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Computed tomography image (CTI) sequence is essentially a time-series data that typically consists of a large amount of nearby
and similar CTIs. Due to the high communication and computational costs, it is difficult to perform a progressive distributed
similarity retrieval of the large CTI sequence (CTIS)s, particularly in resource-constraint mobile telemedicine network (MTN)s.
In this paper, we present a DPRS method—progressive distributed and parallel similarity retrieval scheme for the CTISs in the
MTN. To the best of our knowledge, there is little research on the DPRS processing, especially in the MTN. Four supporting
techniques (i.e., (1) PCTI-based similarity measurement, (2) lightweight privacy-preserving strategy, (3) SSL-based data
distribution scheme, and (4) the UDI framework) are developed. The experimental evaluation indicates that our proposed DPRS

method is more progressive than the state of the art, with a significant reduction in response time.

1. Introduction

The continuous innovation of medical imaging and diagno-
sis technologies make CT image (CTI) sequence more and
more important in disease diagnosis. Doctors can grasp the
lesion tissue of patients more fully with CTI sequence
(CTIS) than they can with two-dimensional medical imag-
ing, which makes it easier to make accurate medical diagno-
ses. Figure 1 illustrates an example of a CTIS which is made
up of several nearby and similar CTIs with temporal infor-
mation. As one of the important image data types in the
mobile telemedicine network (MTN), the high-quality
CTISs created by these high-end medical imaging instru-
ments have become a significant foundation for helping doc-
tors diagnose illness.

Mobile-terminal-based CTIS retrieval is one of the
MTN’s key tasks, as it can assist doctors in detecting abnor-
mal CTIs that look like lesion tissues, diagnosis and treat-
ment. Traditional CTI retrieval, on the other hand, takes a
single CTI as the retrieval one to support similarity compar-
ison instead of the entire CTIS, which is ineffectual and

insufficient in describing the retrieval CTIS, leading to poor
retrieval precision ratio. Meanwhile, the power reserve and
computational capability of these mobile terminals are both
limited [1], and the screen resolution is relatively lower. The
data communication is negatively affected by the unstable
network bandwidth which cause retrieval and transmission
delays, particularly in countryside with poor mobile commu-
nication facilities [2]. Moreover, since the patients’ personal
privacy information is contained in CTIS data, it needs to be
encrypted during retrieval processing; otherwise, there is a
great risk of users’ personal privacy disclosure. During
remote consultations with patients, clinicians will routinely
retrieve and examine their CTISs in real time to better com-
prehend the condition, which entails high computational
and communication costs of similarity, encryption and
decryption calculations, as well as the intensive delivery of
the CTISs. As a result, significant increase in computing
overhead will have a detrimental impact on overall retrieval
efficiency. In order to effectively speedup the retrieval per-
formance, the paper proposes a progressive distributed and
parallel similarity retrieval method for large CTISs in the
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MTN, called the DPRS. To our knowledge, this is the first
study on the DPRS processing issue, especially in the
resource-constraint MTN.

For the DPRS scheme, when user submits a retrieval CTIS
(SR) to the master node at which the destination slave nodes
are determined, the efficient filtering and refinement process
is performed at the slave nodes to retrieve the answer CTISs
(Ψ′) swiftly and safely by a uniform distributed index (UDI)
with security guarantee; and finally, the answer CTISs are
transmitted to the user end. The following is a summary of
the paper’s main contributions:

(i) We propose the DPRS, a progressive distributed and
parallel similarity retrieval method for the large
CTIS databases in the MTN

(ii) We develop four supporting techniques to better
facilitate the progressive DPRS processing, such as
(1) PCTI-based similarity measurement, (2) light-
weight privacy-preserving strategy, (3) SSL-based
data distribution scheme, and (4) the UDI
framework

(iii) We conduct extensive experiments to evaluate the
effectiveness and efficiency of our proposed DPRS

method

The rest of the paper is laid out as follows. The related
work is presented in Section 2. Section 3 contains prelimi-
nary work. Four supporting techniques are introduced in
Section 4. Section 5 describes the DPRS method. The experi-
mental evaluations are performed in Section 6 before we
conclude the paper in Section 7.

2. Related Work

The content-based image retrieval (CBIR) is a long-standing
and challenging research issue during the last 50 years. Most
of the state-of-the-art methods [3–6] are based on the low-
level visual features, and retrieval accuracies are still not sat-
isfactory due to the “semantic gap.”

