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Deep learning is a new direction of research for specific emitter identification (SEI). Radio frequency (RF) fingerprints of the
emitter signal are small and sensitive to noise. It is difficult to assign labels containing category information in noncooperative
communication scenarios. This makes network models obtained by conventional supervised learning methods perform
unsatisfactorily, leading to poor identification performance. To address this limitation, this paper proposes a semisupervised
SEI algorithm based on bispectrum analysis and virtual adversarial training (VAT). Bispectrum analysis is performed on RF
signals to enhance individual discriminability. A convolutional neural network (CNN) is used for RF fingerprint extraction.
We used a small amount of labelled data to train the CNN in an adversarial manner to improve the antinoise performance of
the network in a supervised model. Virtual adversarial samples were calculated for VAT, which made full use of labelled and
large unlabelled training data to further improve the generalization capability of the network. Results of numerical experiments
on a set of six universal software radio peripheral (USRP; model B210) devices demonstrated the stable and fast convergence
performance of the proposed method, which exhibited approximately 90% classification accuracy at 10 dB. Finally, the
classification performance of our method was verified using other evaluation metrics including receiver operating characteristic
and precision-recall.

1. Introduction

Specific emitter identification (SEI) refers to the technology
used to identify individual emitters using distinctive external
features of the signal called the radio frequency (RF) finger-
prints [1]. This is obtained from the differences between the
hardware characteristics of individual emitters and is hard to
reproduce and/or eliminate. Moreover, the RF fingerprints
of an emitter have unique characteristics that are indepen-
dent of the content of the signal and may show consistency
in different parts of the signal from the same emitter. Even
for emitters produced by the same manufacturer and batch
of equipment, the RF fingerprints are still different from
each other. Therefore, the RF fingerprints can be used as a
unique identification measure that enables SEI technology
to be employed in military and civilian applications [2, 3].

In recent years, researchers have proposed various
approaches for RF fingerprint extraction, which is a method

to obtain the hardware characteristics of the emitter. For
example, Padilla et al. [4] proposed methods for extracting
parameters (transient waveform, instantaneous phase, and
amplitude of the signal) of the RF signals, which are used
as RF fingerprints, by means of the preamble in the commu-
nication. The method can identify 28 different Wi-Fi devices
with an accuracy higher than 95%. However, because this
method can only be applied to communication signals with
preamble, its application scope is limited. Lopez-Risueno
et al. [5] proposed using short-time Fourier transform to
obtain the time-frequency energy spectrum of the signal,
where the fingerprint features of the emitter signal are
extracted based on the differences in the time-frequency
energy spectrum. However, this method is based on a linear
transformation, which is not suitable for nonlinear radiation
source signals. Zhou et al. [6] proposed a feature extraction
method based on the bispectrum-radon transform, which
used bispectrum analysis to characterize the RF fingerprints
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and completed feature compression through radon trans-
form. The method identified 6 ADS-B emitters with an accu-
racy of 90.25%. The high-order spectrum analysis method,
however, is only able to extract some of the features of the
emitter signal while losing some of the important subtle fea-
tures, which results in a lower identification performance.
Yuan et al. [7] extracted 13 types of feature parameters of
emitter transient characteristics through empirical mode
decomposition (EMD) and Hilbert transform to form RF
fingerprints and effectively identified 8 mobile phones.
Moreover, the method can theoretically be used with any
type of emitters as it does not require prior information for
the RF signal. However, the method only applies to the tran-
sient signal of an emitter, which is challenging to capture in
practical applications. Satija et al. [8] proposed an SEI
approach based on variational mode decomposition and
spectral features (VMD-SF). The advantage of the method
lies in its adaptability to both single hop and relaying scenar-
ios under both AWGN and flat-fading channels. Further, the
method has a low computational cost and satisfactory real-
time performance. However, the performance of this
method must be verified using simulation signal data, so
its practicability requires further research.

Although the conventional feature extraction scheme
can reflect and amplify the individual differences of emitters,
it needs to blindly try all the previous manually predefined
RF fingerprint features to find an effective feature extraction
method for a specific task. However, the complexity of the
emitter signal renders it impossible to represent the signals
using a unified mathematical model. Therefore, for the tar-
get signal of interest, the choice of the feature extraction
method can only depend on the subjective judgment and
cognitive level of the researchers, which cannot fully reflect
the differences between individual emitters.

With advancements in artificial intelligence, techniques
such as machine learning (ML), deep learning (DL), and
reinforcement learning (RL) have been widely used in many
fields [9]. In addition to the applications in traditional com-
puter vision (CV), natural language processing (NLP), etc.,
deep learning technologies have gained great success in
emerging fields, such as the Internet of Things (IoT) [9],
physical layer communication [10, 11], and edge intelligence
[12–14]. Furthermore, deep learning is now used in SEI,
which is a new research direction that can comprehensively
and deeply extract the fingerprint features of the emitter sig-
nal through neural networks to improve recognition perfor-
mance. Wong et al. [15] used a convolutional neural
network (CNN) to estimate the gain and phase deviations
of the in-phase and quadrature components of an emitter
signal, achieving SEI based on the estimated gain deviation
and phase deviation. Their method does not require prepro-
cessing, such as signal synchronization and carrier frequency
tracking, and can be applied to signals of multiple modula-
tion types. He et al. [16] used a long short-term memory
(LSTM) network to learn RFFs from preprocessed RF sig-
nals. Compared with CNN, LSTM is more suitable for pro-
cessing time series such as one-dimensional signals. This
implies that it can achieve better identification performance.
However, LSTM also introduces significant computational

