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Due to the open nature of WIFI connection, it is exposing its private information to the attackers. Traditional WIFI security
methods are no longer able to meet the current security needs, and more and more wireless-side physical layer security
solutions provide solutions, among which RF fingerprinting is an endogenous security technology with potential. Constructing
an effective and accurate method to identify WIFI devices that steal information is a difficulty that today’s society needs to
face. The main problem is not only that the recognition accuracy is difficult to improve but also the problem of data shortage.
In this paper, we first construct a large-scale WIFI real-world measurement dataset. Next, we use PSD and bispectrum features,
as well as complex ResNet schemes for WIFI device identification experiments, and compare and analyze them from multiple
perspectives. The experimental results show that the proposed algorithm can achieve up to 97% recognition accuracy among
100 devices. Moreover, when the SNR is 0 dB, the complex ResNet method can still achieve 78% recognition accuracy among
100 devices. Finally, this paper summarizes the experimental analysis of the measured dataset and discusses the open issues
related to this area.

1. Introduction

According to IoT analytics, the Internet of Things (IoT)
market is expanding at an accelerated rate and the number
of connected IoT devices is increasing rapidly. In 2021, IoT
analytics expects the number of connected IoT devices to
grow by 9 percent to 12.3 billion active IoT devices world-
wide. This number is expected to reach 30 billion by 2025.
As shown in Figure 1, while IoT technology brings conve-
nience to life, it also poses many security risks and its secu-
rity is becoming increasingly prominent.

As a standard for high-throughput wireless connectivity,
the IEEE 802.11 standard, or WIFI standard, is highly vul-
nerable to various attacks [1–3]. There are many methods
for WIFI device identification. However, all these schemes
have certain vulnerabilities and the standard IEEE 802.11
authentication method may encounter various attacks such
as man-in-the-middle attacks, deauthentication flooding
attacks, MAC address replication, and other attacks. Such
security vulnerabilities can lead to serious system risks, so

it becomes especially important to perform secure and accu-
rate WIFI device identification.

In addition to the methods mentioned above, the identi-
fication and authentication of wireless devices can also be
performed using Radio Frequency Fingerprinting (RFF)
technology [4]. The concept of “RF fingerprinting” was first
proposed in 2003, and this technology is a physical layer
method to enhance the security of wireless networks by
extracting the subtle features of radiation source devices to
build device fingerprints similar to those in biology, thus
completing device identification. The process of RF finger-
print extraction and identification is carried out in its phys-
ical layer, which can work alone as well as assist network-
side security mechanisms to improve security for communi-
cation networks.

The basic characteristics of the physical layer of the
device are only related to the hardware characteristics of
the device itself, and the characteristics of the physical layer
can accurately locate each machine in a large number of
devices [5]. Although such hardware differences can be
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reduced by more precise manufacturing and quality control
means, they are usually not feasible in practical environ-
ments because they lead to significantly higher production
costs. Physical layer-based security protection mechanisms
have been extensively studied in recent years. They play an
important role in network intrusion detection [6], fault diag-
nosis [7], target tracking [8, 9], radar detection [10, 11], etc.

RF fingerprinting technology has had important applica-
tions in radiation source identification systems, which can be
used for secure identification and authentication of WIFI
devices based on physical layer information. Fingerprint fea-
tures are generated due to certain hardware “defects” intro-
duced during the device manufacturing process, which are
reflected in the communication signal and are similar to fin-
gerprints in biology, which are also unique and difficult to be
copied [5].

The individual identification of communication devices
based on RF fingerprints is of great importance in many
fields. In the military field, the use of RF fingerprint extrac-
tion and identification technology can identify important
radar, communication, navigation, data chain and other
radiation source individuals, grasp the identity and attri-
butes of the user, and make strategic adjustments by tracking
and monitoring enemy equipment, so as to grasp the initia-
tive of military operations in the complex battlefield envi-
ronment. In the civilian field, RF fingerprinting technology
has important applications in wireless network security,
equipment fault diagnosis, and quality management. Espe-
cially in the field of security of communication networks
[12], the security problems brought by wireless communica-
tion networks due to their inherent openness need urgent
attention [13], and most of the traditional methods for
securing wireless networks are realized through authentica-
tion based on the physical layer above. Since RF fingerprint-
ing is an inherent property of the physical layer of wireless
devices, it is not easily tampered with and can effectively
improve wireless network security, and RF fingerprinting
technology can detect malicious network attacks, which is
of great significance to enhance wireless network security.

In this paper, we address the problem of accurate identi-
fication of physical layer based on RF fingerprinting for a

large number of WIFI devices working in real environment.
It is planned to collect in batches for more than 100 WIFI
devices in multiple channel environments to build the data-
set. And multiple methods are used for identification testing.
Therefore, the difficulty of this paper is that the number of
devices to be identified is large and the recognition effect is
difficult to improve due to the complex and diverse channel
environment, but this paper is also more practical.

