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As a branch of target recognition, surface target recognition plays an irreplaceable role in both military and civilian applications.
However, the large target size variation, low image resolution, and high real-time requirements pose challenges to existing
algorithms. To address the issues, we take YOLOv5 as a backbone and adopt coordinate attention and a double-layer cascade
structure to enhance both the recognition performance and speed. Specifically, coordinate attention is introduced to guide the
corresponding network to focus on discriminative features by capturing channel and location information. Meanwhile, the
double-layer cascade structure is designed for finely extracting and aggregating semantic features and spatial features at
different scales. We test the model on the COCO dataset, the VOC dataset, and self-built surface target dataset. Experimental
results show that proposed coordinate attention module and multiscale module improve the recognition effect of multiscale
surface targets and meet the requirement of real time.

1. Introduction

With the growing development of marine technology, the
types and numbers of ships are increasing, and the per-
formed tasks are more dangerous and complex. Both the
processing of maritime emergencies and the construction
of intelligent shipping put forward higher requirements for
surface target recognition [1, 2]. At present, surface target
identification has been the key technology to environmental
sensing for unmanned surface vehicles (USVs) [3]. In the
military field, surface target recognition is an important part
of marine environment reconnaissance, precision targeting,
and other tasks. In the civilian field, accurate recognition
plays an irreplaceable role in water personnel rescue, obsta-
cle detection, etc.

Surface target recognition essentially belongs to target rec-
ognition. In recent years, deep convolutional neural networks
(CNNs) have made great progress in the field of object detec-
tion and recognition [4] and have been successfully applied in
medical diagnosis, face recognition, etc. Continuously updated
network and more sophisticated big data technology perform
increasingly well on public datasets. However, it is still difficult

to recognize surface targets in complex climatic situations.
First, there are many types of surface targets with various pos-
tures. Their interclass differences are small and intraclass
differences are large [5]. Simply extracting traditional features
is no longer sufficient for practical needs. Second, due to the
inconsistent size and sampling distance of the surface target,
the scale of targets spans a large. The aspect ratio of the bound-
ing box under different angles is variable. In addition, the
water surface is a highly reflective surface. The quality of
images is more susceptible to the influence of weather condi-
tions and background, resulting in low resolution, blurred
edges, and easy confusion. Finally, surface target recognition
technology ismainly used in the environment perception tasks
that have more stringent requirements on the real time [6, 7].
As shown in Figure 1, the three images indicated by the orange
arrows are actually the same target, yet the sizes are completely
different.

In fact, the difficulty of surface target recognition exists
mainly in the extraction of discriminative features and the rec-
ognition of multiscale targets. The key to extracting discrimi-
native features is to focus on the detailed information that is
beneficial to classification. The main method is attention
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mechanisms [8]. Currently, there are two main types of exist-
ing methods to solve the multiscale problem: image pyramid
and feature pyramid [9]. However, direct use will increase
the network overhead and cannot meet the requirement of
real-time algorithm.

Therefore, YOLOv5 is used as the basic framework to
ensure the speed of this algorithm in this paper. First, coordi-
nated attention is introduced to effectively capture channel
and location information. Unlike previous attention methods,
it learns correlations between channels without additional
computational overhead. Then, a double-layer cascade is used
to stitch and enhance the feature maps at different scales
through maximum pooling and parameter aggregation. To
prove the superiority of this algorithm, extensive experiments
are conducted on the COCO dataset, the VOC dataset, and
self-built surface target dataset. Experimental results show that
our network performs better than other methods on multi-
scale surface targets and meet the real-time requirements.

The contributions of this paper are summarized as three
points: (1) in order to improve the real-time performance of
the algorithm, the single-stage detection algorithm YOLOv5
is used as the basic framework. (2) Coordinate attention is
introduced to capture the channel and location information
of the network. (3) The double-layer cascade structure is
used to improve the recognition ability of multiscale targets.
The organisation of the proposed work is as follows: the
introduction is presented in Section 1. The related works is
described in Section 2. The implementation method of this
paper is illustrated in Section 3. The experimental results
and analysis are described in Section 4. Section 5 describes
the conclusion and prospect of this paper.

