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In this paper, we investigate an unmanned aerial vehicle- (UAV-) enhanced mobile edge computing network (MUEMN), where
multiple UAVs are deployed as aerial edge servers to provide computing services for ground moving equipment (GME). Each
GME is trained to simulate movement by a Gauss-Markov random model in this MUEMN. Under the condition of limited
energy cost, UAV dynamically plans its flight position according to the movement trend of GME. Our objective is to minimize
the total energy consumption of GME by jointly optimizing the offloading decisions of GME and the flight positions of UAVs.
More explicitly, we model the optimization problem as a Markov decision process and achieve real-time offloading decisions
via deep reinforcement learning algorithm according to the dynamic system state, where the asynchronous advantage actor-
critic (A3C) framework with asynchronous characteristics is leveraged to accelerate the learning process. Finally, numerical
results confirm that our proposed A3C-based offloading strategy can effectively reduce the total of energy consumption of
GME and ensure the continuous operation of the GME.

1. Introduction

Mobile users usually have limited computing capabilities
and battery storages; it is challenging to provide a satisfac-
tory computing service and achieve a low service delay when
they face with the emerging applications with computation-
intensive features [1–3]. In this context, mobile edge com-
puting (MEC) is considered as a key technology to mitigate
these issues [4]. With the help of MEC, mobile devices have
the option to offload their computing tasks to nearby edge
servers with powerful computing capabilities, enabling the
demands for lower energy consumption [5, 6] and reduced
latency. Nevertheless, the location of MEC server is usually
fixed and cannot be changed flexibly according to the needs
of mobile users, which restricts the extension of MEC [7, 8].
At present, frequent occurrence of natural disasters may
destroy basic communication facilities on the ground, which
makes it difficult for rescue communication efforts. Com-
pared with the general communication infrastructure,

unmanned aerial vehicles (UAVs) are highly flexibility and
inexpensive, enabling reliable communication. UAVs
equipped with MEC servers greatly enhance the application
scalability of the traditional MEC model [9, 10].

With the development and maturity of UAV-related
technologies, they have been paid much attention in disaster
rescue, mineral mining, geological exploration and other
wireless scenarios [11, 12]. On the one hand, in regions with
incomplete or damaged basic communication facilities,
where large-scale outdoor activities are required within a
short period of time, UAVs can be deployed in the air on
demand to enhance network connectivity and provide reli-
able communication services. On the other hand, in many
civilian application scenarios, such as live broadcast and
video shooting, the flow of people tends to be huge, and
the offloading of various data generated by mobile devices
in these areas to the cloud or base stations (BSs) can trigger
high latency [13]. Fortunately, UAVs equipped with the
computing resources can serve as the edge nodes to relieve
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the pressure on computing resources and improve the user
experience. As such, joint development of UAV technology
and MEC model, i.e., adopting UAVs to enhance mobile
edge computing capabilities, is a promising direction for
MEC development.