This paper will introduce three algorithms to solve the
above problem. The main contributions of this paper are
summarized as follows:

(1) We propose one of the largest WIFI real-world data-
sets available. This includes 100 WIFI devices of
IEEE 802.11b standard, collected in various scenar-
ios, including darkroom and laboratory, and various
channel environments, including LoS and NLoS,
using several spectrometer devices for real measure-
ments. A total of 500GB of WIFI signal dataset was
constructed

(2) We designed two algorithms based on feature engi-
neering, namely, power spectrum analysis and dual
spectrum analysis, and conducted experiments on
WIFI device identification. The results show that
the two algorithms based on feature engineering
can achieve more than 92% recognition accuracy
on 100 devices. The performance, advantages, and
shortcomings of the algorithms are compared from
several perspectives. The experimental results are
also fully analyzed

(3) We designed a deep learning-based algorithm for
WIFI device recognition using a deep complex resid-
ual network. The results show that the algorithm can
achieve more than 97% recognition accuracy on 100
devices. The experimental results are analyzed and
compared with the two algorithms based on feature
engineering

The rest of the paper is organized as follows. In Section
2, the work on RF fingerprinting is presented. In Section 3,
the WIFI device recognition system of this paper is intro-
duced and the acquisition process of the large-scale real-
world dataset used in this paper is presented. The WIFI
device recognition algorithm based on feature engineering
and deep learning will be introduced in Section 4. And in
Section 5, simulation experiments are conducted to compare
and analyze the results from multiple perspectives. Finally, a
summary of the full work is presented in Section 6, where
the experimental results are summarized and analyzed.

2. Related Work

The RF fingerprint feature extraction and device identifica-
tion system is shown in Figure 2.

Generally speaking, the radiation source identification
system based on RF fingerprint technology is composed as
follows: data acquisition part, preprocessing part, fingerprint
feature calculation and extraction part, and classification and
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Figure 1: Trends in the number of IoT device connections.
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identification part. Data acquisition part is the use of acqui-
sition equipment for wireless or wired signal acquisition,
usually using oscilloscopes, spectrometers, Universal Soft-
ware Radio Peripheral (USRP), Software Defined Radio
(SDR), and other equipment and platforms, etc. The perfor-
mance and structure of the front-end equipment usually
have an impact on the RF fingerprinting system, and the
performance of the system and the performance, mobility,
and portability of the acquisition equipment need to be con-
sidered. The preprocessing part is to perform data cleaning,
interception, noise reduction, and other operations on the
collected device signal data and to unify the multiple signals
that may be collected by multiple devices, so that they can be
applied to the calculation and extraction of fingerprint fea-
tures. Fingerprint feature calculation and extraction is the
most important part of the system, mainly through one or
more signal processing algorithms to carry out transform
domain analysis of the signal, so as to extract subtle features
such as unintentional modulation that may otherwise be
submerged in the modulated signal, find subtle differences
in the signal that can be used to distinguish multiple devices,
and output them as the device’s RF fingerprint features.
Finally, the classification and recognition part often uses
generative or nongenerative classifiers, etc. The obtained fin-
gerprint features are used to train the classifier, or they are
fed to the already trained classifier to get the final recogni-
tion result, so that the RF fingerprint-based radiation source
device recognition is achieved. Besides, there are data
enhancement, data dimensionality reduction, and other
components, which can be added or deleted as appropriate.

The transient and steady-state signal segments are con-
sidered separately for RF fingerprinting studies. Among
them, the transient signal segment is a signal segment with
a short duration of gradual power increase generated by the
device at the moment of switching on and off. Since it is
only related to the hardware circuit of the device and con-
tains rich information about the subtle characteristics of the
radiation source device, the transient signal is a suitable sig-
nal to be used for RF fingerprinting technology research
[14, 15]. However, it is difficult to capture the signal seg-
ment quickly and accurately in a real system. The steady-
state signal is the signal segment of the transmitter RF sig-
nal that operates stably at rated power, and the steady-state
signal lasts longer and is easier to obtain than the transient
signal [16]. The radiation source signal received by the
receiver is shown in Figure 3, and it can be seen that the
signal collected by the receiver is extremely rich, including
the channel noise segment, transient signal segment, and
steady-state signal segment.

For the problem of individual identification of WIFI
devices based on RF fingerprinting studied in this paper,
the domestic and international research is summarized into
the following five categories of methods.

2.1. RF Fingerprinting Based on Location Information. Loca-
tion-based RF fingerprinting systems are built on features
such as radio signal strength (RSS), channel state informa-
tion (CSI), and channel frequency response (CFR), which
are signal segments that contain location information about
the target device. Therefore, these systems are designed to
use the unique location information of the device for device
identification.

Generally speaking, such systems mainly utilize the spe-
cial structure of IEEE 802.11 standard frames of WIFI to
extract the corresponding fingerprint features and perform
device identification by processing data segments such as
short training field (STF), long training field (LTF), and pilot
frequencies.