2. Related Works

As the core and key technology of USV sensing, surface
target recognition is a very challenging task. Especially, the
study under complex climate conditions has more theoreti-
cal and practical significance [10]. The process of surface
recognition is shown in Figure 2. It needs to return the clas-
sification of the target contained on the image or video and
needs the support from big data. The difference is that it also
requires the target’s position, whereas target recognition
does not. In this section, we give a literature review, includ-

ing target detection and recognition methods based deep
learning, attention mechanisms, and multiscale methods.

2.1. Target Detection and Recognition Methods. Compared
with traditional methods, target detection and recognition
methods based on deep learning have significantly improved
in terms of accuracy and generalizability. According to the
number of stages, the deep learning-based target detection
and recognition algorithms are divided into the two-stage
method and the single-stage method. The former first
extracts the borders of possible candidate regions and then
inputs them into the region of interest (ROI) pooling layer
together with the feature map, the advantage of which is
high accuracy. The latter can directly regress the target cate-
gory by delineating the selected frames according to the
feature map, the advantage of which is fast speed.

The study was started with the two-stage approach. R-
CNN [11] was the first method to introduce deep learning
into the field of object detection and achieve adaptive learn-
ing, which was subsequently improved by many researchers.
SPP-Net [12] introduces spatial pyramid pooling into R-
CNN to reduce the impact of the size on the network. Fast
R-CNN [13] uses ROI pooling based on the layer of SPP
and achieves end-to-end training, which mainly improves
the speed of the model. R-FCN [14] reduces the workload
required for each ROI by constructing location-sensitive
score maps to achieve speedup.

On the other hand, SSD [15] and YOLO [16–18] are
typical one-stage approaches, also known as classification
regression-based models. They are designed to directly
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Figure 1: Real water scenes. The first three images pointed to by the red arrows are different samples of the target A (yachts). The last three
images are samples of the target B (fish boats). The sizes of targets are marked out.
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Figure 2: The process of surface target recognition.
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classify and train predefined anchors without a proposal
generation step. SSD draws on the anchor mechanism and
regression idea of faster R-CNN in its design, with six (or
four) default boxes at each pixel point of the feature map.
YOLO divides the feature map into a 7 × 7 grid and then
regresses the corresponding default boxes directly, so the
speed is fast. However, YOLO [16] does not introduce multi-
scale information. It is difficult to obtain sufficiently rich
target localization information when dealing with multitarget
recognition. YOLOv2 [17] and YOLOv3 [18] introduce the
anchor point mechanism, which improves the detection
and recognition accuracy. To ensure the real time of the algo-
rithm, we take YOLOv5 as the main framework.

2.2. Attention Mechanisms. Like human vision mechanisms,
attention mechanisms in deep learning tend to focus on key
information and ignore irrelevant information. They have
been proven to be beneficial to a range of computer vision
tasks. SENet [19] and CBAM [20] are typical networks
applying attention mechanisms, the structures of which are
illustrated in Figure 3. SENet focuses on the channel features
of targets. It compresses the feature map and learns the
interrelationships between channels. CBAM uses convolu-
tion with large size kernels, and combines spatial and chan-
nel features. The reason for the popularity of the self-
attention networks, including NLnet [21], GCNet [22], and
A2Net [23], is that they have the ability to compute in par-
allel and learn better about distant dependencies. Nonlocal
mechanisms are also important to critical information. Later
works, such as Genet [24], AA [25], and TA [26], continue
to progress by designing different attention modules or
fusion of different information.

However, SE and CBAM do not learn the importance
of positional relationships and correlations between differ-
ent channels. Self-attention is not applicable to surface tar-

get recognition task due to its large computational effort.
Therefore, we choose an attention method that learns chan-
nel relations and channel dependencies called coordinate
attention.