The current phase of research works on UAV-assisted
mobile edge computing is divided into two categories: sin-
gle/multiple UAV deployment [14] and latency reduction
or energy reduction [15, 16]. Note that the ideal layout of
the UAV can optimize the total coverage of the UAV,
thereby maximizing network advantages. Nevertheless,
despite being interesting, the UAV has size and weight con-
straints, and limited energy profoundly affects sustainable
operations. To do this, the flight state of the UAV must be
studied to optimize the use of UAV energy. Guo and Liu
in [17] designed a single UAV-assisted mobile edge comput-
ing network. Under the UAV energy consumption con-
straint, the authors derived a suboptimal UAV trajectory
layout by introducing block coordinate descent and succes-
sive convex approximation methods. Distinguished from
[17], Liu et al. in [18] employed the Gauss-Markov random
model (GMRM) to simulate the mobility of ground moving
equipment (GME) and continuously adapted the UAV flight
trajectory in the light of the time-varying location of termi-
nal users to promote the quality of service for each mobile
terminal user. The performance of the UAV-enabled MEC
network is quite limited when a single UAV is used as a
computation server in the large-scale scenarios, which moti-
vates the deployment of multiple UAVs. Unlike single UAV
deployment, multi-UAV-assisted MEC has more complex
trajectories. In [19], Wang et al. synthesized the inter-UAV
collision problem and presented a differential evolution
algorithm with an elimination operator to optimize the lay-
out of multiple UAVs. Shang and Liu in [20] obtained the
target of minimizing the sum energy consumption of users
by jointly optimizing users’ association, resource allocation,
and UAV layout. They further recommended the coordinate
descent algorithm to decompose the energy consumption
minimization problem into several subproblems to explore
the suboptimal solution. In [21], Guo et al. studied a
UAV-assisted MEC network with the goal of minimizing
the sum delay of all users, adopting the theories of successive
convex approximation and difference of convex program-
ming to obtain the suboptimal solution. However, most of
the literature defaults to static ground users; the work on
jointly optimizing multiple UAV positions and offloading
decisions considering ground user movement remains
relatively scarce.

Sparked by the above-mentioned observations, in this
paper, we propose an MUEMN architecture to provide edge
computing for GME. We optimize the task offloading
decisions of GME and the flight locations of UAVs in the
network to achieve the goal of minimizing the total energy
consumption of all GME. The resultant optimization prob-
lem is a mixed-integer nonconvex problem, and we propose
a deep reinforcement learning- (DRL-) based asynchronous
advantage actor-critic (A3C) algorithm, which asynchro-
nously trains optimal computational offloading decisions
for all GME in different environments and then uniformly

uploads the training parameters to the global network to
update the parameters and continuously train them to
finally obtain optimal network parameters.

Specifically, the main contributions of this paper can be
summarized as follows:

(1) Considering the dilemma of the traditional MEC
model, we propose a multi-UAV-enhanced MEC
network. Different from the fixed setting of ground
equipment in most work, the ground equipment in
our network follows the GMRM and moves within
a certain period of time. UAVs continuously opti-
mize their flight position with reference to the move-
ment trend of GME

(2) We comprehensively consider the issues of UAV
signal coverage, collisions between UAVs, and
UAV energy consumption in the multi-UAV sce-
nario. Under the constraints of these background
issues, we introduce the A3C algorithm to find the
suboptimal solution that minimizes the total energy
consumption of all GME and derive the optimal
computing task offload decisions and flight positions
of UAVs

(3) Numerical results show that under the constraint of
calculation delay, as the size of the calculation task
increases, the offloading strategy based on the tradi-
tional algorithm is difficult to effectively reduce the
total energy consumption of GME. In this paper, the
proposed A3C algorithm with asynchronous charac-
teristics can generate an effective offloading strategy

2. System Model and Problem Formulation

We describe the network model, communication model,
computation model, flying model, and problem formulation
in this section.

2.1. Network Model. We consider a multi-UAV-enhanced
mobile edge computing network (MUEMN), including M
UAVs deployed with MEC servers,M = f1, 2, 3,⋯,Mg,
and K GME, K = f1, 2, 3,⋯, Kg. The network model is
shown in Figure 1. We assume that the UAVs with limited
energy can provide task offloading service for K GME within
a certain period. Without loss of generality, the GME k and
the UAV m serve one-to-one during this period, and all
tasks must be guaranteed to be completed within the speci-
fied time period L. To simulate the mobility of GME and
UAVs, we divide the calculation time of nonexecuting tasks
in the period L into T frames, and the time of each frame t is
uniform, which is denoted as t = f0, 1, 2,⋯, Tg. In this
paper, the UAVs are assumed to be flying at a constant alti-
tude H without frequenting ups and downs and maintain
communication with K GME in each frame through the
periodic time division multiple access (TDMA) protocol.
Similar to prior studies, we use 3D Cartesian coordinate
system to simulate the position of each node, and the
coordinate unit is meter. Note that the 3D position of
the UAV m is Uu

mðtÞ = ðxumðtÞ, yumðtÞ,HÞ, whereas the two
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UAVs need to meet the constraint duumin ≤ duum1m2ðtÞ, where
duumin represents the minimum allowable distance between

two adjacent UAVs, and duum1m2ðtÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxum1