For the research of content-based medical image
retrieval (CBMIR), ASSERT [7] is the first CBMIR system
designed for high-resolution lung CT images. After that,
other prototype systems have been developed such as IRMA
[8] and FIRE [9]. Huang et al. [10] proposed a medical
image retrieval method based on unclean image bags. Huang
et al. [11] applied a noisy-smoothing-based relevance feed-
back to the CBMIR. Kitanovski et al. [12] designed a multi-
modal CBMIR system. Lan et al. [13] presented a simple
texture feature extraction approach for retrieval of medical

CTI4CTI3CTI2CTI1 CTI5

Figure 1: An example of a CTIS with five nearby CTIs.

Table 1: Major notations used throughout the paper.

Notation Meaning

α The number of slave nodes

Θ SR, rRð Þ A retrieval sphere, where SR is a retrieval CTIS and rR is a retrieval radius

Θ SjC, Rj

� �
The j-th cluster sphere, where SjC is the cluster center and Rj is cluster radius

Ψ The n CTISs distributed at the α slave nodes

Ψ jð Þ The CTISs at the j-th slave node and j ∈ 1, α½ �
Si The i-th CTIS and Si ∈Ψ

SSj The j-th subsequence in Si

SR The retrieval CTIS

Ψ′ The answer CTISs

CTIj The j-th CTI in Si and CTIi ∈ Si
RIBij The j-th relevant image block of the PR part in CTIi
NIBij The j-th image block of the non-PR part in CTIi
PR j The j-th PR in a CTI and j ∈ 1, PRj j½ �
sim Si, Sj
� �

Similarity between two CTISs (i.e., Si and Sj) (ref. Equation (5))

d CTIi, CTIj
� �

Euclidean distance between two CTIs (i.e., CTIi and CTIj)
σ The segmentation granularity for image block
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images. Ali et al. [14] provided a multipanel medical image
segmentation framework for the CBMIR system. Kasban
et al. [15] developed a robust CBMIR system based on the
combination of the image encoding techniques. Recently,
Tuyet et al. [16] applied the deep learning techniques to
the salient region-based CBMIR scheme.

Due to the limited system scalability, the retrieval perfor-
mances of the aforementioned single-PC-based CBMIR sys-
tems are not satisfactory, especially when dealing with
enormous volumes of medical images [17]. Anbarasi et al.
[18] applied traditional distributed database techniques to
a distributed CBMIR system. Due to the powerful parallel
processing capability of peer-to-peer (P2P) computation,
Charisi et al. [19] developed a CBMIR system based on a
P2P network. Depeursinge et al. [20] proposed a mobile
retrieval method of medical information based on hybrid
features. Despite the fact that Zhuang et al. [21] proposed
a fast and reliable CBMIR technique in a mobile cloud net-
work, the retrieval performance is not good due to the poor
load balance strategy. Based on the above work [21], to fur-
ther improve the retrieval efficiency, Zhuang et al. [22] intro-
duced a progressive batch medical image retrieval approach
in mobile wireless network from a perspective of multiretrie-
val optimization. Cruz et al. [23] developed a mobile telera-
diology system that is suitable for facilitating the CBMIR

process. Chitra et al. [24] proposed an improved retrieval
algorithm for brain images using carrier frequency offset
compensated OFDM technique for telemedicine scenarios.
Jiang et al. [25] tried to solve the “semantic gap” of the
CBMIR using the crowdsourcing model in the MTN, which
is empirically verified to be both successful and efficient.

Considering the characteristics of the CTI, most of the
retrieval methods are still based on a single CTI-based
retrieval. Lei et al. [26] introduced a high-definition CTI
retrieval approach based on sparse CNN model. Yu et al.
[27] developed a nontensor product wavelet-based liver
CTI retrieval algorithm. Hatibaruah et al. [28] proposed a
CTI retrieval approach based on the use of an adder to com-
bine two local bit plane-based dissimilarities. Hwang et al.
[29] applied a CBIR technique to retrieve diffuse interstitial
lung disease based on a CNN and a chest CT. Although
Zhuang et al. [30] presented a distributed CBMIR method
for large CTIS database in the MTN, the retrieval accuracy
and security are still unsatisfactory.

3. Preliminaries

Firstly, Table 1 lists the major notations frequently used
throughout the paper.

Definition 1. A mobile telemedicine network (MTN) can be
modeled by a graph (G) which can be modeled by a three-
tuple:

G = N , E, Th i: ð1Þ

(i) N means a collection of nodes, formally represented
as N =NU ∪NM ∪NS, in which NU means a user
node that is used to (1) submit retrieval, (2) decrypt
the RIBs, and (3) reconstruct and display the CTISs;
NM represents a master node to route the retrieval to
the corresponding NS; NS consists of α slave nodes,
which are used to (1) segment the CTI into IBs, (2)
encrypt the RIBs and store the IBs, and (3) transmit
the answer CTISs to NU

(ii) E denotes a collection of edges which represent the
network bandwidths for transmission at time T , for-
mally represented as E = <e1, e2,⋯, ejEj > , where ek
= ðNi,NjÞ refers to the k-th edge in G in which Ni

and Nj are connected. Ni and Nj can be the two
nodes of the same type or different types

Due to the instability and the heterogeneity of the
resource-constraint MTN, as illustrated in Figure 2, the net-
work bandwidth between nodes in MTN may vary greatly
with the passage of time. Furthermore, the MTN’s data
transmission distance is limited.

