skip connection on PAMNet. The experimental
results are presented in Table 6.



Wireless Communications and Mobile Computing

ESRGAN RFB-ESRGAN

BSD 100 ESRGAN RFB-ESRGAN Ours

Urban 100 ESRGAN RFB-ESRGAN Ours
(d)
FIGURE 7: Reconstructed image of PAMNet: (a) from Set5, (b) from Set14, (c) from BSD100, and (d) from Urban100.
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TABLE 4: Objective indicator comparison from Figure 7.

Figure 7(a)

Figure 7(b)

Figure 7(c)

Figure 7(d)

Method PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
SRCNN 29.04/0.815 29.28/0.786 26.72/0.748 26.95/0.782
SRGAN 30.11/0.862 28.06/0.775 27.02/0.743 27.29/0.779
ESRGAN 33.87/0.911 29.34/0.825 28.03/0.796 27.93/0.813
RFB-ESRGAN 33.91/0.912 31.02/0.843 28.13/0.797 28.07/0.823
PAMNet (ours) 33.89/0.916 32.65/0.851 28.41/0.804 28.24/0.830
TABLE 5: Average objective indicator.
Method Set5 Set14 BSD100 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
SRCNN 30.48/0.862 27.50/0.751 26.90/0.710 24.52/0.722
SRGAN 29.40/0.847 26.02/0.739 25.16/0.669 24.29/0.661
VDSR 31.35/0.883 28.02/0.768 27.29/0.7260 25.18/0.754
EDSR 32.46/0.896 28.80/0.787 27.71/0.742 26.64/0.803
DBPN 32.47/0.898 28.82/0.786 27.72/0.740 26.38/0.794
ESRGAN 32.60/0.901 28.88/0.791 27.76/0.745 26.73/0.815
SAN 32.64/0.900 28.92/0.788 27.78/0.743 26.79/0.806
RFB-ESRGAN 32.72/0.902 28.91/0.801 27.7710.746 26.89/0.817
RFANet 32.66/0.900 28.88/0.789 27.79/0.744 26.92/0.811
PAMNet(ours) 32.73/0.901 28.93/0.802 27.81/0.750 26.93/0.816
TaBLE 6: Skip connection in PAMNet.
Name Set5 Set14 BSD100 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
No skip connection 32.21/0.894 28.36/0.801 27.65/0.744 26.69/0.812
Skip connection 32.73/0.901 28.930.802 27.81/0.750 26.93/0.816
27.5
| o PAMNet (ours) . . RFANet . o
27 ; ¢ ours RFI.XNet SAN
EDSR RFB-ESRGAN ° o
26.5 ° DBPN . ESRGAN
. ‘
@ 264
=
e
Z 255 ...
A """ | VDSR
[ ]
25
SRCNN |
24.5 - -
SRGAN -
24 T T T T T T T T
0 2 4 6 8 10 12 14 16 18

Parameters (M)

FIGURE 8: PSNR vs. parameters on Urban100 (x4).
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As shown in Table 6, the PSNR of PAMNet recon-
structed images on different test sets decreased by
0.52dB, 0.57dB, 0.16dB, and 0.24dB, after removing the
skip connection in PAMNet, and the performance of
PAMNet decreased significantly, which constrained the
utilization of shallow features by the model. The experi-
mental results show that the skip connection significantly
impacted PAMNet, and the use of skip connection could
improve the utilization of shallow features in PAMNet,
thereby enhancing the comprehensive performance of the
model.

3.2.4. Model Complexity. To evaluate the complexity of the
PAMNet model, it was compared with existing SR methods:
SRCNN, SRGAN, VDSR, EDSR, DBPN, SAN, ESRGAN,
RFB-ESRGAN, and RFANet. The results are shown in
Figure 8.

As seen in Figure 8, PAMNet has smaller parameters and
better performance than DBPN, RFANet, SAN, and ESR-
GAN. Compared with RFB-ESRGAN, PAMNet has a
slightly larger number of parameters but slightly outper-
forms RFB-ESRGAN overall.

4. Conclusion

In this paper, we proposed a generic PAM module for
image superresolution reconstruction to extract foreground
information and high-frequency features of images. The
module computed channel attention and spatial attention
in parallel and used the gated network to extract the
two-weight coefficients and cooperated with the nonuni-
form joint loss to dynamically modify the two weights
during the backpropagation process, so that the network
attended more to the extraction of foreground information
and discriminative features. To fully reflect the good per-
formance of PAM modules, PAMNet was further pro-
posed to connect multiple PAM modules in series in
PAMNet. The ablation experiments verified the effective-
ness and generality of the PAM module and the necessity
of skip connection in PAMNet. By contrast experiments
with existing state-of-the-art image superresolution
methods, the average PSNR improvement of PAMNet on
different data sets is 0.4dB, and the average SSIM
improvement is 0.005. It is verified that PAMNet achieves
a good balance between performance and model complex-
ity. By using PAMNet, in many applications of urban IoT
systems, such as autonomous vehicles, smart healthcare,
and urban surveillance, it is possible to generate clearer
and more foreground-focused high-resolution images than
existing image superresolution methods, improving the
reliability of urban IoT systems and satisfying people’s
vision of a better life. Limited by the training equipment
and the research content, only the image superresolution
method on the x4 magnification factor has been studied.
In the future, we will also continue to research faster
and greater magnification image superresolution methods,
so that various smart technologies can continue to benefit
humanity and all families.

Wireless Communications and Mobile Computing
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