ðtÞ − xum2
ðtÞÞ2 + ðyum1

ðtÞ − yum2
ðtÞÞ2

q
, ∀m1,m2 ∈M,m1

≠m2 represents the spacing between two adjacent UAVs.
In this MUEMN, we consider that all GME has random

positions at t = 0 and do not change their positions within
△t,t+1. Based on the GMRM [22], the movement speed and
direction angle of the GME k at the tth (t > 0) frame are
denoted as

vk tð Þ = τ1vk t − 1ð Þ + 1 − τ1ð Þ�vk +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ12

p
Ωk, ð1Þ

αk tð Þ = τ2αk t − 1ð Þ + 1 − τ2ð Þ�αk +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ22

p
Ψk, ð2Þ

where 0 ≤ τ1, τ2 ≤ 1 indicate the parameters for adjusting the
state of the previous frame and �vk and �αk stand for the aver-
age velocity and movement direction angle of the GME k,
respectively. Also, Ωk and Ψk follow two uncorrelated ran-
dom Gaussian distributions with different mean-variance
to simulate the random mobility of the GME k. From (1)
and (2), the 3D X-coordinate and 3D Y-coordinate of the
GME k at the tth frame can be deduced as

xk tð Þ = xk t − 1ð Þ + vk t − 1ð Þ△t−1,t cos αk t − 1ð Þð Þ,
yk tð Þ = yk t − 1ð Þ + vk t − 1ð Þ△t−1,t sin αk t − 1ð Þð Þ:

ð3Þ

To sum up, the 3D position coordinates of the GME k at
the tth frame is GkðtÞ = ðxkðtÞ, ykðtÞ, 0Þ. The visualized 3D
model of the network unit can be referred to the right side
of Figure 1.

2.2. Communication Model. In this paper, the line-of-sight
wireless channels between GME and UAVs are more domi-
nant than other channel impairments due to the high alti-
tudes of UAVs. Therefore, the channel link between the

GME k and the UAV m can be denoted by the free-space
path loss model as follows:

hulk,m tð Þ = β0
xum tð Þ − xk tð Þð Þ2 + yum tð Þ − yk tð Þð Þ2 +H2 , ð4Þ

where β0 is the channel power gain at a reference distance
of 1m.

Since each UAV can receive the offloaded task from at
most one GME in each frame, the communication interfer-
ence between channels can be neglected. As a result, the
uplink transmission data rate between GME k and UAV m
in a certain frame is calculated as

Rul
k,m tð Þ = B log2 1 + hulk,m tð Þpk

σ2

 !
, ð5Þ

where B is the available channel bandwidth, pk is the trans-
mission power of the GME k, and σ2 denotes the Gaussian
noise power.

2.3. Computation Model. Considering that all GME distrib-
uted in the MUEMN generate a computationally intensive,
latency-sensitive task Wk = fLk, Ck, tmax

k g, where Lk denotes
the data size for calculating the offload task, Ck stands for
the number of CPU cycles required to calculate each bit of
task data, and tmax

k expresses the maximum tolerable task
latency. The UAVs collaborate with each other to provide
computing services to GME. Herein, ak,m ∈ f0, 1g is used to
denote the GME k task offloading decision variable, where
ak,m = 0 indicates that the GME k chooses to perform local
computation, and ak,m = 1 expresses that the GME k chooses
task offloading to the UAV m.

2.3.1. Local Computing. When the GME k decides to per-
form the calculation locally, the calculation execution time
can be expressed as
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Figure 1: Task offloading network model for GME in multi-UAV scenarios.