2.3. Multiscale Methods. Multiscale is one of the major dif-
ferences between surface target recognition tasks and other
vision tasks. Large-scale targets are generally easier to detect
and recognize due to their large area and enriched feature.
Small-scale targets, with fewer features and less resolution,
are more difficult to locate and recognize accurately, but they
occupy a proportion in images. In a practical application
scenario, the scale of the target is measured by the ratio of
the target size to the image size.

As a challenging problem in target detection and recog-
nition, the variation of target scales affects the accuracy and
speed of the model. There are two main types of methods to
deal with the multiscale problem in vision tasks: image pyra-
mid and feature pyramid. In image pyramid, images are
scaled at different scales and then directly input to the detec-
tor. Based on the image pyramid approach, SNIP [27] selects
different proposals for different resolutions to perform gradi-
ent propagation in the multiscale training process. SNIPER
[28] crops images around the ground truth box on the feature
map and selects the context region. However, SNIP and
SNIPER still suffer from an inevitable increase in inference
time during use.

The idea of feature pyramid is to approximate the image
pyramid directly at the feature level. At the beginning, MS-
CNN [29] handles objects of different sizes directly on differ-
ent downsampled layers. Subsequently, TDM [30] and FPN
[9] add new top-down branches to supplement the lack of
semantic information at the bottom layer, both of which
are the continuation of the feature pyramid approach.
PANET [31] enhances the feature hierarchy representation
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Figure 3: The structure of SE and CBAM. (a) SE. (b) CBAM.
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with additional bottom-up paths and proposes adaptive
feature pooling to aggregate features from various scales.

3. Methodology

To meet the real-time requirements of the algorithm, this
paper uses YOLOv5 as the main framework. First, coor-
dinate attention is added to focus on key information.
Then, a double-layer cascade is added to solve the prob-

lem caused by multiscale and low-resolution targets. As
shown in Figure 4, the structure of our model is divided into
three parts, the backbone, the double-layer cascade, and the
prediction.

3.1. Coordinate Attention. Many attention mechanisms are
used in deep CNNs and bring great improvement on the
performance of the network, but these mechanisms are sig-
nificantly lagging when used in small networks. The reason
is that the computational overhead of most attention mech-
anisms is not affordable for small networks [32]. The com-
mon attention mechanisms are SE, BAM, and CBAM. SE
only considers the internal channel information and ignores
the importance of location information. BAM and CBAM
try to introduce location information as the basic of SE,
but they fail in learning correlation through channels that
is critical in identification tasks [33]. Therefore, this paper
introduces an efficient and lightweight attention mechanism
called coordinate attention which embeds location informa-
tion into channel attention. Figure 5 illustrates the structure
of the coordinate attention.

Generally, the attention module can be considered as a
computational unit that is used to enhance the feature repre-
sentation of the network. In coordinate attention, the channel
attention is split into two parallel one-dimensional features
encoding processes along the vertical and horizontal direc-
tions, respectively, to mitigate the loss of location information
caused by global pooling. These two feature maps are
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Figure 4: Illustration of our model. (a) The backbone designed for extracting multiscale features. (b) The double-layer cascade for the fusion
of information at different scales. (c) the prediction block for the output of class, location, and confidence.
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Figure 7: The visualization of our proposed model including saliency maps and heat map. Targets are marked out by red rows in original
images.
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embedded with different orientation information and encoded
as the attention map. Thus, the location information can be
stored in the attention map. We divide the process of coordi-
nate attention encoding into two steps: coordinate informa-
tion embedding and coordinate attention generation. As
shown in Figure 6, we mark the dimensions of the tensor in
each step.

3.1.1. Coordinate Information Embedding. To encode chan-
nel relations and position correlations, the global pooling
as formulated in Equation (1) is divided into two one-
dimensional encoding operations. Given the input feature
Χ ∈ℝC×H×W , the vertical and horizontal coordinates are
encoded separately by using different kernels ðH, 1Þ and ð1,
WÞ, and the outputs are denoted as

zc =
1

H ×W
〠
H

i=1
〠
W

j=1
xc i, jð Þ, ð1Þ

zhc hð Þ = 1
W

〠
0≤i<W

xc h, ið Þ, ð2Þ

zwc wð Þ = 1
H

〠
0≤j<H

xc j,wð Þ: ð3Þ

The above two variations (2) and (3) are along two direc-
tions, and a pair of feature maps is generated. These two fea-
ture maps allow the attention module to learn feature
correlations in one spatial direction while retaining position
information in the other, which helps to accurately identify
and locate surface targets.

