
Research Article
Novel Shuffling Countermeasure for Advanced Encryption
Standard (AES) against Profiled Attack in Mobile
Multimedia Services

JongHyeok Lee ,1 Jiyoon Kim,1 and Dong-Guk Han 1,2

1Department of Financial Information Security, Kookmin University, 02707 Seoul, Republic of Korea
2Department of Information Security, Cryptology and Mathematics, Kookmin University, 02707 Seoul, Republic of Korea

Correspondence should be addressed to Dong-Guk Han; christa@kookmin.ac.kr

Received 12 May 2022; Accepted 21 June 2022; Published 13 July 2022

Academic Editor: Yuanlong Cao

Copyright © 2022 JongHyeok Lee et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Mobile multimedia services are gaining popularity among many users by developing wireless communication and mobile devices.
Mobile multimedia has alleviated conventional multimedia’s time and space limits, making it easier for consumers to access
services and meet content demands. However, cyber risks lie in the shadows of the expansion of mobile multimedia services,
threatening to continue wreaking havoc. Although various methods exist to defend against these cyber threats, side-channel
analysis has remained a critical challenge in the current approaches that rely on cryptographic algorithms. Nowadays, research
on deep learning-based side-channel analysis is receiving much attention. Attacks are constantly performed against
implementations, to which existing countermeasures against traditional side-channel analysis are applied, using various
artificial neural network structures. However, while studies on the implementations to which masking and simple hiding
schemes using jitter are active, studies on the implementations to which the shuffling scheme or the random insertion of
dummy operations scheme are applied have been relatively less attention. In a previous study, Lee and Han has used deep
learning to distinguish between real and dummy operations in an implementation that combined shuffling scheme and
random insertion of dummy operations scheme. They also proposed countermeasures against their attacks. However, they did
not choose an appropriate environment that is as close to noise-free as possible, and their countermeasure still has flaws.
Therefore, in this study, we analyze the causes of vulnerability of the previous countermeasure and propose a novel
countermeasure that can completely solve them. The novel countermeasure is a method of uniformly applying shuffling
schemes and random insertion of dummy operation schemes to byte-independent and byte-dependent operations of an
advanced encryption standard, respectively. It was confirmed that our countermeasure is safe from attackers who perform
profiled attacks even in an experimental environment with almost no noise.

1. Introduction

Mobile multimedia services have risen in response to the
advancement of mobile communication technologies and
increasing demand for content. Especially with the introduc-
tion of 5G, multimedia content can now be quickly delivered
to users with high communication capacity, transmission
speed, and low latency. Accordingly, the global mobile sub-
scriber base is predicted to grow from 5.1 billion in 2018
to 5.7 billion in 2023, representing an increase from 66%
of the worldwide population in 2018 to 71% in 2023 [1].

However, as the mobile multimedia industry grows, cyber
threats against it become more diverse and complex. These
threats can cause various damages to both customers and
service providers. In this paper, we focus on side-channel
analysis among the cyber threats of mobile multimedia
services.

Side-channel analysis reveals secret information based
on the fact that the power consumption of cryptographic
devices depends on intermediate values of the cryptographic
algorithms. These dependencies are of two types, data and
operation dependency [2]. Typical attack methods utilizing

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 6495546, 12 pages
https://doi.org/10.1155/2022/6495546

https://orcid.org/0000-0002-7770-2276
https://orcid.org/0000-0003-1695-5103
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6495546


data dependency are differential and correlation power anal-
ysis [3, 4]. On the other hand, other methods use operation
dependency is simple power analysis [3]. Simple power anal-
ysis recovers secret information using the difference in oper-
ation according to the secret information for asymmetric
cryptographic algorithms or is mainly used to distinguish
the operation of symmetric cryptographic algorithms to
enable intensive side-channel trace collection. Therefore,
simple power analysis uses a single trace, whereas differential
and correlation power analyses use many traces because
these are attacks that recover secret information using statis-
tical techniques.

Countermeasures against side-channel analysis break
data dependency or operation dependency of side-channel
information. Software countermeasures usually break data
dependency which is divided into masking [5, 6] and hiding
schemes [2, 7]. Masking schemes overlay random values on
an intermediate value to make it seem to be random. This
makes it impossible for an attacker to infer the intermediate
value. On the other hand, hiding schemes randomize the
execution time of operations to prevent an attacker from
estimating the operation time. Masking schemes logically
block specific attacks, and for an attacker to attack a target
that the masking schemes block, high-level attacks must be
used to neutralize the masking schemes, compared with hid-
ing schemes where it only increases an attack complexity by
increasing the number of traces required by the attacker.

There are several methods to reduce the attack complex-
ity increased by hiding schemes. One is the alignment
method, which is commonly used. This type of method
comprises static alignment, elastic alignment, and alignment
schemes using pattern recognition or hidden Markov
models [2, 8–10]. Recently, as research on deep learning-
based side-channel analysis (DLSCA) progresses, studies
have been published where some deep learning-based side-
channel analyses neutralize hiding schemes [11–13]. In addi-
tion, studies on DLSCA against shuffling and dummy oper-
ations are being actively conducted [14–16]. However, they
mainly deal with desynchronization due to jitter, and so
on, rather than shuffling scheme or the random insertion
of dummy operations scheme. Lee and Han performed
machine learning-based side-channel analysis for the first
time on a target in which the shuffling scheme and the ran-
dom insertion of dummy operation schemes were used [17].
They showed that an attack was possible and at the same
time suggested a countermeasure.