As indicated in Section 1, there are usually some lesion
tissues that the doctors may concentrate on in the CTISs.
Pathological regions (PR) are the regions of such lesion
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Figure 2: The system architecture for the DPRS processing.
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Figure 3: Two PRs (A and B) in a CTI ðσ = 6 × 6Þ.
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organs that can be preliminarily annotated by medical
specialists.

Definition 2 (PR). A pathological region (PR) in a CTI can be
denoted by a two-tuple:

PRi = <i, PO > , ð2Þ

where i is the PR’s ID and PO means the position of the PR
in a CTI.

Based on Definition 2, a nonpathological region is
denoted as NPR.

Definition 3 (IB). An image block (IB) can be represented by

IB = <bid, PO, TP > , ð3Þ

where bid means the block ID, PO refers to the position of
the IB in a CTI, and TP is the transmission priority of the IB.

According to Definitions 2 and 3, Figure 3 shows an
example of a CTI in which there are two PRs (A and B)
and one NPR (i.e., C). The CTI is segmented into 6 × 6 IBs
that are identified by blue dashed lines.

Definition 4 (RIB). Given a PR (i.e., PRk) in a CTI, the rele-
vant image block (RIB) of PRk is an IB which is contained in
or intersects with it, formally denoted as RIB = fIBbidjIBbid

∩ PRk ≠Φg, where k ∈ ½1, jPRj� and jPRj means the number
of the PRs in the CTI.

Definition 5 (NIB). A NIB is an IB that is contained by a
NPR in a CTI, formally represented by NIB = fIBbidjIBbid
∩NPR = IBbidg.

For example, based on Definitions 4 and 5, the RIBs in
Figure 3 are IB21, IB22, IB23, IB24, IB25, IB26, IB31, IB32,
IB33, IB34, IB35, IB36, IB41, IB42, IB43, IB44, IB45, IB46, IB51,
IB52, IB53, IB54, IB55, and IB56. The remaining IBs are NIBs.

4. Supporting Techniques

Four supporting techniques are introduced in this section to
speed up the retrieval performance of the DPRS: (1) PCTI-
based similarity measurement, (2) lightweight privacy-
preserving strategy, (3) SSL-based data distribution scheme,
and (4) the UDI framework.

4.1. PCTI-Based Similarity Measurement. Since the CTIS is a
time-series data in which all CTIs are not all visually similar,
as shown in Figure 1, only a few neighboring CTIs are sim-
ilar. The 2nd and 3rd CTIs, for example, are visually similar,
as are the 4th and 5th CTIs as well. As one of the preprocess-
ing steps, the CTIS is partitioned into three subsequence
(SS)s to improve the accuracy of IB restoration during the
image reconstruction, that is, SS1(CTI1), SS2(CTI2,CTI3),
and SS3 (CTI4, CTI5). Based on the above, we first present
a cluster-based pivotal CTI(PCTI) selection scheme.

Definition 6 (PCTI). Given a CTIS: S = fCTI1, CTI2,⋯, CT
IjSjg, suppose that there are kSk clusters (Ct) that are
obtained based on the CTIs in S, the pivotal CTI (PCTI) in
the t-th cluster (Ct) can be formally expressed as follows:

PCTIt = CTIij arg min 〠
Ctj j

j=1
d CTIi, CTIj
� � !

, i∈, 1, Ctj j½ �i ≠ j

 !
,

ð4Þ

where function dð,Þ is defined in Table 1, jSj and kSk rep-
resent the number of CTIs and PCTIs in S, respectively,
jCtj means the number of CTIs in the t-th cluster, and t
∈ ½1, kSk�.