costs and training difficulties, resulting in poor real-time per-
formance. Based on network models such as CNN and LSTM,
some new deep learning-based network models and algo-
rithms for SEI have been proposed recently. Qian et al. [17]
proposed an approach of multilevel sparse representation-
based identification for SEI, which comprehensively used the
CNN for RF fingerprint extraction and principal component
analysis for sparse representation. The method can classify
nine transmitters with a classification accuracy of over 90%
using a small number of training samples. A complex-valued
neural network (CVNN) proposed in [18] was used to process
complex baseband signals to perform SEI. In addition, a
network compression algorithm was proposed to reduce the
model size and decrease the training complexity. The
CVNN-based SEI method can achieve nearly 100% recogni-
tion accuracy at high SNRs. Furthermore, the network size
can be compressed by nearly 70%–90%, and the training com-
plexity decreases at different SNR levels. The fixed neural net-
work structure typically has the problem of poor flexibility
when processing complex RF signals at different scenarios.
Hence, a balanced network architecture search (NAS) mecha-
nism proposed in [19] was applied to conduct SEI. The frame-
work uses a recurrent neural network (RNN) as the controller
and cooperates with a balance function to search for the opti-
mal network structure, thereby providing a suitable scheme
for processing RF signals at current SEI tasks.

SEI based on deep learning has been extensively studied;
however, most studies focus on supervised learning models,
which assume that all training samples have label informa-
tion. SEI is used in noncooperative scenarios in most cases,
and a typical application is radio surveillance, which is the
application scenario for the SEI system considered in this
study. SEI can be used to distinguish between legal and
illegal radio stations, identify different types of illegal radio sta-
tions (which can be targeted to eliminate their interferences),
and effectively control the utilization of spectrum resources.
It is difficult for illegal radio stations to be assigned label infor-
mation representing the signal category. Thus, only a few
signal samples contain label information. Using a large
number of unlabelled signal samples combined with a few
labelled signal samples to conduct semisupervised SEI-based
deep learning is a worthwhile research area. To address this
problem, we propose a semisupervised SEI scheme based on
bispectrum analysis and virtual adversarial training (VAT).
Bispectrum analysis, a signal preprocessing method, is used
as the representation of RF fingerprints. On this basis, we used
the CNN to extract the RF fingerprints, and VAT is performed
to fully utilize the labelled and large amount of unlabelled sig-
nal samples to conduct semisupervised SEI. Compared with
other existing supervised learning-based SEI methods, our
research focuses on semisupervised learning-based SEI. On
the one hand, our method improves the antinoise perfor-
mance of the SEI system by changing the traditional network
training mode. On the other hand, more importantly, our
method makes full use of many of unlabelled signal samples
to carry out semisupervised training through VAT, thus
applying to SEI in noncooperative scenarios.

The main contributions of this work are summarized
as follows:
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(1) To enhance the individual discriminability of differ-
ent emitters, the bispectrum distribution is used as a
characteristic representation of the RF signal, which
lays the foundation for RF fingerprint extraction
based on the CNN

(2) Considering that RF fingerprints are susceptible to
noise, we perform adversarial training [20, 21] on
the CNN to improve the antinoise performance of
the network. In addition, we propose an algorithm
for calculating the minimum number of adversarial
samples for use during adversarial training to maxi-
mize the antinoise performance of the network

(3) After improving the antinoise performance of the
network through adversarial training, we further
propose a VAT method to train the CNN using
labelled and large amounts of unlabelled signal sam-
ples collected in noncooperative scenarios, which
can greatly enhance the generalization capacity of
the network and improve the identification perfor-
mance of the system

(4) Various experimental results are presented. We first
evaluate the convergence proposed method. Then,
we measure the classification accuracy of the pro-
posed framework along several factors, including
SNRs, ratio of labelled to unlabelled samples, com-
munication propagation channel, and number of
emitters. Simulation results show that our method
performs well for SEI in noncooperative scenarios

The remainder of this paper is organized as follows. In
Materials and Methods, we introduce the signal preprocess-
ing method based on bispectrum analysis and the basic
concepts of CNNs, adversarial training, and VAT. Our pro-
posed method of VAT-based semisupervised SEI is also
introduced in this section, together with the experiments
conducted on a real-world RF dataset generated through a
software-defined radio (SDR) platform. Results and Discus-
sion present and discuss the experimental results. Finally, we
conclude the paper.