In 2018, Li et al. used an FPGA- (Field Programmable
Gate Array-) based platform to achieve 85% recognition rate
in three devices using features, such as CSI, RSS, and
received frequency bias extracted from the leading signal,
and verified the algorithm and platform proposed in the
paper in real-time communication with commercial WIFI
devices in validity [17]. In 2019, the literature [18] proposed
a RFF feature extraction method for the differential phase of
the guide frequency (DPoP) and the amplitude of the quo-
tient (AoQ) using the guide frequency, STF, and LTF of
OFDM frames and used deep neural networks (DNN) to
classify and identify a total of 55 WIFI devices for five
devices, achieving 95% identification accuracy when the
SNR was higher than 40dB.

2.2. RF Fingerprinting Based on Transmission Signal. RF fin-
gerprinting technology systems based on signal statistical
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Figure 2: Block diagram of radiation source equipment
classification and identification system.
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features are built on features extracted from transient and
steady-state signals and presynchronization codes. These
systems use the uniqueness of a fixed segment of all RF sig-
nal packets sent by the authenticated device for device iden-
tification. The feature extraction algorithms used are
generally commonly used signal processing algorithms with
advantages such as reproducibility and ease of
implementation.

In 2019, Yang et al. collected the overall burst signal of a
transmitter from power on to data communication to power
off and proposed a classification scheme based on sparse
representation (SRC), whose results indicated that the iden-
tification performance using multiple signal segments as RF
fingerprints outperformed the results using only one signal
segment [19]. In 2020, the literature [20] proposed the use
of fractional order Fourier transform, power spectrum, and
bispectral analysis of feature extraction method to achieve
multiangle feature extraction, which can still achieve better
recognition performance on 10 intercom devices even with
low SNR.

2.3. RF Fingerprinting Based on RF Modulation Error. The
RF fingerprinting system based on signal modulation errors
is similar to the previous type of scheme, using transient and
steady-state signal segments for feature extraction. The dif-
ference is that this part of the features has a strong physical
meaning and is an unintentional modulation feature of the
transmitter.

In 2020, it is also possible to use the constellation dia-
gram feature of the signal for the extraction of fine features,
the principle of which lies in the fact that communication
standards specify that the signal modulation can have a cer-
tain range of errors, and this error is the feature space in the
field of RF fingerprinting technology, thus enabling the RF
fingerprinting of devices [21].

2.4. RF Fingerprinting Based on Physical Modeling. Mathe-
matical modeling of key hardware components in wireless
communication systems is also an extremely important task.
The physical model obtained by modeling can also be used
as a unique feature to distinguish different radiation source
devices.

Such systems are mainly used to perform device identifi-
cation by mathematical modeling of the overall system or a
single device, and the obtained model will be used. The liter-
ature [22] allows the extraction of the nonlinear components
of the radiation source device and the analysis of the signal
in the frequency domain for the identification of the radia-
tion source device. The literature [23], on the other hand,
directly models the transmitter link as a whole and fits the
model using a kernel regression model to obtain an RF fin-
gerprint of the radiation source called FID, which can
achieve 99% identification accuracy on 33 devices.

2.5. RF Fingerprinting Based on Deep Learning. Deep learn-
ing has achieved good results in a variety of classification
domains, and the use of deep learning for transmitter iden-
tification is a feasible solution. Deep learning models directly
use the RF signals sent by the device and can be trained by

training a designed deep network model to classify the
device [24–27].

In 2018, literature [28] used convolutional neural net-
work (CNN) to classify wireless signals to identify IoT
devices with 92.29% recognition accuracy on seven ZigBee
devices and high channel robustness. In 2019, literature
[29] proposed a neural network-based radiation source iden-
tification algorithm that can be executed on resource-
constrained IoT devices and can achieve better good recog-
nition performance, which provides a reference for the
grounded application of the algorithm. In 2019, and for
the small and zero-sample problem in deep learning, a ZSL
framework for signal recognition and reconstructed convo-
lutional neural network (SR2CNN) is proposed in the litera-
ture [30] to solve the relevant recognition problem in this
case. Appropriate combinations of cross-entropy loss, cen-
tral loss, and reconstruction loss as well as a suitable distance
metric space are introduced to learn the representation of
the signal semantic feature space so that the semantic fea-
tures have a larger minimum interclass distance than the
maximum intraclass distance. In 2021, the literature [31]
used the actual collected ADS-B signals to construct a data-
set that provides an in-depth study of the performance of the
deep learning model and compares it with recognition
benchmarks using machine learning and deep learning
methods. An open-ended discussion is also provided.

To address the challenge that the existing models have
large number of parameters and are difficult to deploy.
Pruning methods have also been proposed in the literature
that omit the less important convolutional filters and achieve
equal or higher classification accuracies [32, 33]. In addition
to this, there are distributed sensor systems that use incre-
mental learning to solve the RF fingerprint identification
problem [34].