Input: SR: a CTIS
Output: the kSRk PCTIs
1. for each CTIi in SRdo
2. Its corresponding visual features are extracted as a high-dimensional vector
3. end for
4. Grouping the jSRj CTIs in SR to obtain kSRk clusters using the k-means algorithm
5. for each cluster(Ct) do
6. Choose the cluster center CTI in Ct as a PCTI based on Equation (4)
7. end for
8. returnkSRk PCTIs

Algorithm 1: The PCTI selection algorithm.
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Figure 4: The 20 RIBs in a CTI.
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Input: SID, IID, row, col of a RIB
Output: IBID: the encrypted ID number of the RIB
1. if row is an odd number then
2. if col is an odd number then
3. IBID = ðSID + δÞ ⋅ c1 + ðIID − δÞ ⋅ c2 + ðrow + ωÞ ⋅ c3 + col
4. else
5. IBID = ðSID + δÞ ⋅ c1 + ðIID − δÞ ⋅ c2 + ðrow − ωÞ ⋅ c3 + col
6. end if
7. else
8. if col is an odd number then
9. IBID = ðSID − δÞ ⋅ c1 + ðIID + δÞ ⋅ c2 + ðrow + ωÞ ⋅ c3 + col
10. else
11. IBID = ðSID − δÞ ⋅ c1 + ðIID + δÞ ⋅ c2 + ðrow − ωÞ ⋅ c3 + col
12. end if
13. end if
14. return IBID

Algorithm 2: Encryption().

Input: the encrypted SID, IID, row, col of a RIB
Output: IBID: the original ID number of the RIB
1. if row is an odd number then
2. if col is an odd number then
3. IBID = ðSID − δÞ ⋅ c1 + ðIID + δÞ ⋅ c2 + ðrow − ωÞ ⋅ c3 + col
4. else
5. IBID = ðSID − δÞ ⋅ c1 + ðIID + δÞ ⋅ c2 + ðrow + ωÞ ⋅ c3 + col
6. end if
7. else
8. if col is an odd number then
9. IBID = ðSID + δÞ ⋅ c1 + ðIID − δÞ ⋅ c2 + ðrow − ωÞ ⋅ c3 + col
10. else
11. IBID = ðSID + δÞ ⋅ c1 + ðIID − δÞ ⋅ c2 + ðrow + ωÞ ⋅ c3 + col
12. end if
13. end if
14. return IBID

Algorithm 3: Decoding().
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Figure 5: The ID numbers of the RIBs before and after encryption.
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Algorithm 1 details the PCTI selection processing in
which the kSk PCTIs correspond to the ðkSk + 1Þ SSs. Note
that, in line 6, the cluster center CTI refers to a CTI whose
total distance to other CTIs in the cluster is the smallest.

Based on Algorithm 1, given a CTIS S, the kSk PCTIs are
obtained in S which can be modeled by a vector: S = fPCT
I1, PCTI2,⋯, PCTIkSkg. Next, we will focus on designing a
similarity measurement of two CTISs. Since the correspond-
ing visual feature of a PCTI can be regarded as a high-
dimensional vector, the similarity measure between two
CTISs (i.e., Sp and Sq) can be derived in

sim Sp, Sq
� �

=
∑PCTIi∈Sp1 PCTI j∈Sq d PCTIi ,PCTI jð Þ≤εjf g +∑PCTIi∈Sq1 PCTIi∈Sp d PCTIi ,PCTI jð Þ≤εjf g

Sp
�� �� + Sq

�� �� ,

ð5Þ

where function dð,Þ is described in Table 1 and ε is a positive
similarity threshold.

According to Equation (5), the similarity of two CTISs
(i.e., Sp and Sq) is determined by the percentage of similar
PCTIs in Sp and Sq.

4.2. Lightweight Privacy-Preserving Strategy. Before intro-
ducing the lightweight privacy-preserving strategy, let us
first give a definition.

Definition 7 (PRR). Given a PR (i.e., PR j), its corresponding
PR-related region (PRR) is composed of all RIBs of PR j, sub-

jecting to the following criteria:

PRR PR j

� �
∩ PR j = PR j,

Num PRR PR j

� �� �
= Num PR j

� �
,

(
ð6Þ

where PRR(PR j) refers to the corresponding PRR of PR j and
Num(●) means the number of RIBs in ●.

As shown in Figure 4, the CTI is equally segmented into
some IBs and there are two PRs (i.e., A and B) in it. Based on
Definition 7, the corresponding PRRs of the two PRs are
represented by the green shadow areas which consist of 20
RIBs. Due to the continuous distribution of the original ID
numbers of the neighboring RIBs, it is relatively easy to
reconstruct the image by using the ID numbers of the RIBs.
Therefore, the goal of the privacy-preserving strategy is to
disrupt the ID numbers of the nearby RIBs in the CTI by
encoding the ID numbers of the

RIBs such that the CTI reconstruction is hard to
perform.