2. Materials and Methods

2.1. Bispectrum Distribution of RF Signal. Bispectrum
analysis is a special case of higher-order spectral analysis,
which has demonstrated its superiority in processing non-
Gaussian and nonstationary signals [22, 23]. The bispectrum
distribution of the signal can be obtained by calculating the
two-dimensional Fourier transform of the third-order
cumulant of the signal:

B ω1, ω2ð Þ =〠
τ1

〠
τ2

c3x τ1, τ2ð Þe−j ω1τ1+ω2τ2ð Þ, ð1Þ

where ω1 and ω2 represent the two-dimensional frequency
and the third-order cumulant c3xðτ1, τ2Þ can be expressed as

c3x τ1, τ2ð Þ = E x∗ tð Þx t + τ1ð Þx t + τ2ð Þ½ �: ð2Þ

Figure 1 shows the bispectrum distributions of two differ-
ent RF signals x1ðtÞ and x2ðtÞ. It shows the visible differences
in bispectrum distribution features, which demonstrate that
the bispectrum analysis is an effective method of signal pre-
processing to enhance individual discriminability.

2.2. Convolutional Neural Network. It is difficult to fully
extract RF fingerprints using the methods mentioned earlier.
In this study, we employed neural networks which have
shown excellent performance in processing large quantities
of data and extracting deep features [24, 25]. We used a
CNN for RF fingerprint feature extraction and signal classi-
fication. A CNN is mainly composed of three structures: a
convolution layer, an activation function, and a pooling
layer. The function of the convolution layer is mainly to
extract the features of the signals. In the convolution process,
multiple convolution cores are used to convolve the respec-
tive feature maps of the previous layer to realize feature
extraction and mapping. Each convolution layer includes
many convolution cores, thus realizing multifeature extrac-
tion of signals. In a CNN, each feature map uses the same
weight parameter, which is called weight sharing. Weight
sharing reduces the number of parameters in the model
and maintains displacement invariance for the position
and size of the input. The activation function is used to
introduce nonlinear factors into the convolutional layer for
it to avoid becoming a linear combination of input vectors
which helps in extracting complex and deep-level features
[26]. The pooling layer is used for subsampling, whose main
goal is to reduce the resolution of feature maps and thus
facilitate the extraction of deep-level features.

When using a CNN to achieve signal classification, the
feature space output by the CNN is used as the input of
the fully connected neural network (FCN). The features
extracted from the convolution layer are vectorized through
the fully connected layer, thus mapping the distributed fea-
ture representation to the label space of samples. Finally,
the output probability is mapped through the SoftMax func-
tion, and the maximum output probability corresponds to
the recognized signal category.

2.3. Adversarial Training. Adversarial training is an impor-
tant method to enhance the robustness of neural networks.
The training samples mixed with some minor disturbances,
which are subtle but can cause misidentification, are fed to
the neural network to enable it to adapt to changes and be
robust to interference. This method is widely used to defend
against adversarial samples [27], which is one of the most
effective means of adversarial defence. In contrast, adversar-
ial training can be used for adversarial attacks [28]. The
attacker constructs the adversarial input vector based on
the adversarial sample so that the machine learning model
misjudges, which is called an adversarial attack. Adversarial
training can also be extended as VAT for semisupervised
learning based on unlabelled data [29].

The RF fingerprints of the emitter signal caused by the
subtle hardware differences of emitters are not generally
evident and can be easily interfered by noise and be misiden-
tified. To solve this problem, we used the adversarial training
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method to train the CNN by adding adversarial samples to
the training data, which improves the network’s recognition
of adversarial samples and improves the robustness of the
network. The key to adversarial training is the generation
of adversarial samples. For a trained CNN, a subtle perturba-
tion Δx is added to the input vector x. When the network
loss reaches its maximum value, the corresponding x + Δx
becomes the adversarial sample [27]. The subtle perturba-
tion Δx most likely results in the misjudgment of the
original neural network. Therefore, the CNN needs to be
trained with the input vector x + Δx and the real label

ytrue to improve its recognition performance for adversarial
samples, which will result in enhanced network robust-
ness [28].

Let xl, yl, and xul represent the labelled training samples,
their corresponding labels, and unlabelled training samples,
respectively. We also assumed that xl and xul are uniformly
represented by x. The loss function of the adversarial train-
ing is defined as [28]

Ladv xl, yl ; θð Þ =D q yl ∣ xlð Þ, p yl ∣ xl + radv, θð Þ½ �, ð3Þ
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Figure 1: Bispectrum distributions of two different signals.
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where D½q, p� is used to measure the divergence between two
distributions p and q; qðyl ∣ xlÞ is the true distribution of the
output label, which can be approximated by a one-hot vec-
tor; pðyl ∣ xl + radv, θÞ is the data distribution predicted by
the CNN; and radv represents an adversarial sample, which
is equivalent to Δx and can be expressed as follows:

radv = arg max
r: rk k≤ε

D q yl ∣ xlð Þ, p yl ∣ xl + r, θð Þ½ �: ð4Þ

After obtaining the adversarial samples of all signal
types, we regarded the loss value generated by the adversarial
sample as part of the original loss value and added it to the
original loss function in the form of regularization, which
is expressed as

LDSadv xl , yl ; θð Þ = 〠
xl ,ylð Þ∈Dl

L xl , yl , θð Þ + λadv 〠
xl ,ylð Þ∈Dl

Ladv xl , yl ; θð Þ,

ð5Þ

where Dl represents the labelled training sets, λadv represents
the weighting coefficient of regularization, and Lðxl, yl ; θÞ
represents the supervised loss function for the CNN, which
can be calculated through the cross-entropy function.