The above analysis reveals that most of the existing algo-
rithms can achieve better results in a certain scale of radia-
tion source devices; however, they are more susceptible to
noise, channel environment, etc. Some algorithms can
achieve considerable results in a larger number of devices;
however, their algorithms are more complex and more diffi-
cult to implement, which is not easy to carry out practical
applications and deployments. Therefore, the current RF fin-
gerprinting technology focuses on the need to solve the
problem of achieving effective identification of large-scale
radiation source devices easily and quickly in a variety of
complex channel environments, which is the main research
direction of this paper.

3. Dataset Construction

For the content to be studied in this paper, the dataset is
constructed as follows. The data collection object is 100
IEEE 802.11b standard 2.4GHz WIFI network card modules.
The selected 2.4GHz WIFI module model is ESP8266. The
WIFI module is set to IEEE 802.11b WIFI standard commu-
nication mode through configuration, sending Beacon frame
signal every 100ms, and RF signal bandwidth 20MHz. The
module is a complete module, including WIFI chip, external
circuit, and PCB antenna. In this paper, a spectrometer is
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used for wireless acquisition of signal power triggers, and the
FSW26 spectrometer from Rohde & Schwarz is selected.
This spectrometer provides multiple sampling rates for the
experiments.

Signal data acquisition and dataset construction are car-
ried out using the abovementioned equipment. Wireless
acquisition of LoS, multipath, and NLoS multipath channels
in the laboratory and microwave darkroom is carried out
using FSW26 spectrometers. Signal acquisition is mainly
performed for 100 2.4GHz WIFI modules, 100 5GHz WIFI
modules for management frame Beacon frames, and I/Q sig-
nal acquisition using 40M, 80M, and 160M sampling rates
in channel 1 and 6 transmission channels.

Data acquisition scenarios cover many scenarios, such as
laboratory LoS, LoS multipath, NLoS multipath scenarios,
and darkroom LoS scenarios, including the acquisition of
WIFI signal data in scenarios with different receiving
devices, different transmission channel numbers, and differ-
ent channel environments.

The data acquisition platform is built using MATLAB
and python-based platforms on the computer side, and the
RF signal is automatically acquired from WIFI devices by
using a network cable to connect the spectrum meter for
control and setting the acquisition parameters, etc.

The data acquisition environment is set as follows.
Among them, the laboratory LoS environment is the WIFI
module, and the spectrum meter antenna is about 1m apart;
the laboratory NLoS environment is the WIFI module, and
the spectrum meter antenna is about 2 meters apart, and
there is a baffle in the direct path.

In several acquisition scenarios, the obtained WIFI sig-
nal data are stored in Excel xlsx file format using the data
acquisition platform to record the I/Q two-way amplitude
values of RF signals. The final dataset obtained is 500GB
in total.

4. System Implementation

This paper will study the performance of two commonly
used signal processing algorithms, power spectral density
analysis and bispectral analysis, in the field of RF finger-
printing technology, analyze their basic theory, and study
their feasibility in the field of RF fingerprinting technology
for WIFI devices. Besides, this paper will study the perfor-
mance of the residual neural network model technique
applied to WIFI device identification, analyze its basic the-
ory, and introduce its complex processing form to study its
feasibility in the field of WIFI device identification.

In this paper, we use the individual identification frame-
work shown in Figure 1 to design the WIFI device identifica-
tion system shown in Figure 4. The system includes a signal
acquisition module, which uses a spectrum meter for power-
triggered acquisition of WIFI signals. After that, the col-
lected signals are intercepted as well as normalized. After
that, the RFF calculation and extraction are performed,
and this paper uses two methods of feature engineering
and deep learning models for RFF extraction. Next, the sys-
tem will build the RFF library for the training of the classi-

fier. Finally, the output of the device recognition results is
performed.

4.1. PSD-Based WIFI Device Recognition Algorithm. Power
spectral density (PSD) analysis is a probabilistic statistical
characterization of a random signal, which refers to the
“power” (mean square value) per unit frequency band, also
known as energy spectrum, power spectrum, spectral den-
sity, etc. Suppose there is a smooth random signal such as
then the PSD is shown in

P ωð Þ = S ωð Þj j2, ð1Þ

where SðωÞ is the Fourier transform of the smooth ran-
dom signal sðtÞ, i.e.

S ωð Þ =
ð+∞
−∞

s tð Þ ⋅ e−jωtdt: ð2Þ

According to the Wiener-Khinchin theorem, the auto-
correlation function of a smooth random signal and the
power spectral density present a Fourier transform relation-
ship. That is, the autocorrelation function of a signal can be
used for its power spectral density estimation, which is also a
classical method for power spectral density estimation.

Now, assume that the received signal is s½n�fn = 0, 1, 2,
3,⋯,N − 1g, where N is the number of received signal
points, then the autocorrelation function R̂ss½τ� of signal s½n
� can be expressed as

R̂ss τ½ � =
1
N

〠
N− τj j−1

i=0
s i½ �s∗ i + τ½ �: ð3Þ

Since the received signal s½n� is a smooth random process
signal, its autocorrelation function is only related to the time
interval τ, where s∗½i� denotes the complex conjugate of sig-
nal s½n�.