3.1.2. Coordinate Information Generation. The zhc ðhÞ and
zwc ðwÞ generated in the first step are concatenated and fed
into a shared 1 × 1 convolutional transformation function
C1, generating

c = δ C1 zh, zw
h i� �� �

: ð4Þ

Here ½⋅ , ⋅� denotes the concatenation operation, δ denotes
the nonlinear activation function, and c ∈ℝC/r×ðW+HÞ repre-
sents the feature map containing two directions of encoded
information. We use r as the scaling ratio to control the
network overhead. Through experiments, r is set as 24, which
can balance the accuracy and the speed. After that, c is decom-
posed into two independent tensors ch ∈ℝC/r×H and cw ∈
ℝC/r×W . These two are converted to tensors (gh, gh) with the
same channel number as X by two 1 × 1 the convolutional
functions Ch and Cw, respectively.

gh = σ Ch ch
� �� �

,

gw = σ Cw cwð Þð Þ:
ð5Þ

Figure 10: Part of our self-built surface target dataset. From top to bottom, the scenes are the distant sea, the near sea, the coast, and the lake
in order.

Table 1: The definition of targets in different sizes.

Types COCO
Self -built surface target

(1920 ∗ 1080)
Small targets ≤32 ∗ 32 w ∗ h ≤ 1867
Medium targets 32 ∗ 32 ~ 96 ∗ 96 1867 < w ∗ h < 7465
Large targets ≥96 ∗ 96 w ∗ h ≥ 7465
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Here, σ is the sigmoid function. gh and gh are expanded
and treated as attention weights. Finally, the output of coordi-
nate attention Cði, jÞ is represented as

C i, jð Þ = x i, jð Þ × ghc ið Þ × gwc jð Þ: ð6Þ

In order to have an intuitive understanding of the coor-
dinate attention, we visualize the greyscale maps and heat
maps. As can be seen in Figure 7, the greyscale map roughly
reflects the overall profile of the surface target. On the other
hand, the heat map filters out a large amount of irrelevant
information and focuses on useful information. The darker
the color on the map, the more significant the role of the
area for classification.

3.2. Double-Layer Cascade. Multiscale means sampling the
target at different granularities. In general, smaller and
denser sampling in granularity allows more details to be
seen, while larger and sparser sampling allows the overall
contour and shape to be seen. Distance variation and sensor
zoom are the main physical reasons for the variable scale
properties of the target over the image domain. With the dis-
tance of target from near to far, the high-frequency detail
texture information gradually declines and the regional scale
of the target in the image continues to decrease. First, it is
necessary to ensure that the network can extract features at
multiple scales, so we improve the spatial pyramid pooling
(SPP). Second, a double network is used to aggregate multi-
scale features.

3.2.1. Improved SPP-Net. SPP-Net is a general CNN frame-
work, which breaks the limitation that the input image must
have a fixed size in traditional CNNs. In order to make the

model adaptive and capable of handling images of different
sizes, the SPP is introduced in this paper and placed after
the backbone. SPP has the following significant features:
(1) SPP generates fixed-size outputs regardless of the size
of the input image, which is convenient for subsequent net-
work processing. (2) Multilevel pooling makes SPP more
adaptive to the change of the size. (3) Due to the flexibility
of image input size, SPP is more effective in detecting and
recognizing multiscale targets. The key point of SPP is that
fixed-size feature vectors can be extracted from multiscale
features. Therefore, SPP also shows great strength in target
detection and recognition.