L xl, yl ; θð Þ = −yl log ypre xl ; θð Þ: ð6Þ

The parameter θ of the CNN is tuned using the backpro-
pagation algorithm:

Required:
x: signal data, including labelled data xl and unlabelled data xu
yl : labels corresponding to the labelled signal data
iter: number of training iterations
λadv, λvadv : regularization coefficients of (virtual) adversarial training
Lð⋅Þ: supervised loss function of network model
Ladvð⋅Þ: loss function of adversarial training
LDSadvð⋅Þ: full loss function of adversarial training
Lvadvð⋅Þ: loss function of virtual adversarial training
LDSvadvð⋅Þ: full loss function of virtual adversarial training
θ: parameters of network model
η: learning rate

εð0Þmax: the upper limit of the perturbation weighting coefficient

εð0Þmin: the lower limit of the perturbation weighting coefficient
t = 0: number of iterations of the perturbation weighting coefficient
1. for i = 1 to iter do
2.radv ⟵ arg max

r:krk≤ε
D½qðyjxlÞ, pðyjxl + r, θiÞ�

3. do

4.εðtÞave = ðεðtÞmax + εðtÞminÞ/2
5.xðtÞl ⟵ xl + εðtÞaveradv

6.
εðt+1Þmin = εðtÞave, ypreðxðtÞl Þ = yl

εðt+1Þmax = εðtÞave, ypreðxðtÞl Þ ≠ yl

8
<

:

7.t⟵ t + 1
8. while εðtÞmax − εðtÞmin ≥ εacc.
9. end while

10.ε∗ ⟵ εðtÞmax, radv ⟵ ε∗ ⋅ radv .
11. Initialize εð0Þmax, ε

ð0Þ
min, and t

12. Ladvðxl , yl ; θÞ =D½qðyljxlÞ, pðyljxl + radv, θÞ�
13.LDSadvðθÞ = Lðxl , yl ; θÞ + λadvLadvðxl , yl ; θÞ
14.θi+1 ⟵ θi − η∇θLDSadvðθÞ
15. end for
16. for j = iter + 1 to 2iter do
17.rvadv = arg max

r:krk≤ε
D½pðyjx, θjÞ, pðyjx + r, θjÞ�

18.Lvadvðx, θÞ =D½pðy ∣ x, θjÞ, pðy ∣ x + rvadv, θjÞ�
19.LDSvadvðθÞ = Lðxl , y ; θÞ + λvadvLvadvðx, θÞ
20.θj+1 ⟵ θj − η∇θLDSvadvðθÞ
21. end for

Algorithm 1: Semisupervised SEI based on VAT.
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θi+1 ⟵ θi − η∇θLDSadv θð Þ, ð7Þ

where η represents the learning rate.

2.4. Virtual Adversarial Training (VAT). The adversarial
training algorithm trains a CNN in a supervised learning
model, where all the training samples must be labelled.
However, in noncooperative communication scenarios, only
a small number of signal samples are labelled. Using a small
number of labelled samples to train the CNN through adver-
sarial training results in poor generalization capacity.

To exploit the information in the unlabelled signals, we
adopted VAT [30] to employ the labelled and unlabelled
training data and to smoothen the output space of the neural
network. This minimized the change in the output of the
neural network where its input was locally perturbed. There-
fore, VAT proved effective for semisupervised learning [31].

However, in the semisupervised learning model, there
are many unlabelled training samples such as qðy ∣ xulÞ.
Therefore, unlabelled training samples cannot be used to
train the CNN through adversarial training algorithms. Note
that, for a large amount of labelled training samples, pðy ∣ x
, θÞ approaches qðy ∣ xÞ. We can use “virtual” labels that are
probabilistically generated from pðy ∣ x, θÞ rather than labels
unknown to the user. We then compute the adversarial
direction based on these virtual labels [32, 33]. The loss
function for VAT can be expressed as

Lvadv x, θð Þ =D p y ∣ x, θð Þ, p y ∣ x + rvadv, θð Þ½ �, ð8Þ

where θ represents the weight parameters of the neural net-
work in the current training state and rvadv represents the
virtual adversarial sample:

rvadv = arg max
r: rk k≤ε

D p y ∣ x, θð Þ, p y ∣ x + r, θð Þ½ �: ð9Þ

After obtaining the virtual adversarial samples, the full
loss function is given by

LDSvadv x, θð Þ = 〠
xl ,ylð Þ∈Dl

L xl, yl, θð Þ + λvadv 〠
x∈Dl ,Dul

Lvadv x, θð Þ,

ð10Þ

where Dl and Dul represent the labelled and unlabelled train-
ing sets, respectively; λvadv > 0 represents the regularization
coefficient that needs to be set in advance. Lðxl, yl ; θÞ repre-
sents the supervised loss function of the CNN, which is
equivalent to Equation (6).