Classifier

Feature
engineering Deep model 

RFF extraction

Acquire signal

or

Signal
normalization 

Figure 4: Block diagram of WIFI device identification process.
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After obtaining the autocorrelation function R̂ss½τ�, the
power spectral density estimate P̂ðωÞ of signal s½n� is shown
in

P̂ ωð Þ = PN ωð Þ = 〠
N−1

τ=− N−1ð Þ
R̂ss τ½ � ⋅ e−jτωT : ð4Þ

It can be seen that the power spectral density estimate
obtained indirectly using the autocorrelation function
method is based on the average of the N-point signal s½n�,
which is a limitation of using finite-length signals for power
spectral density estimation. Therefore, in practical applica-
tions, the method of adding a window function is also used
to make the power spectral density estimation more accu-
rate, and the operation of adding a window is shown in

P̂ ωð Þ = 〠
∞

j=−∞
W jð ÞR̂ss τ½ �: ð5Þ

Among them, WðjÞ is the window function, which can
be selected as a series of window functions such as rectangu-
lar window and Hamming window.

Of course, different types of window functions can lead
to different values of the final estimated power spectral den-
sity, which requires a comprehensive consideration of the
estimated resolution, frequency band, and other parameters
of interest, so as to select the appropriate window function.

Based on the above theoretical analysis and derivation,
Algorithm 1 demonstrates the PSD-based RFF calculation
and extraction designed in this paper.

After extracting the PSD RF fingerprint feature of the
signal, it can be substituted into the framework of the RF
fingerprint-based identification system shown in Figure 2
to realize the RF fingerprint-based WIFI device
identification.

4.2. Bispectrum-Based WIFI Device Recognition Algorithm.
High-order spectral analysis has good antinoise and time-
varying properties because it can accurately extract phase
and amplitude information, which can provide a better anal-
ysis basis in the complex and changing communication envi-
ronment nowadays. High-order spectral analysis can
perform multidimensional feature analysis of amplitude
and phase information, while bispectral analysis can achieve
the effect of suppressing Gaussian noise and is widely used
in various signal processing analysis fields.

First of all, higher-order spectral analysis is a higher-
order analytical extension of the power spectral density esti-
mation of a signal, in other words, higher-order spectral
analysis also satisfies the Wiener-Synchon theorem. There-
fore, it is obtained that the order spectrum of a signal is
related to its order cumulative quantity by the order Fourier
transform. Then, the higher-order spectral analysis of a con-
tinuous random variable proceeds as follows.

(1) First determine the received signal s½n�fn = 0, 1, 2, 3
,⋯,N − 1g, which has a sampling frequency of f s

and N0 frequency sampling points in the bispectral
domain with an interval of △0 = f s/N0

(2) Dividing the received signal s½n� into K segments,
each with M points, and centralizing each subsignal
segment

(3) The DFT coefficients of each subsignal segment are
calculated as shown in

Si m½ � = 1
M

〠
M−1

n=0
si n½ �e−j2πnm/M ð6Þ

where m = 0, 1,⋯,M/2, i = 0, 1,⋯, K , and si½n� are the i
th subsignal segment

(4) Next, the bispectral estimate of the ith subsignal seg-
ment si½n� can be calculated

(5) Finally, the bispectral estimates of the K signal seg-
ment si½n� are combined and averaged to obtain the
bispectral estimate Bðω1, ω2Þ of signal s½n�

B ω1, ω2ð Þ = 1
K
〠
i=1

K

Bi ω1, ω2ð Þ,

ω1 =
2πf s
N0

� �
m1, ω2 =

2πf s
N0

� �
m2

ð7Þ

After the above analysis, it has been possible to obtain
the bispectrum analysis of the signal and realize the fast
and simple bispectrum estimation by the simplification
operation. However, the final obtained bispectrum is a
two-dimensional complex image, and in the field of RF fin-
gerprint technology, the processing of the image usually
makes the efficiency of the operation reduced, and a dimen-
sionality reduction method is needed to realize the conver-
sion of the bispectrum analysis from a two-dimensional
image to a one-dimensional vector. Here, we introduce the
partial integration bispectrum analysis method, which inte-
grates the two-dimensional bispectrum image to obtain the
one-dimensional vector value through different integration
paths to realize the information dimensionality reduction.

Radially Integrated Bispectra (RIB): The integration path
is a straight line passing through the origin of coordinates,
and the obtained integration value is RIBðαÞ, as shown in

RIB αð Þ =
ð1/ 1+αð Þ

0+
B ω1, αω1ð Þdω1: ð8Þ

This RIB analysis is time-shift invariant as well as phase-
invariant.