Compared with the previous YOLO, our proposed
model adds an SPP module between convolutional layers.
Figure 8. illustrates the structure of SPP block. Unlike the
original SPP module, the SPP module in this paper consists
of four parallel branches with kernel sizes of 5 × 5, 9 × 9, and
13 × 13 maximum pooling and a jump connection. The
three different sizes of pooling are used to achieve the extrac-
tion of local features at different scales. The jump connection
is used to preserve the original global features. Finally, the
dimensionality of the tensor is expanded by the process of
concating to achieve the fusion of local and global features,
which enriches the expressiveness of the feature map and
facilitates the case of various scales in water scene images.
Compared with the way of using k × k maximum pooling
alone, SPP module is more effective to increase the reception
range of the main features and significantly separates the
contextual features.

3.2.2. Double-Layer Network. Surface target recognition not
only needs to local features with small receptive field to
get the detail information but also needs to global features
with large receptive field to get the global coarse-grained
information, such as the shape and contour. As the CNN
deepens, the network keeps downsampling. The semantic
information becomes richer, and the spatial information is
sparser. The last layer may even have a downsampling rate
of 16 or 32. This result is that small targets on the original
image have less effective information on the feature map.
The performance of object recognition decreases sharply.
In surface target recognition, small-scale targets have few
pixels corresponding to them in the original image, and
it is more difficult to find the corresponding information
after downsampling.

Improved SPP-Net ensures that the network can receive
information at multiscales; the key to the next strep lies in

Data
enhancement

Figure 11: The illustration of our method of data enhancement. The size of the two images before and after the transformation is the same.

Table 2: Result comparisons under different settings.

Setting r mAP APS APM APL FPS

Baseline / 78.9 65.5 82.4 89.2 26.5

+SE 24 77.5 62.3 82.1 90.5 15.9

+CBAM 24 80.6 67.2 86.7 88.6 16.3

+HA 24 79.6 66.4 86.3 90.3 22.6

+VA 24 80.2 67.9 85.2 89.2 23.7

+CA 24 80.4 68.5 86.1 89.7 22.4

+DC / 81.2 68.2 87.5 88.5 21.5

CA+DC 24 81.9 69.2 87.3 89.5 20.8
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how to extract multiscale features. Experiments show that
neurons at higher levels respond strongly to the global fea-
tures, while other neurons are more susceptible to local tex-
tures and contours. That means that networks at shallow
levels are more related to detailed information and the net-
works at higher layers are more related to semantic informa-
tion. The feature pyramid network (FPN) was created from
this starting point, which has greatly promoted the subse-
quent work of object detection and recognition. FPN mainly
consists of four operational processes: bottom-up path, top-
down path, lateral connection, and convolutional fusion,
through which models obtain strong semantic features.
However, focusing only on the semantic features from deep
levels is not sufficient in that this approach tends to ignore
the detailed information contained in the shallow features.
The introduction of path aggregation network (PAN) is
aimed at enhancing the detail information in the shallow
features from top to down.

Different from the direct use of FPN layers, our network
adds two bottom-up feature pyramids (PAN) after the FPN
layer, as shown in Figure 9. FPN layer passes high-level

semantic features from the top to down. Although it
enhances the whole pyramid, it only enhances the semantic
information rather than the detail information. In this
paper, we address this point by adding PAN, which conveys
detailed localization features from the bottom to top. fP1,
P2, P3g is used to represent the feature maps generated by
FPN. fN1,N2,N3g is used to represent the newly generated
high feature maps by the augmented paths and correspond-
ing fP1, P2, P3g. Ni+1 is generated by a higher resolution Ni
and laterally connected Pi+1. The spatial size of Ni is first
reduced by 3 × 3 convolution. Then, Pi+1 and downsampled
feature maps are summed by lateral concatenation. The
obtained feature maps repeat the above steps once again
until the iterative step is terminated.

The purpose of this module is to transmit the semantic
features from the deep layer to the shallow layer through
FPN and the localization information from the shallow layer
to the deep layer through PAN. The above two are combined
to aggregate parameters at different scales to further improve
the feature extraction capability of the model for multiscale
targets.