Equation (10) shows that both labelled data and a large
amount of unlabelled data are used to carry out semisuper-
vised training. The labelled data was combined with the
unlabelled data to conduct virtual adversarial training.
Supervised learning can use labelled data to guide network
training. The loss function of VAT Lvadvðx, θÞ can be
regarded as a measure of the local smoothness of the current
network, and its optimization can smooth the network out-
put space. λvadv , as the regularization coefficient, is used to

control the relative balance between supervised learning
and virtual adversarial training, ensuring the effect of semi-
supervised training.

Finally, the parameter θ of the CNN is tuned according
to the backpropagation algorithm.

θj+1 ⟵ θj − η∇θLDSvadv θð Þ: ð11Þ

2.5. Semisupervised SEI Based on VAT. VAT is a semisuper-
vised learning model that can be applied to SEI in noncom-
munication scenarios. However, networks trained with a
considerably small amount of labelled signal data have poor
generalization capability; these networks then probably
assign the wrong virtual label for the unlabelled signal data,
which can cause severely harmful effects for the subsequent
classification. To solve this problem, we first trained the net-
work model with labelled signal data via adversarial training,
which improves the generalization capability of the network.
Furthermore, we calculated a specific value ε∗ for the
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Figure 3: Architecture details of the network model.
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perturbation weighting coefficient ε of the adversarial sam-
ple, which is the minimum value of ε that causes misidenti-
fication. At this time, the corresponding radv is the smallest
perturbation that can lead to misidentification. Using this
as an adversarial sample for adversarial training maximizes
the antinoise performance of the neural network. The net-
work parameters obtained through adversarial training will
be directly used in VAT to conduct semisupervised SEI.
Therefore, the procedure of semisupervised SEI based on
VAT is concluded in Algorithm 1.

2.6. Implementation Details. The calculation of (virtual)
adversarial samples is essential for the (virtual) adversarial
training algorithm. However, in practice, we cannot obtain
a closed form of radv or rvadv calculated in Equation (4) or
Equation (8). Therefore, in this section, we provide the core
implementation details of the proposed algorithm: calculat-
ing (virtual) adversarial samples in an approximate manner.

The calculation of radv in this study can be approximated
with a linear approximation of D with respect to r in
Equation (4), which can be expressed as

radv ≈
∇xl

L xl, yl ; θð Þ
∇xl

L xl, yl ; θð Þ�
�

�
�
2
: ð12Þ

For a neural network model, the calculation of
∇xl

Lðxl, yl ; θÞ can be computed through forward- and
backpropagation.

Furthermore, the calculation of rvadv is performed in an
approximate manner, which can be described as follows:
for an input training sample x, a random unit vector d of
the same size that obeys the standard Gaussian distribution
is generated. Then, rvadv is obtained by taking the gradient
of D with respect to r on r = ξd for x.

Table 1: Architecture details of the CNN on different depths.

Depth Conv-1 Conv-2 Conv-3 Conv-4 Conv-5

1
Filters = 128
Size = 4 × 4

2
Filters = 128
Size = 4 × 4

Filters = 64
Size = 4 × 2

3
Filters = 128
Size = 4 × 4

Filters = 64
Size = 4 × 2

Filters = 32
Size = 2 × 2

4
Filters = 128
Size = 4 × 4

Filters = 64
Size = 4 × 2

Filters = 32
Size = 2 × 2

Filters = 32
Size = 2 × 2
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Filters = 128
Size = 4 × 4

Filters = 64
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Size = 2 × 2

Filters = 32
Size = 2 × 2
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Size = 2 × 2
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Figure 4: Classification accuracy on different network depths.
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rvadv ≈
∇rD p y ∣ x, θð Þ, p y ∣ x + r, θð Þ½ �jr=ξd
∇rD p y ∣ x, θð Þ, p y ∣ x + r, θð Þ½ �jr=ξd

�
�
�

�
�
�
2

: ð13Þ

For the neural network model, the calculation of ∇rD
can be computed through forward- and backpropagation.

2.7. Signal Data Collection and Experimental Setup. We
demonstrate our network model based on a software-
defined radio platform composed of GNU Radio and seven
USRP model B210 devices. By combining GNU Radio with
the USRP, we then define the transceiver of radio signals
through the PC to form a complete communication system
composed of software and hardware. This platform realizes
communication functions, and signal modulation and
demodulation can be done at the software level.

A computer, running on Ubuntu 18.04, was connected
to USRP to build a communication system. We used six
USRPs as the transmitters and one USRP as the receiver,
and then, we collected six types of RF signals through six
USRPs, which operated at a 2.4GHz centre frequency, and
the received signals were sampled at a rate of 16MHz. The
signal modulation mode was QPSK, and the bandwidth
was 1.2MHz.