3Wireless Communications and Mobile Computing



tlock = LkCk

f lock
, ð6Þ

where f lock is the local computing power of the GME k.
Correspondingly, the energy consumed by local calculation
can be calculated as

Eloc
k = ρlock LkCk f lock

� �2
, ð7Þ

where ρlock marked as the chip correlation coefficient of the
GME k.

2.3.2. UAV Edge Computing. When the GME k moves into
the coverage area of the UAV m, i.e., the constraint dguk,m
ðtÞ ≤ R is satisfied and the UAV m becomes an option
for the GME k to offload the computational task, where

dguk,mðtÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxkðtÞ − xumðtÞÞ2 + ðykðtÞ − yumðtÞÞ2

q
, ∀k ∈K ,∀m

∈M denotes the horizontal distance between the GME k
and the UAV m, R =H tan ϑ indicates the coverage radius
of each UAV, and ϑ is UAV antenna elevation angle [23].
When the GME k is in the coverage of multiple UAVs, the
GME k randomly selects a UAV to offload the computa-
tional task. The process of offloading computational tasks
from a GME to a UAV is divided into three main steps:
(1) the GME offloads the computing task to a selected
UAV; (2) the selected UAV receives the computational
task and performs the calculation; (3) the selected UAV
returns the results to the corresponding GME. As a result,
the amount of data returned is small enough to be negli-
gible. Therefore, the transmission time required for the
GME k to offload the computational task to the UAV m,
the energy consumption transmitted by the GME k, and
the energy consumption received by the UAV m are
expressed, respectively, as

ttrk,m tð Þ = Lk
Rul
k,m tð Þ ,

Etr
k,m tð Þ = pk

Lk
Rul
k,m tð Þ ,

Ere
k,m tð Þ = pum

Lk
Rul
k,m tð Þ ,

ð8Þ

where pum is the receiving power of the UAV m.

2.4. Flying Model

2.4.1. The Energy Consumption of Edge Computing. For a
UAV with limited energy to work continuously, we need
to constrain the UAV’s energy. In this paper, the energy
consumption of the UAV is divided into three main compo-
nents: (1) reception energy consumption and calculated
energy consumption (collectively known as edge computing
energy consumption); (2) UAV flight energy consumption;
(3) UAV hovering energy consumption. Let f um and ρum be
the computational power and the chip correlation coefficient

of UAV m, respectively. Correspondingly, the time required
and the energy consumed for the task calculation of the
UAV m can be calculated as

tcalk,m = LkCk

f um
, ð9Þ

Ecal
k,m = ρumLkCk f umð Þ2: ð10Þ

According to (9) and (10), the edge computing energy
consumption can be derived as

Eedg
k,m tð Þ = Ere

k,m tð Þ + Ecal
k,m = pum

Lk
Rul
k,m tð Þ + ρumLkCk f umð Þ2: ð11Þ

2.4.2. The Energy Consumption of UAV Flying. Given that
the UAV is flying at a constant altitude H, there is no change
in the gravitational potential energy of the UAV in this
paper. To this end, the UAV flight energy consumption only
needs to consider kinetic energy, the flight speed, and energy
consumption of the UAV m at the tth frame given by

vum tð Þ = Uu
m tð Þ −Uu

m t − 1ð Þ
△

,

Ef
m tð Þ = 1

2w△ vum tð Þk k2,
ð12Þ

where w is the effective weight of the UAV and △ denotes
the duration of each frame.