For each RIB in a CTI, its corresponding IB replica ID
(IBID) can be derived below:

IBID = SID ⋅ c1 + IID ⋅ c2 + row ⋅ c3 + col, ð7Þ

where SID is a sequence ID of the CTIS that the RIB belongs
to, IID is a CTI ID in the corresponding CTIS, row means
row ID, col refers to column ID, c1, c2, c3 are stretch con-
stants, and c1 > >c2>>c3.

Based on Equation (7), the encryption and decryption
principles for the RIBs are illustrated below.

SSL(4)

SSL(3)

SSL(2)

SSL(1)

SE

Si

S dist (Si)
SS

Figure 6: SSL-based segmentation in high-dimensional spaces.

Input: Ψ: the CTISs
Output: the optimal distribution of the CTISs at the α slave nodes
1. The high-dimensional space is equally segmented into the α SSLs
2. fori≔ 1 to αdo //for each SSL
3. forj≔ 1 to αdo //for each slave node
4. Randomly select djSSLðiÞj/αe CTISs in SSLðiÞ to Nj

S
5. end for
6. end for

Algorithm 4: SSL-based data distribution (Ψ).
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4.2.1. Encryption Principle. Algorithm 2 summarizes the
encryption process, where δ and ω are two key values and
δ < SID, δ < IID, and ω < row.

4.2.2. Decryption Principle. Similarly, the decryption is dis-
cussed in Algorithm 3.

For example, assume that SID is 6, IID is 3, and c1, c2, c3
are 1000, 100, and 10, respectively, and then, the original ID
numbers of the RIBs before encryption are depicted in
Figure 5(a). Figure 5(b) shows the encrypted ID numbers
of the RIBs after encryption when δ = 2 and ω = 0:5.

It can be seen from Figure 5(a) that the ID number dis-
tribution of the neighboring RIBs is continuous, whereas the
ID number distribution of the neighboring RIBs in
Figure 5(b) after encryption is discrete. As a result, finding

the corresponding neighboring RIBs in the image recon-
struction becomes increasingly difficult, resulting in the
encryption of the RIBs.

4.3. SSL-Based Data Distribution Scheme. As an optimal data
distribution is very important for the retrieval performance
optimization, so in this subsection, to better parallelize the
DPRS processing, we design a start-slice(SSL)-based data
distribution scheme at the slave nodes.

Definition 8 (SDist). Given a CTIS (Si), its corresponding
start distance (SDist) is represented as SDistðSiÞ = simðSi, SS
Þ, where SS is a virtual CTIS in which the visual features
extracted from the PCTIs can be denoted as a vector: <0, 0
,⋯, 0 > . sim() is the same as Equation (5).

Definition 9 (SSL). Given a CTIS (Si), the ID number of the
start-slice (SSL) in which Si is contained can be derived in

SSL ID =
SDist Sið Þ

SDist SEð Þ/α
� �

+ 1: ð8Þ

According to Definition 9, as shown in Figure 6, the
high-dimensional feature space is evenly segmented into α
SSLs based on the similarity distance between SS and SE
(i.e., SDist ðSEÞ), where SE is a virtual CTIS in which the
visual features of the PCTIs are denoted as <1, 1,⋯, 1 >
and α = 4.

Algorithm 4 describes the SSL-based data distribution at
the slave node level. It should be noted that ∣SSLðiÞ ∣ refers
to the total number of CTISs in the i-th SSL. Since the CTISs
are randomly and equally distributed at each slave node, our
DPRS method selects all slave nodes to execute the similarity
retrieval in parallel for each retrieval.

4.4. The UDI Framework. To support faster CTIS filtering
and refinement processing at the slave nodes, as illustrated
in Figure 7, we propose a unified distributed indexing
(UDI) framework in which two types of index schemes
(i.e., LSI and GSI) are introduced.

In the UDI framework, the corresponding local index in
the j-th slave node (Nj

S) can be represented as the LSIj that is
based on iDistance [31]. Specifically, let the CTISs in Nj

S be
ΨðjÞ. To begin, based on similarity metric (i.e., Equation
(5)), the CTISs in ΨðjÞ are clustered into the T clusters using
the well-known AP-cluster algorithm [32]. For the CTISs in
each cluster, their corresponding organ categories are
obtained previously. So given a CTIS Si, its indexing key is
derived in

key Sið Þ = Si ⋅ cID ⋅ c1 + j ⋅ c2 + sim Si, Sjc
� �

: ð9Þ

(i) cID means the corresponding category ID of Si,
cID ∈ ½1,H�

(ii) c1 and c2 are two constants used to stretch the key
value ranges

LSI2

LSI1

LSIα

N2s

N𝛼S

N1s

Figure 7: The index distribution at the α slave nodes.