For each emitter, 20,000 segments of RF signals were col-
lected from the lab environment; thus, the signal to noise
ratio (SNR) of the signals was high. After the preliminary
measurement, the SNR was found to be more than 50dB.
Therefore, we assumed that the signal was not affected by
noise. For each class sampled signal, we calculated the aver-
age symbol energy within the input frame as Es and used
MATLAB to add different levels of simulated additive white
Gaussian noise (AWGN) to set the ratio of symbol energy to
noise density (Es/N0) as 0 dB, 2 dB, …, 20 dB, respectively.
The signal data polluted by noise were processed by bispec-
trum analysis to obtain bispectrum distributions, which have
a uniform size of 256 × 256. Figure 2 shows the dataset struc-
ture of our experiments. The dataset contains six classes of
sampled signal data. Each class signal includes 20,000 seg-
ments at a specific SNR (Es/N0), each of which is trans-
formed to a bispectrum distribution with the dimension of
256 × 256.

For 20,000 bispectrum distributions of each class signal
at a specific SNR, 80%, 10%, and 10% were allocated to
training, validation, and testing, respectively. For the train-
ing and validation datasets, we set the ratio of labelled data
to unlabelled data at 10%.

The proposed semisupervised SEI network architecture
was built on the Keras framework based on TensorFlow,
and the network was trained on a Windows 10, Intel (R)
core (TM) i9-10900 CPU, 16GB RAM, and NVIDIA Ge-
Force RTX 3090 system.

The structure and the detailed architecture parameters of
the CNN are shown in Figure 3. Three convolutional layers
are utilized, and the ReLU function is used as the activation
function of the convolutional layer, which has stable output
and no vanishing gradient problem. The features extracted
from the convolution layer are vectorized through the fully
connected layer (Dense I), thus mapping the distributed fea-

ture representation to the label space of samples. Finally, the
output probability is mapped through the SoftMax function
of the last fully connected layer (Dense II). Dense II contains
K neurons, corresponding to K transmitters. By comparing
the output probabilities of K neurons, the maximum proba-
bility corresponds to the recognized emitter category.

In practice, the network depth (the number of
convolution layers) is determined through simulations.
Table 1 summarizes the architecture details of the CNN for
different depths.

We evaluated the classification accuracy for different
network depths based on the RF signal dataset mentioned
above. Figure 4 shows that the classification accuracy
improved with the increase in the number of convolution
layers, and it remained at a high level when the number of
convolution layers was 3. However, when the number of
convolution layers reached 5, the network was too deep to
fit the input signal data, and the classification accuracy
slightly decreased. Considering classification accuracy and
network complexity, the optimal network depth is 3 convo-
lutional layers.

We also list the hyperparameters used to train the net-
work model as summarized in Table 2.

We used the validation dataset for hyperparameter tun-
ing. Learning rate is the most significant hyperparameter,
which directly controls the magnitude of the network gradi-
ent update during training and affects the effective tolerance
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Figure 5: Training times and loss function graph of VAT.

Table 2: Hyperparameters of the network model.

Hyperparameters Value

Optimizer Adam

Learning rate 0.0004

Epochs 500

Batch size 1024

Dropout rate 0.5
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capability of the model. For tuning the learning rate, we first
used a small amount of data to train the network to determine
the magnitude of the learning rate. We then chose a specific
value within this magnitude range as the initial learning rate.
During the training process, as the number of training datasets
increased, the learning rate decayed exponentially until the
verification loss value converged, and the learning rate at this
point was optimal. Batch size is a relatively independent
hyperparameter that determines the direction in which the
gradient decreases. Regarding the choice of the batch size, we
determined several candidate values of 128, 256, 512, 1024,
and 2048, and then evaluated how the classification accuracy
in the validation dataset changed over time, and finally
selected the batch size corresponding to the fastest improve-
ment in classification performance over time. An epoch repre-
sents the training time. After each training epoch, the
classification performance of the model on the validation
dataset was evaluated, and the training was stopped when
the classification performance stopped increasing. Therefore,
generally, a large value was assigned to the epoch. The dropout
rate was generally set to 0.5, which was used to prevent over-
fitting. By tuning hyperparameters, the network model can
achieve better performance.

3. Results and Discussion

3.1. Convergence Performance. We evaluated the conver-
gence performance of the neural networks trained using
the proposed approach. We first collected RF signal data
with an SNR of 10 dB from six USRPs, with each device rep-
resenting a class of signal. The maximum epoch of network
training was set at 200. Moreover, we chose the training loss
value and test loss value as metrics to evaluate the conver-
gence performance.

Figure 5 shows that the loss function of the network
tended to be stable after approximately 80 training epochs,
which means our approach has a relatively fast convergence
speed. Moreover, the training loss function curve and the
test loss function curve are relatively smooth with no notice-
able fluctuation. This indicates that the training process was
stable. The loss value of training and test procedure
decreased as the number of iterations increased, i.e., the
two curves exhibit a downward trend, which indicates that
the network model performs well in both the training data-
set and the test dataset and that no overfitting or underfitting
problem occurred. The results show that our approach can
be used for semisupervised training of neural networks.

3.2. Classification Accuracy. We first proved the superiority
of the proposed method compared with that of the method
using only labelled data to train CNN. The algorithm of t-
distributed stochastic neighbour embedding (t-SNE), [34]
one of the best dimensional reduction methods, was used
to visually display the feature parameters extracted from
the neural network model. Figure 6 shows the t-SNE dimen-
sion reduction distribution diagram of feature parameters
extracted through two different methods.