Axially Integrated Bispectra (AIB): The integration path
is a straight line parallel to the coordinate axis, and the
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obtained integration value is AIBðωÞ, as shown in

AIB ωð Þ = 1
2π

ð∞
−∞

B ω1, ω2ð Þdω2 =
1
2π

ð∞
−∞

B ω1, ω2ð Þdω1:

ð9Þ

The AIB analysis is time-shift invariant as well as scale-
stretch invariant.

Circularly Integrated Bispectra (CIB): The integration
path is a circle with the origin of coordinates as the center,
and the obtained integration value is CIBðαÞ, as shown in

CIB αð Þ =
þ
B α, θð Þdθ: ð10Þ

CIB analysis is time-shift invariant as well as scale-
stretch invariant.

Square Integrated Bispectra (SIB): The integration path is
a rectangle centered at the origin of coordinates, and the
obtained integration value is SIBðωÞ, as shown in

SIB ωð Þ =
þ
Sl

B ω1, ω2ð Þdω1dω2: ð11Þ

The SIB analysis is time-shift invariant, phase-invariant,
and scale-stretch invariant. Based on the above theoretical
analysis and derivation, Algorithm 2 demonstrates the com-
putation and extraction of bispectrum-based RFF designed
in this paper.

The block diagram of the system based on the integral
bispectrum method is the same as that of the power
spectrum-based method and is not repeated here. In this
paper, SIB is used as the feature extraction algorithm of
choice.

4.3. Complex-ResNet-Based WIFI Device Recognition
Algorithm. With the rise of data-driven algorithms, intelli-
gent detection and recognition technologies have been
greatly developed. Deep neural networks can learn different
levels of features from data in an autonomous way, which
has great advantages in the face of structured information
and massive data. In this paper, we will study the perfor-
mance of residual neural network model technology applied
to WIFI device recognition, analyze its basic theory, and

introduce its complex processing form to investigate its fea-
sibility in the field of WIFI device recognition.

Wireless RF signals propagate in free space in the form
of electromagnetic waves, and what is generally obtained at
the receiving end is the complex form of the signal, with
instantaneous amplitude and phase information. In signal
processing, the real and imaginary parts of the complex RF
signal are taken as the in-phase and quadrature signal taps,
respectively. In the real number processing neural network
model, the amplitude information of the signal is generally
taken as the input data for processing. However, the phase
information of the signal is also a very important RF signal
feature, so it is not enough to use the real number neural
network model for EM signal processing, but the model
input and related processing of the neural network need to
be modified to adapt to the wireless RF complex signal pro-
cessing in the field of RF fingerprinting technology. Here,
this subsection introduces the relevant processing of the
complex neural network model and its difference from the
real number model and constructs the complex ResNet
model for WIFI device identification.

Complex convolution layer: The processing of the com-
plex convolution layer is also performed by the convolution
kernel, unlike the real convolution kernel, and the complex
convolution kernel based on the complex convolution is
used here.

Assuming that the input data is a complex signal vector
s! = x!I + i ⋅ x!Q, the convolution operation is performed
through the complex weight matrix of the complex convolu-
tion kernel as shown in

W ⊗ s! = A ⊗ x!I − B ⊗ x!Q

� �
+ i ⋅ B ⊗ x!I +A ⊗ x!Q

� �
, ð12Þ

where the complex weight matrix is W =A + i ⋅ B, and
x!I , x

!
Q is a vector of real numbers, and A, B is a matrix of

real numbers.
Complex fully-connected layer: The fully-connected layer

of the traditional real neural network model is used to recog-
nize the probabilistic output, and its input is the real feature
map. In the complex neural network model, it is modified to
a complex fully connected layer to maximize the use of the
output features of the complex convolutional layer. The pro-
cessing of the complex fully connected layer is based on the
real fully connected layer, with the difference that four

Input: Signal, s½n�; signal points, N ; FFT points, L; signal bandwidth, Bs; sampling frequency, f s;
Output: PSD RF fingerprint features, RFFPSD;
1: The received signal s½n� is normalized to obtain s′½n�.
2: The PSD of s′½n� is obtained according to Equation (5).

P̂ðωÞ =∑∞
j=−∞WðjÞR̂ss½τ�

3: The P̂ðωÞ subsegment of the intercepted validity signal is used as the PSD RF fingerprint feature
RFFPSD = P½L/2 − L ⋅ Bs/2 ⋅ f s, ðL/2Þ + ðL ⋅ B/2 ⋅ f Þ�

4: returnRFFPSD.

Algorithm 1: RFF calculation and extraction based on PSD analysis.
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product operations are required to achieve a more accurate
probability estimation. The essence of the operation of the
complex fully-connected layer is also the convolution opera-
tion of the tensor, so its calculation formula is the same as
Equation (12) of the complex convolution layer, with the dif-
ference that its weights are two real values instead of a real
matrix.

After the above complex adaptation of the convolutional
and fully connected layers, the complex ResNet model can
be built. The structure and parameters of the complex

ResNet model constructed in this paper are shown in
Table 1.

Among them, the relevant parameters of the complex
residual module are shown in Table 2.