Input: ΨðjÞ: the CTISs in Nj
S

Output: LSIj
1. LSIj ⟵NULL
2. The CTISs in ΨðjÞ are grouped into T clusters
3. for each Si in ΨðjÞdo
4. keyðSiÞ = Si ⋅ cID ⋅ c1 + j ⋅ c2 + simðSi, SjcÞ
5. Insert keyðSiÞ into a B+-Tree (LSIj)
6. end for
7. returnLSIj

Algorithm 5: LSIBuilt (ΨðjÞ).

Input: Ψ: the CTISs at the α slave nodes
Output: GSI
1. GSI⟵NULL
2. for each slave node (Nj

S) do
3. LSIj ⟵NULL
4. LSIj ⟵ IdxBuiltðΨðjÞÞ
5. GSI⟵GSI ∪ LSIj
6. end for
7. return GSI

Algorithm 6: GSIBuilt (Ψ).
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(iii) Sjc is the cluster center sequence in Cj that Si belongs
to, as shown in Equation (11), j ∈ ½1, T�, and jCjj is
the same as Definition 6

Sjc = Sij arg min 〠
Cjj j

k=1
sim Si, Skð Þ

0
@

1
A, i ∈ 1, Cj

		 		
 �
, i ≠ k

0
@

1
A:

ð10Þ

Algorithm 6 summarizes the global SI (GSI) creation
processing in which the index (i.e., LSIj) construction for
each slave node is detailed in Algorithm 5.

Definition 10 (cluster sphere). For the j-th cluster, given a
cluster center CTIS (SjC) and a cluster radius (Rj), its corre-

sponding cluster sphere can be denoted as ΘðSjC, RjÞ.

As depicted in Figure 8, when user submits a retrieval
request ΘðSR, rRÞ with a category ID cID, before introducing
the index-support similarity range retrieval algorithm (i.e.,
Algorithm 7), let us first study the six cases in terms of the
placements of ΘðSR, rRÞ and ΘðSjC, RjÞ.

Case 1: as in Figure 8(a), ΘðSR, rRÞ intersects with Θð
SjC, RjÞ in which SR is contained, formally expressed as sim
ðSjc, SRÞ − rR < Rj and simðSjc, SRÞ < rR, then the search range

can be represented by ½cID∙c1 + j∙c2, cID∙c1 + j∙c2 + simðSjc,
RjÞ + Rj�.

Case 2: as in Figure 8(b), ΘðSR, rRÞ intersects with Θð
SjC, RjÞ and SR is not contained in ΘðSjC, RjÞ, formally

expressed as simðSjc, SRÞ − rR ≤ Rj and simðSjc, SRÞ ≥ rR, then
the search range can be represented by ½cID∙c1 + j∙c2 + sim
ðSjc, RjÞ − rR, cID∙c1 + j∙c2 + Rj�.

Case 3: as in Figure 8(c), ΘðSjC, RjÞ is contained by Θð
SR, rRÞ and SR is not in ΘðSjC, RjÞ, formally expressed as

simðSjc, SRÞ + Rj ≤ rR and simðSjc, SRÞ ≥ Rj, then the search
range can be represented by ½cID∙c1 + j∙c2, cID∙c1 + j∙c2 +
Rj�.

Case 4: as in Figure 8(d), ΘðSjC, RjÞ is contained by Θð
SR, rRÞ and SR is in ΘðSjC, RjÞ, formally expressed as simðSjc
, SRÞ + Rj ≤ rR and simðSjc, SRÞ < Rj, then the search range
can be represented by ½cID∙c1 + j∙c2, cID∙c1 + j∙c2 + Rj�.

Case 5: as in Figure 8(e), ΘðSR, rRÞ is contained by Θð
SjC, RjÞ, formally expressed as simðSjc, SRÞ + rR ≤ Rj, then the

search range can be represented by ½cID∙c1 + j∙c2, cID∙c1 + j
∙c2 + simðSjc, SRÞ + rR�.

Case 6: as in Figure 8(f), ΘðSR, rRÞ and ΘðSjC, RjÞ do not

intersect, formally expressed as simðSjc, SRÞ > Rj + rR. There
are no CTISs retrieved.

Algorithm 7 summarizes the detailed steps of the UDI-
based similarity range retrieval of the CTISs in which the

Cluster sphere

Retrieval sphere

Rj
SR

rR

Sjc

(a)

Cluster sphere

Retrieval sphere

SR rR

Sjc

(b)

Cluster sphere

Retrieval sphere

Rj
SR

rR

Sjc

(c)

Cluster sphere

Retrieval sphere

Rj

SR
rR

Sjc

(d)

Cluster sphere

Retrieval sphere

RjSR rR

Sjc

(e)

rR

Cluster sphere

Retrieval sphere

Rj

SR

Sjc

(f)

Figure 8: Six cases in terms of the placements of the two spheres.
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function BTreeSearch() is to return the candidate CTISs of
the B+-Tree-based range search.