4. Experiments

In this section, experiments are conducted on the COCO
dataset, the VOC dataset, and our self-built surface target
dataset. We describe the setup of our experiments and the
way that the dataset is processed in Section 4.1. Then, a
series of ablation experiments are performed to demonstrate
the contribution of each proposed component to the perfor-
mance of the model in Section 4.2. Finally, we compare our
approach with state-of-the-art approaches on object detec-
tion and recognition.

4.1. Experimental Setup and Data Processing. The experiments
in this paper are conducted on Ubantu 16.04 LTS operating
system and Pytorch 1.2.0 deep learning framework. Themodel
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Figure 12: Graphs of the parameters during training.

Table 3: Comparison with other methods on COCO.

Model Backbone AP APS APM APL
Fast R-CNN VGG-16 31.9 15.7 36.5 45.5

Faster R-CNN ResNet-101 34.9 15.6 38.7 50.9

SSD300 VGG-16 24.4 6.6 25.9 41.4

DSSD513 ResNet-101 33.2 13.0 35.4 51.1

RetinaNet ResNet-50 32.5 13.9 35.8 46.7

YOLOv3 DarkNet-53 33 18.3 35.4 41.9

YOLOv4 CSPDarkNet-53 43.5 26.7 46.7 53.3

SNIP ResNet-101 44.4 27.3 47.4 56.9

SNIPER ResNet-101 46.1 29.6 48.9 58.1

Our model CSPDarkNet-53 47.5 32.9 48.3 57.5
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is trained and debugged using GPUs with an NVIDIA RTX
graphics card. On the public datasets, such as COCO and
VOC, the input image size is uniformly cropped to 640 ×
640 and the epoch is set to 300. A batch of 16 images are proc-
essed per iteration. The initial learning rate is 10-2, adjusted to
10-3 for 100 epochs and 10-4 for 200 epochs until the end of
training. The optimizer uses SGD optimizer.

Since the size of the bounding box is completely different
from the COCO dataset, this paper uses the k-means algo-
rithm to recalculate the anchors for optimization. The size
of the input image is 1920 × 1080, and the epoch is set to
600. A batch of 8 images are processed into each iteration.
The initial learning rate is 10-1, adjusted to 10-2 when train-
ing 100 epochs, and adjusted to 10-3 until the end of train-
ing. The optimizer uses SGD optimizer.

In order to verify the recognition effect of the model on
surface targets, a dataset is established by visible light sensor
acquisition and manual annotation [5]. As can be seen in
Figure 10, the dataset contains different scenes and a total
of different classes of surface targets such as fishing boats,
yachts, buildings, bridge piers, and water drums. First, the
bounding boxes and categories of surface targets are labeled
using a software called “Lableimg.” Then, they are trans-
formed into “txt” files like YOLO for processing, which

include five types of information: the category of the target,
x and y coordinates, and the width and height of the image.

The self-built surface target dataset consists of a total of
2229 images with 5731 labeled targets, and the size of the
images is 1920 × 1080 pixels. Similar to the COCO, we
divide targets into small, medium, and large, as seen in
Table 1. The training results of neural network are influ-
enced by the richness of the data. In order to enhance the
learning ability of the model for various scale targets, a
mosaic enhancement method is used in this paper. In order
to enrich the sample at different scales and make the images
closer to the real scenes, this paper adopts mosaic enhance-
ment method in which mirroring, brightness enhancement,
contrast enhancement, and linear blurring are utilized. The
data enhancement method used in this paper is shown in
Figure 11.

4.2. Ablation Study. To demonstrate the performance of the
proposed coordinate attention and the double-layer cascade
module, a series of ablation experiments are conducted on
the surface target dataset. The corresponding results are all
listed in Table 2. We compare the baseline with the model
containing SE attention (SE), CBAM attention (CBAM),
the horizontal attention (HA), the vertical attention (VA),

Table 4: Accuracy for each category on VOC2012.