2.4.3. The Energy Consumption of UAV Hovering. The UAV
receives a task offload request from a GME within the signal
coverage area and will switch from flight state to hover
state for the entire edge computing cycle. In this paper,
the task offloading consists of two main phases: task trans-
fer and execution of task calculation, and the calculation is
reflected as

tedgk,m tð Þ = ttrk,m tð Þ + tcalk,m: ð13Þ

To simplify the problem analysis, the energy consumed
by the UAV m hovering Est

m is considered as a constant.
By reason of the foregoing, under the premise that the

total energy of the UAV mEu
m is limited, the UAV m opera-

tion needs to satisfy the energy constraint

〠
k∈K

ak,m Eedg
k,m tð Þ + Est

mt
edg
k,m tð Þ

� �
+ 〠

T

t=1
Ef
m tð Þ ≤ Eu

m: ð14Þ

2.5. Problem Formulation. In this paper, we aim to minimize
the total energy consumption of all GME for multi-UAV-
enhanced MEC network by jointly optimizing the offloading
decision variable a ≜ fak,m,∀k ∈K ,∀m ∈Mg and UAV loca-
tion fðxum, yumÞg. As such, the corresponding optimization
problem can be formulated as
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min
a, xum ,yumð Þf g

〠
K

k=1
〠
M

m=1
1 − ak,mð ÞEloc

k + ak,mE
tr
k,m

� �
,

s:t: C1 : 〠
k∈K

ak,m Eedg
k,m tð Þ + Est

mt
edg
k,m tð Þ

� �
+ 〠

T

t=1
Ef
m tð Þ ≤ Eu

m,∀k ∈K ,∀m ∈M,

C2 : ak,md
gu
k,m ≤ R,∀k ∈K ,∀m ∈M,

C3 : duumin ≤ duum1m2,∀m1,m2 ∈M,m1 ≠m2,

C4 : 1 − ak,mð Þ LkCk

f lock
+ ak,m ttrk,m + tcalk,m

� �
≤ tmax

k ,∀k ∈K ,∀m ∈M,

C5 : ak,m ∈ 0, 1f g,∀k ∈K ,∀m ∈M,

C6 : 〠
M

m=1
ak,m = 1,∀k ∈K ,∀m ∈M,

ð15Þ

where constraint C1 regulates the use of the UAV energy,
constraint C2 indicates the coverage of the UAV signal, con-
straint C3 ensures the minimum distance between adjacent
UAVs to prevent collisions, constraint C4 denotes the max-
imum latency allowed for the computing task, constraint C5
refers to the binary constraint, and C6 guarantees that each
GME connects to at most one UAV. It can be clearly seen
that Problem (15) is a mixed-integer nonlinear and noncon-
vex problem due to the nonconvex objective function and
the constraint, which is challenging to solve and requires
highly computational complexity to find a globally optimal
solution utilizing classical mathematical tools. To this end,
appropriate algorithms need to be designed for solving this
type of problem efficiently [24]. In the following sections,
we propose an A3C-based computational offloading algo-
rithm to obtain suboptimal solution.

3. Proposed DRL-Based Approach: A3C

In this paper, we intend to use DRL-based A3C algorithm
[25] to explore unknown environments, where GME goes
through different task offloading decisions and UAVs learn
from feedback by trying different moves. Continuously, the
global network optimizes task offloading decisions and loca-
tion moves until a suboptimal solution is obtained.

3.1. An Overview of A3C Algorithm. Compared with the tra-
ditional deep reinforcement learning algorithms, the A3C
algorithm optimizes and improves the actor-critic (AC)
algorithm [26]. Based on this, the A3C algorithm solves
the problem that the AC algorithm is difficult to converge
and achieves fast convergence, which can meet our needs.
In detail, the AC algorithm uses an approximate value func-
tion to guide the policy parameter updates, and its single-
step update can speed up the convergence. However, despite
being effective, the AC algorithm requires a complete
sequence of states, and iteratively updates the policy func-
tion separately, so that it is not easy to converge. As shown
in Figure 2, the A3C algorithm utilizes its asynchronous fea-
ture to start multiple threads at the same time, while the
agents learn by interacting with the environments in multi-
ple threads separately. Each thread will complete the train-
ing independently and uploads the training data to the
global model parameters in an asynchronous manner. At

the same time, the model parameters of the threads are
periodically synchronized with the global model parame-
ters, and then, a new round of training is performed with
the new parameters.