As shown in Figure 6, compared with the algorithm using
only labelled data to train the CNN, the feature parameters of

the RF fingerprints extracted by the proposed algorithm have
stronger clustering within classes and greater differentiation
between classes. This proves that the proposed VAT algo-
rithm, which uses a large amount of unlabelled signal samples
for training, can improve the neural network’s generalization
ability. This allows the network to extract the characteristic
parameters of an individual emitter more comprehensively,
thus improving the classification of RF signals.

We then considered four factors that significantly affect
classification accuracy: (1) SNR, (2) ratio of labelled to unla-
belled samples, (3) communication propagation channel,
and (4) number of emitters.

Classification accuracy vs. SNR: first, we tested the clas-
sification accuracy on different SNRs. Both the labelled and
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unlabelled data were used to conduct semisupervised train-
ing on CNN based on the proposed method. Figure 7 shows
the confusion matrix of classification at different SNRs.

As shown in Figure 7, all emitters maintain a relatively
average classification accuracy, and no serious confusion
occurs in the classification between individual emitters. This
shows that our method can fully extract RF fingerprints and
effectively distinguish between individual emitters, thus
proving the effectiveness of the deep learning-based SEI. In
addition, our method can classify six emitters with an aver-
age accuracy of more than 83% at 4 dB and 93% at 10 dB,
which demonstrates that our proposed VAT-based semisu-
pervised SEI is robust to noise interference.

Then, we compared the classification accuracy of the
proposed method with that of the method using only
labelled data to train CNN and those previously proposed
methods in [29, 35]. The experimental results are shown in
Figure 8.

Figure 8 shows that our approach achieves the highest
classification accuracy compared to other SEI schemes.
Compared to the method using only labelled data to train
the CNN, our method can improve classification accuracy
by 15%–20% on average. This is because VAT can smoothen
the output space of the network to enhancing its generaliza-
tion ability. This effectively overcomes noise interference
and improves classification accuracy. Compared to the
method proposed in [29], our method improves classifica-
tion accuracy by 5%–10% on average. This is because our
improved VAT method augments the antinoise performance
and generalization capability of the network through adver-
sarial training in the pretraining process. This results in the
assignment of accurate virtual labels for the unlabelled signal
data, thus contributing to the effectives of VAT. Compared
to the method based on metalearning proposed in [35],
our method shows an advantage in terms of classification
accuracy at low SNRs, although both methods a have similar
classification accuracy only when SNR > 10 dB. Therefore,
the experimental result shows that our method can adapt
well to the task of SEI at low SNRs.

Classification accuracy vs. ratio of labelled to unlabelled
samples: we evaluated classification accuracy on different
labelled to unlabelled ratios. Similarly, we fixed the unla-
belled data sample at 10,000 for each class signal and the
labelled data sample from 200 to 1200, which means that
the ratio of labelled samples to unlabelled samples was 2 to
12%. These labelled and unlabelled training samples with
SNRs from 0dB to 20 dB were used to train the CNN
through the method of VAT.

Figure 9 shows that the classification accuracy improved
when ratio of labelled to unlabelled samples increased from
2% to 6%, but stabilized when the ratio reached approxi-

mately 8%. Furthermore, even in the worst case of 2%, the
classification performance did not deteriorate significantly.
The classification accuracy was more than 80% at 10 dB
and approximately 90% at 20 dB. According to these results,
our approach needs only a small amount of labelled data
samples to achieve a high and stable classification accuracy,
giving it the ability to handle practical situations.

We further evaluated the classification performance of our
method compared with that in [29, 35] at a ratio of 2%, 4%,
and 6%, respectively. To eliminate the factor of noise
interference, the SNR for the signal dataset was set to 20dB.
The experimental results are shown in Table 3. For all the
ratios, our proposed method outperformed the existing
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Table 3: Classification accuracy at different ratios.

Method 2% 4% 6%

Method in [29] 78.9% 82.2% 88.3%

Method in [35] 84.1% 87.5% 89.6%

Our proposed method 90.3% 91.8% 94.6%
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methods, which further proves that the proposed method is
adaptable and advanced in noncooperative scenarios.

Classification accuracy vs. communication propagation
channel: we evaluated the classification accuracy of the pro-
posed algorithm in different propagation channels. The col-
lected RF signals were transmitted over an AWGN channel,
Rayleigh channel, and Rice channel. Figure 10 shows the
classification accuracy of different channels as a function of
the SNR. With the Rayleigh and Rice channels, the classifica-
tion accuracy was lower than with the AWGN channel; this
is because the RF fingerprints of the signal emitted by the
emitters were not apparent, and it was more difficult to dis-
tinguish after being affected by multiplicative noise. The
proposed method essentially constructs (virtual) adversarial
samples against additive noise, but not multiplicative noise,
limiting the adaptiveness of the SEI system in terms of
Rayleigh and Rice channels. However, the decline in classifi-
cation accuracy, which is 5%–10% on average, is not signif-
icant. This demonstrates that the proposed approach can
still calculate approximate and relatively effective (virtual)
adversarial samples for signal samples according to the cur-
rent network model under interference from multiplicative
noise, which can improve the antinoise performance and
generalization ability of the network to some extent. The
experimental result further demonstrates the excellent classi-
fication performance of the proposed method.