Model Backbone GPU Aero Bike Boat Bus Car mAP

Fast R-CNN VGG-16 Yes 82.3 78.4 52.3 77.8 71.6 68.4

Faster R-CNN ResNet-101 Yes 84.9 79.8 53.9 77.5 75.9 70.4

YOLO DarkNet-53 Yes 77.0 67.2 38.3 68.9 55.9 57.9

SSD300 VGG-16 Yes 85.6 80.1 57.6 79.4 76.1 76.8

SSD513 ResNet-101 Yes 87.4 82.3 59.0 81.7 81.5 74.9

YOLOv3 DarkNet-53 Yes 81.7 85.7 65.5 87.2 87.5 74.5

Our model CSP DarkNet-53 Yes 85.3 81.9 76.2 88.9 83.6 78.2

Figure 13: The test results on our self-built dataset and other public images.
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coordinate attention (CA), the double-layer cascade module
(DC), and the combination of multiscale module and coor-
dinate attention (CA+DC). r is set to 24 when attention
module is used. The average precision of small targets
(APS), medium targets (APM), large targets (APL), mean
average precision (mAP), and frame per second (FPS) is
recorded. We determine whether the prediction is correct
by whether the interaction ratio between the predicted box
and the real box is bigger than 0.5.

As can be seen in Table 2, the model has significantly
improved its recognition effect of small and large targets
with the addition of coordinate attention and the double-
layer cascade module. The indicator of mAP also performs
best in this case. The results show that the addition of SE
and CBAM affects the speed of the model and is not suitable
for tasks in this paper. In comparison, the addition of coor-
dinate attention and the double-layer cascade module can
improve the accuracy of surface target recognition while
ensuring the real time of the algorithm as much as possible.
We also record the curves of the various parameters during
the training process in Figure 12. The results show that the
parameters are fitted quickly, and the model has a superior
performance. The model basically converges when the epoch
reaches 50.

4.3. Comparison with Other Methods. In this section, we
evaluate the proposed model on the COCO dataset and the
VOC dataset and compare it with other state-of-the-art
methods. On the COCO dataset, we test AP, APS, APM,
and APL, respectively, with the previous algorithms to verify
the recognition performance on various scale targets. The
FPS is not compared as the input is different. The results
are shown in Table 3.

From the above results, it can be concluded that our
model performs best on small-scale targets and only slightly
behind Sniper on medium- and large-scale targets. We also
show the test results of our model with other advanced
methods on the VOC2012 dataset in Table 4, aiming to ver-
ify the recognition accuracy on specified targets. We select
the target types like aero, boat, and bus. The reason that
we select those targets is that they are similar to surface tar-
gets in appearance.

Our model achieves the highest recognition precision on
three types of objects, aero, boat, bus, and performs worse on
two types of objects, bike and car. The mean average preci-
sion is the highest among the listed methods. In addition,
the model is tested on our self-built dataset and other public
images. As can be seen in Figure 13, the classification and
location of the target can be precisely returned regardless
of the change in background and scale.

5. Summary and Prospect

To address the problems of diverse target types, easy confu-
sion, large-scale span, and high requirements for the real
time, this paper proposes a surface target recognition algo-
rithm based on coordinate attention and double-layer cas-
cade. The coordinate attention, which aggregates features
along two spatial directions by feature encodings, retains

the location information while learning spatial dependencies
without additional network overhead. The double-layer
cascade module aggregates parameters at different scales to
further improve the feature extraction capability of the
model for multiscale targets. Experimental results on the
COCO dataset, the VOC dataset, and our self-built surface
target dataset show that the proposed method is suitable
for surface targets and has outstanding performance under
evaluation metrics such as AP and FPS.

The surface target recognition algorithm is different
from common target detection algorithm and recognition
algorithm. It is more like a combination of both, which
needs to give both the bounding box of the target and accu-
rately identify the classification of the target. In addition,
surface target recognition is usually applied to mobile plat-
forms such as USVs, which puts higher requirements on
the real-time nature of the algorithm. This paper still stays
in the recognition of images in fixed scenes. In the future,
more attention should be paid to the continuous tracking
of targets in moving scenes and the collaborative perception
of multiplatform and multiperspective under weak observa-
tion conditions.
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