3.2. A3C-Based Offloading of Computing Task. In the
MUEMN model, the GME with computational tasks may
choose to compute locally or offload to UAVs in the current
signal coverage area within each frame. Subject to the anti-
collision constraint, energy constraint, and delay constraint,
we aim to minimize the total energy consumption of all
GME. The objective optimization problem can be modelled
as an MDP by offloading GME tasks.

AnMDP consists of a five-tuple:MDP = hS ,A ,P ,R, γi,
where S denotes the set of states of the environment, A
describes the set of actions, P indicates the state transfer
probability, R expresses the reward function, and γ is the
decay coefficient. The MDP formulation of the MUEMN is
as follows.

The state space in the MUEMN is described as

S = stjst = Uu
m tð Þ,Gk tð Þ, Eu

mf gf g, ∀k ∈K ,∀m ∈M: ð16Þ

The action space in the MUEMN consists of two kinds
of actions, i.e., local computation and offloading to the
UAV, expressed as follows

A = ak tð Þ akj tð Þ = 0, 1f gf g, ∀k ∈K : ð17Þ

The state transfer and action decision of the GME in the
MUEMN is only related to the positions of GME and UAVs
and the energy states of UAVs, so the state transfer probabil-
ity can be expressed as

P ss′ =P st+1 = s′ st=sj
� �

: ð18Þ

To minimize the total energy consumption of all GME,
we consider designing a reward function, which assigns a
negative reward if the action taken by the GME k in the state
of the current frame satisfies constraints C1-C6. Briefly, the
reward function can be calculated as

r st , atð Þ = − 1 − ak,mð ÞEloc
k + ak,mE

tr
k,m

� �
: ð19Þ

On the contrary, if the GME k violates the constraints,
we will punish it. For instance, the GME k local calculation
violates the delay constraint, we will do the following pro-
cessing for its local calculation energy consumption

r st , atð Þ = −
tlock
tmax
k

Eloc
k : ð20Þ

With regard to the optimization Problem (15), it can be
observed that the value sequence of the binary decision
variables directly affects the suboptimal solution of the opti-
mization problem. We pass the state of the environment to
the local network to obtain a sequence of task offloading
decisions and then accumulate the reward value adopting
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the reward function. Multiple threads proceed asynchro-
nously in this manner, leaving the training parameters to
the global network for coordination. Ultimately, an optimal
network parameter and a suboptimal reward value are
derived. As shown in Algorithm 1, we give the detailed steps
of the optimal network parameters for the A3C-based off-
loading strategy in the MUEMN.

3.3. Calculating Offloading Decision Generation. In particu-
lar, we introduce the interaction process of a certain thread’s
environment state sequence and action sequence in this sub-
section. For the computational task Lk generated by the
GME k at tth frame, we consider the position of the GME
k, the positions of the UAVs, and the UAVs’ energy states
as a set of state. Further, we input the state sequence S into
the local network model of a thread, which is trained by the
network to produce an action sequence A , the elements of
which correspond to the task offloading decisions of each
of the K GME.

4. Numerical Results

4.1. Simulation Configurations. In this section, the simula-
tion results are presented to evaluate the performance of
our proposed A3C algorithm. We compare A3C with the
following there commonly used baseline methods:

(1) Greedy: when the GME is in the coverage area of the
UAV, the GME selects either local execution or UAV
execution for the computation task depending on the
magnitude of the local computation delay and trans-
mission delay [27]

(2) Random: the GME within UAV signal coverage can
randomly select the object of computational task
execution, i.e., local execution or UAV execution

(3) DQN: the neural network accepts the environment
state to calculate the value function and then uses
the ε-greedy strategy to output the task offload deci-
sions [28]