Classification accuracy vs. number of emitters: we evalu-
ated the classification accuracy on a different number of
emitters. We collected RF signals from up to 14 different
individual emitters and evaluated the classification perfor-
mance of the network on different number of emitters,
which varied from 6 to 14 and needed to be classified. The
experiment was conducted based on an AWGN channel
with SNR = 10 dB.

Figure 11 shows how the classification accuracy changes
with the number of emitters. The experimental result indi-

cates that although classification performance deteriorates
as the number of emitters increases, the network can classify
up to 14 emitters with an accuracy of more than 85%. In
general, with the increase in the number of emitters to be
identified, the network scale should be increased also, result-
ing in a higher computation cost. Nevertheless, our method
can classify more emitter individuals at a high classification
accuracy, maintaining the existing network scale, which ben-
efits from the elaborate training algorithm based on VAT
and indicates that the proposed method has good scalability
for large emitter populations.

3.3. Other Evaluation Metrics for Classification Performance.
Classification accuracy is the ratio of the number of correctly
classified samples to the total number of test samples, which
can reflect only the overall classification performance.
However, it is difficult to determine whether each class of
RF signals is correctly classified, particularly when each class
is in a minority with respect to the rest of the RF signals,
leading to the class imbalance problem. In this case, classifi-
cation accuracy is not a comprehensive evaluation measure
of classification performance.

We used the receiver operating characteristic (ROC) and
the precision-recall as metrics to further evaluate the classi-
fication performance of the proposed approach. To identify
six USRPs, we chose one device as the positive class with a
weight of five and the remaining five devices as a single neg-
ative class with a weight of one. The six classes of RF signals
were collected with SNR of 10dB, which were used for train-
ing and identification. The ROC and precision-recall curves
for each of the six devices are shown in Figure 12.

As shown in Figure 12(a), the ROC curve for each device
is distributed in the upper left of the figure. This implies that
the system achieves a high true-positive rate with a low false-
positive rate. Furthermore, precision and recall are two eval-
uation indices that balance each other. Figure 12(b) shows
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that the precision-recall curve for each device is distributed
in the upper right of the figure, indicating that precision
occupies a larger proportion. We also calculated the area
under the curve (AUC) for each device. The ROC AUC
and precision-recall AUC for each device is more than
90%, which further proves the excellent classification perfor-
mance of the proposed method. Table 4 summarizes the
mean ROC AUC and mean precision-recall AUC at SNRs
of 0 to 20 dB. As expected, our proposed framework achieves
a better mean AUC on higher SNRs and has a drop-off at
lower SNRs, which is not significant.

4. Conclusion

To address the shortcomings of traditional SEI based on
deep learning, this paper proposes an SEI method based on
bispectrum analysis and VAT. First, bispectrum analysis is
performed on the RF signals as a way of signal preprocess-
ing. Noting that the emitter signal is susceptible to noise
interference and only a small number of labelled training
samples are available with many of the samples being unla-
belled in a noncooperative communication scenario, we cal-
culated the virtual adversarial samples for both labelled and
unlabelled signal samples, using which we then calculated
the corresponding loss functions. Loss functions based on
the labelled samples were also calculated. Using the two loss
functions and the preset harmonic parameters, the objective
function of the neural network was calculated. Through iter-
ative tuning, the neural network model corresponding to the
minimum loss function value of the verification dataset was
obtained as the optimal output. Finally, the neural network
model could be used for SEI.

Numerical experiments were conducted to evaluate the
performance of the proposed method. First, convergence
experiments showed that our approach has stable and fast
convergence. Second, we considered four factors that impact
the classification accuracy of our method. The classification
accuracy vs. SNR experiment showed that our method is sig-
nificantly robust to noise. The classification accuracy vs.
ratio of labelled to unlabelled sample experiment showed
that our method can handle weak labelling problems in
practical situations. The classification accuracy vs. propaga-
tion channel experiment showed that our method can also
resist the interference of nonlinear multiplicative noise to
RF signals and maintain a relatively high classification
accuracy. The classification accuracy vs. number of emitter
experiment showed that our method exhibits good

scalability for large emitter populations. Moreover, we used
two other methods including ROC and precision-recall to fur-
ther evaluate the classification performance of our method.
The AUC for ROC and precision-recall curves were calculated
to represent the correct recognition rate of each device, and
experimental results demonstrated the excellent classification
performance of our method more comprehensively.

Future research will consider the following two aspects. (1)
Various emitter devices, in addition to USRP, will be used to
collect more types of RF signals to avoid using one type of sig-
nal data for experimentation and verify the scalability of the
proposed method for RF signals emitted by different types of
devices. Furthermore, these devices work in an outdoor
environment to obtain more realistic signal data to verify the
practicability of our method. (2) Our method is essentially
for closed-set identification. The RF signal class to be identi-
fied is the same as that in the database used for training. How-
ever, our method cannot address anomalous emitters it was
not previously trained on, which is common in real-world
applications. Therefore, future work will focus on detecting
anomalous emitters and classifying known emitters.
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