5. Results and Analysis

This section conducts relevant experiments using the dataset
introduced in Section 3 to verify the performance of the RF
fingerprinting system discussed in this paper. The relevant

Input: Signal, s½n�; signal points, N ; FFT points, L;
Output: Bispectrum RF fingerprint features, RFFBS;
1: The received signal s½n� is normalized to obtain s′½n�.
2: The bispectrum of s′½n� is obtained according to Equation (7).

Bðω1, ω2Þ = 1/K∑i=1
K Biðω1, ω2Þ

3: Calculate the SIB of bispectrum estimation is used as the bispectrum RF fingerprint feature
RFFBS =

Þ
Sl
Bðω1, ω2Þdω1dω2

4: returnRFFBS.

Algorithm 2: RFF calculation and extraction based on bispectrum analysis.

Table 1: Complex-ResNet and parameter setting.

Model structure Active layer Output size Number of parameters

Complex residual
blocks

Complex residual
blocks

Complex residual
blocks

Complex residual
blocks

Complex fully
connected layer

Complex fully
connected layer

SoftMax

Complex residuals module (None,512,32) 10432

Complex residuals module (None,256,32) 10912

Complex residuals module (None,128,32) 10912

Complex residuals module (None,64,32) 10912

Complex fully connected layer (None,256) 262400

Complex fully connected layer (None,256) 33024

SoftMax layer (None,200) 25800

Table 2: Complex residual model and parameter setting.

Complex residual block structure Active layer
Kernel

parameters
Output size

Number of
parameters

Complex
convolutional layer

Complex
convolutional layer

xQʹ

Complex residual
unit

Pooling layer

Input xI

Complex residual
unit

Input xQ Input xIʹ Input xQʹ

Output
yI

Output
yQ

Output
yI

Output
yQ

xIʹ

Complex convolutional
layers

(16,1) (None,1024,32) 64

Complex convolutional
layers

(16,5) (None,1024,32) 2592

Complex convolutional
layers

(16,5) (None,1024,32) 2592

Complex convolutional
layers

(16,5) (None,1024,32) 2592

Complex convolutional
layers

(16,5) (None,1024,32) 2592

Pooling layer 2 (None,512,32) 0
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experimental analysis is performed specifically according to
the data acquisition environment, including the analysis of
the system’s resistance performance to Gaussian white noise
with different Signal-to-Noise Ratio (SNR) levels, the analy-
sis of the adaptability to the channel environment, and the
analysis of the user capacity of the features.

5.1. System Noise Immunity Analysis. The actual communi-
cation system is bound to be affected by various noises in
the communication, and these noises will not only affect
the communication quality but also cause the effects of fea-
ture diffusion and feature degradation in the field of RF fin-
gerprint technology, which makes the performance of the
identification system degrade. Therefore, in the test of the
system, the noise immunity performance test is a very
important test, and the experimental analysis of the noise
immunity performance of the RF fingerprint features pro-
posed in this paper is as follows.

In order to test the noise immunity performance of the
RF fingerprint system, the dataset introduced in Section 3
is selected for the relevant experiments in this section, with
a signal sampling rate of 40M and a data acquisition envi-
ronment of a laboratory LoS channel environment contain-
ing 100 classes of targets with 100 sample signal data for

each class of targets. The ratio of training set to test set of
KNN classifier is adjusted to 4 : 1, where the K value is set
to 5. The noise interference environment is simulated by
adding Gaussian white noise with different SNR levels to this
dataset, and the testing of WIFI device recognition system is
carried out, and its recognition accuracy under different
SNR can reflect the noise immunity performance of the
system.

The SNR variation of the signal after noise addition
ranges from -10 dB: 2: 20 dB, with a total of 16 levels. The
accuracy of the final system recognition with SNR variation
curve is shown in Figure 5.

As can be seen from Figure 5, when the SNR is between
-10 dB and 5dB, the BS feature has a maximum improve-
ment of about 8% compared with the PSD feature, and the
recognition accuracy increases from 10% to 18.5% at
-10 dB. When the SNR is higher than 5dB, the PSD features
have more performance, and the PSD features can reach
95% accuracy when the SNR is 20 dB.

In addition, the complex ResNet can obtain better per-
formance compared to the feature engineering method. For
example, when the SNR is 0 dB, the complex ResNet can
achieve 78% recognition accuracy, while the feature engi-
neering method can only achieve 50% recognition accuracy.

5.2. System Environmental Adaptability Analysis. In addition
to noise, the complex and variable channel environment is
also a major problem affecting the wireless signal quality.
Also, the harsh channel environment can affect the stability
of RF fingerprint features, and the drift of features can lead
to poor recognition. In WIFI practical application scenarios,
this paper considers laboratory indoor scenarios, which
mainly include indoor LoS channels and NLoS channels.
The experimental analysis of the environmental adaptation
of the RF fingerprint features proposed in this paper is as
follows.
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Figure 5: Recognition accuracy with SNR curve.