5. The DPRS Algorithm

In this section, we proceed to study the DPRS algorithm using
the previously discussed supporting techniques. Before
introducing the algorithm, the PRs of the first CTI in a
retrieval CTIS (SR) are preliminarily annotated by the med-
ical experts and saved in the database. Each CTI in the
sequence is evenly split into a number of IBs (i.e., NIB and
RIB) among which the RIBs require encryption and the
NIBs not. Finally, since RIBs have higher transmission prior-

ities than NIBs, they can be transmitted based on the priority
in a descending order.

Our proposed DPRS algorithm is summarized in Algo-
rithm 8. As in Figure 9, a retrieval CTIS (SR) is first sent to
NM , and then, it is routed to the corresponding NS for effi-
cient filtering and refinement processing in parallel with
the aid of the UDI framework; finally, the user node receives
the answer CTISs. It is worth noting that in line 4, before
transmitting the CTISs to NU , the decryption processing of
the RIBs in the CTISs must be completed. As a result, the
reconstruction and display of the answer CTISs may be
guaranteed to be accurate. DPRSearch (SR, r,Ψ) is imple-
mented in detail in Algorithm 7.

Input: ΘðSR, rRÞ: the retrieval request
ΨðjÞ: the CTISs in Ni

S
Output: Ψ′: the answer CTISs
1. Ψ′ ⟵Φ; /∗ initialization ∗/
2. for each slave node Ni

Sdo
3. Ψ′ðjÞ⟵Φ; /∗ initialization ∗/
4. for the CTISs in ΘðSjC, RjÞdo
5. ifsimðSjc, SRÞ − rR < RjandsimðSjc, SRÞ < rRthen //case 1

6. left = cID ⋅ c1 + j ⋅ c2, right = cID ⋅ c1 + j ⋅ c2 + simðSjc, SRÞ + Rj

7. else ifsimðSjc, SRÞ − rR ≤ RjandsimðSjc, SRÞ ≥ rRthen //case 2

8. left = cID ⋅ c1 + j ⋅ c2 + simðSjc, SRÞ − rR, right = cID ⋅ c1 + j ⋅ c2 + Rj

9. else ifsimðSjc, SRÞ + Rj ≤ rRandsimðSjc, SRÞ ≥ Rjthen //case 3
10. left = cID ⋅ c1 + j ⋅ c2, right = cID ⋅ c1 + j ⋅ c2 + Rj

11. else ifsimðSjc, SRÞ + rR ≤ RjandsimðSjc, SRÞ < Rjthen //case 4
12. left = cID ⋅ c1 + j ⋅ c2, right = cID ⋅ c1 + j ⋅ c2 + Rj

13. else ifsimðSjc, SRÞ + rR ≤ Rjthen //case 5

14. left = cID ⋅ c1 + j ⋅ c2, right = cID ⋅ c1 + j ⋅ c2 + simðSjc, SRÞ + rR
13. else //case 6
14. exit()
15. end if
16. Ψ′ðjÞ⟵Ψ′ðjÞ ∪ BTreeSearch½left, right�
17. end for
18. for each Si in Ψ′ðjÞdo
19. ifsimðSi, SRÞ > rthenΨ′ðjÞ⟵Ψ′ðjÞ − Si
20. end for
21. Ψ′ ⟵Ψ′ ∪Ψ′ðjÞ
22. end for
23. returnΨ′

Algorithm 7: DPRSearch (SR, rR, cID).

Input: SR: a retrieval CTIS, r: retrieval radius, and Ψ: the n CTISs
Output: Ψ′: the result CTISs
1. A retrieval CTIS (SR) is submitted to NM ; //at the user node level
2. The retrieval request is routed to NS; //at the master node level
3. Ψ′ ⟵DPRSearchðSR, r,ΨÞ; //at the slave node level
4. Transmit the CTISs in Ψ′ to NU based on different transmission priorities

Algorithm 8: DPRS ðSR, r,ΨÞ.

9Wireless Communications and Mobile Computing



6. Experiments

In this section, we conduct extensive simulation experiments
to demonstrate the efficiency of the proposed DPRS method.

The mobile client is powered by a Qualcomm® Snap-
dragon™ 650 processor with a 1.8GHz quad-core CPU
and a 5.9-inch full HD 1080p screen. The client system is
built using the Java programming language and runs on
the Android platform [33]. The master and slave nodes have
1Gbps network connections. On the slave nodes, the IB (RIB
and NIB) replicas with varied transmission priority are
stored in a file system, and some structured data are stored
in MySQL [34]. Each node is equipped with a 2.7GHz
quad-core Xeon CPU, 2.0 Gigabyte of RAM, and a 1 Tera-
byte hard disk. The wireless network communication rate
ranges from 10Mbps to 100Mbps.