In the simulation, the software environment is Python
3.7 with TensorFlow and Visual Studio Code, and the hard-
ware environment is a computer with Intel Core i5-9500
CPU and RAM 8.0GB. Consider that the simulation sce-
nario consists of M UAVs and K GME, and the area is a
300m ◊ 300m square single cell area. The horizontal plane
flight altitude of the UAV H = 80m. The effective weight
of the UAV is set to 10 kg, the energy budget of the UAV
Eu
m is set to 200 kJ, and the hovering energy consumption

Est
m is set as 200W [29]. In addition, we set the total duration

of each task completion cycle as L = 10 s, and the part of
equipment that moves freely during this time can be divided
into T = 50 frames; thus, the duration of each frame can be
expressed as △ = ðL −max fak,mtcalk,m,∀k ∈K ,∀m ∈MgÞ/T .
Furthermore, we assume that the channel power gain β0 at
the reference distance of 1m is set to -50 dB. The available
bandwidth B is set to be 40MHz and the noise power σ2 =
10−16W. The coefficients related to the GME and the UAVs
are set as ρlock = ρum = 10−28.

Regarding the size of the computational tasks, we assume
that they are randomly arranged in a certain interval. Mean-
while, the computing power of the GME k is set to f lock = 0:5
G cycles/s, and the computational capability of the UAV m
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Figure 2: A3C algorithm asynchronous training framework.
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to each GME is set to f um = 5G cycles/s by reference to [30].
The specific parameter settings are shown in Table 1.

4.2. Performance Comparison. Assuming the number of
GME is 20 and the number of UAVs is 3, i.e., K = 20,M =
3, we can clearly observe from Figure 3 that the total energy
consumption of GME decreases rapidly within several itera-
tions. The asynchronous nature of the A3C algorithm makes
the reward value oscillate in an interval, and we need to
reduce the oscillation interval as much as possible. When
the scale of GME is large, it is acceptable for the reward value
to fluctuate within 0.5. Figure 3(a) shows that as the number
of episodes increases, the oscillation interval gradually
decreases. At this point, we can regard it as the reward value
gradually converging. Figure 3(b) shows that the oscillation
interval of the reward value shrinks rapidly, indicating that
the decrease of the critic network learning rate can reduce
the oscillation interval of the reward value and accelerate
the convergence of the reward value. Coincidentally, we
reduce the learning rate of the actor network and obtain
the goal of rapid convergence of the reward value in
Figure 3(c). It is important that due to the characteristic that
the reward value oscillates in a certain range, we use the
average value of the upper and lower limits of the oscillating
range as the final result of the reward value.

Figure 4 shows the minimum total energy consumption
of GME as the number of GME increases. In this figure,

the number of UAVs is 3, the size of task is set as 8MB,
and the number of CPU cycles to compute each bit is set
as 160 cycles/bit, i.e., M = 3, Lk = 8 MB, and Ck = 160
cycles/bit. For different offloading strategies, the total energy
consumption of GME also increases linearly with the
increase of GME. When the UAVs’ coverage is low and the
number of GME is small, it is difficult to satisfy that all
GME is within the UAV signal coverage. In the figure, the
total energy consumption of GME under the four strategies
is not much different at K = 5. But it can be seen that under
the same computing task requirements, the greater the num-
ber of GME, the greater the total energy consumption of
GME, and the offloading strategy based on A3C algorithm
proposed by us is more advantageous.

Input: The decay value of the reward γ, global shared count N , and global maximum shared count Nmax.
Output: Optimal network parameters θ and ω as well as the reward value Rðsn, anÞ.
1: Initialization: Actor network parameter θ and critic network parameter ω in the global shared parameters, actor network param-
eter θ′, and critic network parameter ω′ in this thread;
2: Initialize local count n = 1;
3: repeat
4: Reset gradient of local actor network and critic network: dθ⟵ 0, dω⟵ 0;
5: Synchronize parameters from the global network to this thread network: θ′ = θ, ω′ = ω;
6: nstart = n;
7: Initialize state sn;
8: repeat
9: Based on the strategy πðanjsn ; θ′Þ select out action an;
10: Execute action an to get reward value rn and new state sn+1;
11: N ⟵N + 1, n⟵ n + 1;
12: until sn is the terminal state or n − nstart == nmax;
13: Calculate the value of Qðs, nÞ for state sn at the last count n:

14: Qðs, nÞ = 0, sn is the terminal state,
Vðsn, ω′Þ, otherwise ;

(

15: for i ∈ ðn − 1, n − 2,⋯, nstartÞ do
16: Qðs, iÞ = ri + γQðs, i + 1Þ;
17: Calculate the cumulative gradient of local actor parameter θ:
18: dθ⟵ dθ + ∇θ′ log πðanjsn ; θ′ÞðQðs, iÞ −VðSi, ω′ÞÞ
19: Calculate the cumulative gradient of local critic parameter ω:

20: dω⟶ dω + ð∂ðQðs, iÞ − VðSi, ω′ÞÞ
2/∂ω′Þ;

21: end for
22: Update the global network model parameters θ and ω using the local cumulative gradient dθ and dω asynchronously,
respectively;
23: until N >Nmax

Algorithm 1: A3C-based offloading of computational tasks—arbitrary single-threaded execution process.

Table 1: Parameter setting.

Parameters Values Parameters Values

β0 -50 dB ϑ π/4
σ2 10−16 W pk 50mW

ρlock , ρum 10−28 pum 50mW

f lock 0.5G cycles/sec B 40MHz

f um 5G cycles/sec Lk [5, 10] MB

duumin 4m Ck [150, 200] cycles/bit
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Figure 5 compares the proposed offloading strategy
based on A3C algorithm with other strategies in terms of
all GME energy consumption versus different sizes of
computation task. In this figure, the number of UAVs is
3, the number of GME is set as 20, and the number of
cycles to compute each bit is set as 160 cycles/bit, i.e., M
= 3, K = 20, and Ck = 160 cycles/bit. It can be seen that
with the increase of the computational task size, the
energy consumption gap of the four offloading strategies
gradually increases. The reason is that with the increase
of the data scale, due to the limitation of the calculation
delay, the random strategy and the greedy strategy gradu-
ally lose their effect. By analysing the linear trend of
Random algorithm, Greedy algorithm, DQN algorithm,

and A3C algorithm in the graph, we can see that the
larger the amount of data, the clearer the advantage of
our proposed offloading strategy.

Figure 6 describes the sum energy consumption of all
GME corresponding to the number of CPU cycles required
for different calculations per bit of task data. In this figure,
the size of task is set as 8MB, the number of UAVs is 3
and the number of GME is set as 20, i.e., Lk = 8 MB, M = 3
, and K = 20. As shown in Figure 6, it is interesting to note
that there is a significant gap between the offloading strategy
based on the DRL algorithm and the offloading strategy
based on the random algorithm and the greedy algorithm.
The reason is that the larger the number of cycles for calcu-
lating each bit, the higher the calculation delay
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Figure 3: Comparison of total energy consumption with different number of GME.
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requirements, and the traditional algorithms are difficult to
meet such task offloading requirements.

5. Conclusions

In this paper, we researched the computational task offload-
ing problem in an MUEMN and formulated a constrained
optimization problem with the objective of minimizing the
total energy consumption of all GME. We proposed a
model-free DRL scheme with an asynchronous A3C algo-
rithm to effectively generate offloading decisions. A large
number of numerical results showed that the proposed
A3C algorithm can accelerate the convergence speed of the
algorithm and effectively reduce the total energy consump-
tion of GME. In theory, the greater the number of UAVs,
the task calculation delay can be greatly reduced, and the
energy consumption of GME can also be reduced. However,
too many UAVs can be a waste of resources when the
limited space of application scenarios. In future work, we
plan to study the optimal number of UAVs deployed in
the MUEMN with limited space.
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