Table 3: Performance comparison of feature engineering methods
in LoS and NLoS scenarios.

Method
Channel

environment
Recognition
accuracy

Signal
length

PSD LoS 96.4% 4096 points

BS LoS 89.3% 4096 points

ResNet LoS 96.7% 1024 points

PSD NLoS 89.1% 4096 points

BS NLoS 86.9% 4096 points

ResNet NLoS 92.6% 1024 points
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In order to test the environmental adaptability of the RF
fingerprint system, the dataset introduced in Section 3 is
selected for relevant experiments in this section, both of
which have a signal sampling rate of 40M, and the data
acquisition environments are laboratory LoS and laboratory
NLoS channel environments, respectively, containing 100
classes of targets with 100 sample signal data for each class
of targets. The ratio of training set and test set of KNN clas-
sifier is adjusted to 4 : 1, where the K value is set to 5. The
experiment of WIFI device recognition based on RF finger-
print is conducted to test the recognition accuracy of the sys-
tem under different channel environments.

The deep learning model constructed in this paper is
used to conduct WIFI device recognition experiments in
two channel environments using both PSD and BS features,
and the results obtained are shown in Table 3.

The introduction of deep learning models such as
ResNet will increase the environmental adaptability of the
system. As can be seen from Table 3, deep learning methods
have 1%-3% improvement in recognition accuracy over fea-
ture engineering methods under LoS and NLoS channel con-
ditions. Complex-ResNet can achieve 92.6% recognition
accuracy in NLoS scenarios, which has the best performance.
And using 1024 points for recognition, it has higher effi-
ciency in practical applications. This indicates that the deep
learning method is more capable of automatically extracting
signal features, and its recognition is better.

5.3. System User Capacity Analysis. After proposing an iden-
tification or device authentication system, its user capacity is
also one of its important parameters. The user capacity can
measure the maximum number of devices to be identified
or authenticated that the system can accommodate to be
online at the same time. When the number of online devices
exceeds the system capacity, it will make the system unable
to work properly and lead to system problems such as iden-
tification error and authentication failure. The experimental

analysis of the user capacity of the RF fingerprint feature
proposed in this paper is as follows.

In order to perform user capacity testing of the RF fin-
gerprinting system, the dataset introduced in Section III is
selected for relevant experiments in this section, with a sig-
nal sampling rate of 40M and a data acquisition environ-
ment of a laboratory LoS channel environment containing
100 classes of targets with 100 sample signal data for each
class of targets. WIFI device recognition experiments are
conducted on this dataset to test the recognition accuracy
of the system in a large number of device scenarios and to
analyze the trends.

Feature engineering-based RF fingerprint feature extrac-
tion recognition tests are performed using four features. The
final system recognition accuracy variation curve with the
number of devices to be recognized is shown in Figure 6.

Analysis of Figure 6 shows that for a user capacity size
with 96% recognition accuracy, the PSD feature can reach
about 60 devices and the BS feature can reach about 25
devices. For a user capacity size with 90% recognition accu-
racy, the PSD feature can reach more than 100 devices and
the BS feature can reach about 85 devices. And ResNet and
other deep learning models can all reach more than 100
devices. This shows that deep learning methods have a
greater potential. Compared with the article [35], the chan-
nel we use is more complex. Although the recognition accu-
racy decreases with the increase of the number of
recognitions, it still remains at a high level, which shows
the superiority of the method we use.

6. Conclusion

RF fingerprinting technology, as one of the important devel-
opment directions to improve the security performance of
wireless devices, has been widely studied in the past two
decades. In this paper, we first construct a large-scale mea-
sured WIFI signal dataset with the characteristics of a large
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Figure 6: System recognition accuracy curve with the number of devices to be recognized.
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number of devices, full channel scenarios, and a large data
scale. And two methods based on feature engineering and
deep learning are proposed for individual identification of
WIFI devices. The comprehensive performance simulation
results described in this paper can achieve better recognition
accuracy both in the darkroom and in the laboratory, both in
LoS environment and in NLoS environment, and after add-
ing Gaussian white noise with a certain SNR.

Feature engineering-based RF fingerprint recognition
methods are fast in model training, flexible and convenient,
and easy to deploy. However, the traditional feature-based
WIFI signal recognition methods are increasingly difficult
to cope with the new characteristics of big data due to their
need for a large amount of expert knowledge and limited
data processing capacity. The deep learning-based methods
show better performance in EM signal recognition due to
their powerful nonlinear fitting ability and end-to-end learn-
ing mode.

However, through the research and analysis in this
paper, it is found that there are still some problems in the
field of RF fingerprint-based individual identification tech-
nology, such as the lack of a mathematical model for the for-
ward derivation of the RF fingerprint generation process, i.e.,
the inability to quantify the differences in RF fingerprint fea-
tures between devices; the poor adaptability and low extrac-
tion efficiency of RF fingerprints; and the privacy issues and
possible attacks. We will conduct research and analysis in
our future work.
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