The experiment dataset comes from the affiliated Hang-
zhou First People’s Hospital of School of Medicine in Zhe-
jiang University, and it contains 50,000 CTISs used to
diagnose various types of lesions. Table 2 shows the distribu-
tion proportion of the lesion organs.

6.1. A Demo for Prototype System. Figure 10 depicts a dem-
onstration of the prototype system. An example of the CTIS
preprocessing backend interface is shown in Figure 10(a) in

which a PR has been marked by a blue rectangle line. In
Figure 10(b), a CTIS with the category “stomach” has been
inputted as a retrieval sequence. Six result CTISs were
quickly retrieved, and their matching IBs are restored and
shown.

6.2. Effectiveness of the DPRS Method. In the first experiment,
we use three categories of the CTISs (e.g., lung, leg, and
heart) as experimental data to demonstrate the effectiveness
of our DPRS method. To objectively evaluate the retrieval
effectiveness, we adopt two metrics (i.e., recall and precision
rates) that are defined below:

recall =
rel ∩ retj j

retj j ,

precision =
rel ∩ retj j

relj j ,
ð11Þ

where rel refers to the set of ground-truth and ret means the
set of result CTISs returned by a similarity range search.

In Figure 11, the performance comparisons of our tech-
nique with three categories of the CTISs are shown. In this
experiment, comparisons of the retrieval effectiveness of
the 10 CTISs with the same organ (i.e., lung, leg, and heart)
are conducted which are chosen at random from the data-
base. It can be seen from the figure that the precision
decreases steadily when the recall ratio increases.

6.3. Effect of Data Size. This experiment investigates the
effect of data size (i.e., the number of the CTISs) on the
retrieval efficiency, in which the network bandwidth is
100Mbps and the number of slave nodes is 20, and the
UDI framework is used. In Figure 12, as the data size
increases, the overall response time grows dramatically at
first and then slowly. The reason for this is that the index
performs better when there is more data.

6.4. Evaluation of Data Distribution Scheme. In this experi-
ment, we proceed to empirically investigate the data distri-
bution scheme for the DPRS processing performance.
Method 1 uses an SSL-based data distribution scheme, and
method 2 distributes CTISs randomly across multiple slave
nodes. Suppose that the network bandwidth is relatively
steady (e.g., 100Mbps), and the retrieval radius (r) is fixed.
Figure 13 demonstrates that when the number of the slave
nodes in the retrieval process grows, the total response time
for method 1 is smaller than that for method 2. The perfor-
mance gap rises dramatically with the further increase of the
number of slave nodes. This is because method 1’s load bal-
ance is superior to method 2, particularly when the number
of slave nodes is large.

6.5. Evaluation of the UDI Framework. The last experiment
takes an evaluation of the UDI framework on retrieval per-
formance. Here, method 1 employs the UDI, while method
2 linearly scans the CTISs at each slave node to obtain the
answer ones. When the data size is 50,000 and the network
bandwidth is 100Mbps, the gap between the response times
of the two approaches widens as the number of the slave
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Figure 9: An example of the DPRS processing.

Table 2: The distribution proportion of the lesion organs in the
50,000 CTISs.

Lesion organ
names

Percentage
(%)

Lesion organ
names

Percentage
(%)

Stomach 15% Chest 15%

Brain 13% Liver 10%

Lung 7% Spleen 8%

Heart 10% Kidney 10%

Abdomen 12%
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(a) Preprocessing (b) Retrieval results

Figure 10: An example of the prototype system.
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nodes increases from 20 to 100 (ref. Figure 14) since with the
aid of the UDI framework, finding the answer CTISs is sig-
nificantly faster than without it, especially when there are a
lot of slave nodes.

7. Conclusions

In this paper, we introduced the DPRS method—a progres-
sive distributed and parallel similarity retrieval of CTISs,
which can ensure the high performance of the privacy-
preserving similarity retrieval under the condition of low
and unstable network bandwidth. To efficiently minimize
the image transmission cost and enhance the retrieval reli-
ability, we also devised four supporting techniques, i.e., (1)
PCTI-based similarity measurement, (2) lightweight
privacy-preserving strategy, (3) SSL-based data distribution
scheme, and (4) the UDI framework. The experimental
results reveal that the DPRS method is better for retrieving
CTISs in terms of decreasing network communication costs

and maximizing the parallelism in I/O and CPU while main-
taining security.
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upon request.
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