1.1. Our Contributions. In this study, we question the safety
of the previous countermeasure. In a previous study, the
authors experimentally demonstrated the safety of the pro-
posed countermeasure but their experimental environment
was noisy when compared to this present study [17]. More-
over, the previous countermeasure directly refers to the
shuffled order array exposing the vulnerability. Because of
the noise in the experimental environment, this vulnerability
did not appear in the experimental results.

The current study shows that the previous countermea-
sure is insecure by performing profiled attacks on the
ChipWhisperer-Lite board [18], which is considered an ideal

environment with particle noise. Furthermore, this shows
that the previous countermeasure is ineffective and reveals
the cause of its weakness.

A novel countermeasure, which is presently used in the
study, was designed based on the vulnerability causes that
were analyzed. The design concept of the novel countermea-
sure is to apply the shuffled operation order to the confusion
and diffusion layers. Therefore, a uniform hiding scheme
can be applied to the entire encryption algorithm. The novel
countermeasure has been experimentally proven to be safe
from profiled attacks with strong attacker assumptions in
an ideal environment.

1.2. Organization. The remainder of this study is structured
as follows: Section 2 introduces hiding schemes, related
works, and previous countermeasures as preliminaries. Sec-
tion 3 describes the profiled attacks targeting the previous
countermeasure and their results. Section 4 shows the novel
shuffling countermeasure, which tolerates profiled attacks.
Section 5 demonstrates the safety of the proposed counter-
measure. Section 6 reveals the conclusion.

2. Preliminaries

This section briefly describes hiding schemes, related works,
and the previous countermeasures as preliminaries.

Input: IN[32], ORD[32]
Output: OUT[32]
1: fori⟵ 0 to 31do
2: OUT[ORD[i]]⟵Sbox[IN[ORD[i]]]
3: end for

Algorithm 1: Pseudocode for the previous countermeasure [19]

1; OUT[ORD[i]] = Sbox[IN[ORD[i]]]
2 movw r28, r24
3 ldi r26, 0x13
4 ldi r27, 0x22
5 ldi r20, 0x33
6 ldi r21, 0x22
7 ld r18, X+
8 ldi r19, 0x00
9 movw r30, r28
10 add r30, r18
11 adc r31, r19
12 ld r30, Z
13 ldi r31, 0x00
14 subi r30, 0xF6
15 sbci r31, 0xDF
16 ld r25, Z
17 movw r30, r22
18 add r30, r18
19 adc r31, r19
20 st Z, r25

Listing 1: Assembly code for the previous countermeasure [19].

2 Wireless Communications and Mobile Computing



2.1. Hiding Schemes. Hiding schemes make the power con-
sumption of cryptographic devices independent of the inter-
mediate values and the operations that are performed [2].
There are two approaches to achieving this purpose. The
first approach is to make devices consume power randomly,
and the second approach is to make devices consume the
same amount of power for every operation and data value.
Unfortunately, the ideal goal of randomizing or equalizing
power consumption is not realistically achievable. However,
there are several proposals to help get closer to this goal.
These proposals are divided into two groups. The first group
randomizes power consumption by performing operations
at different moments. The second group touches on the
amplitude dimension of power consumption. Because this
study is about the first group, we would explain the first
group in more detail.

The most common techniques for randomizing the exe-
cution of operations are the random insertion of dummy
operations and shuffling. The random insertion of dummy
operations is to randomly insert dummy operations during
the execution of the operations. In this technique, randomly
generated numbers are used to determine how many
dummy operations to insert at different positions. As these
random numbers are larger, it becomes difficult for an
attacker to successfully perform an attack, but there is a dis-
advantage in that the implementation throughput is low-
ered. The shuffling randomly changes the sequence of

operations that can be performed in an arbitrary order.
The shuffling similarly randomizes power consumption as
the random insertion of dummy operations, but the opera-
tions that can be shuffled depend on the cryptographic algo-
rithm and is limited. Therefore, in practice, the shuffling and
the random insertion of dummy operations are often com-
bined and used.

2.2. Related Works. Assuming that shuffling and random
insertion of dummy operations are combined and imple-
mented and that up to d dummy operations can be added
to n real operations, the attack complexity for recovering
one key byte is 1/ðn + dÞ. That is, when the number of
side-channel traces required to recover one key byte is α in
the implementation without countermeasure, the number
of required side-channel traces increases to α × ðn + dÞ2
when the countermeasures are applied [2]. However, if the
attacker can distinguish dummy operations from real opera-
tions, the random insertion of dummy operations is neutral-
ized and the number of required side-channel traces is
reduced to α × n2. For Sbox of Advanced Encryption Stan-
dard (AES) is fatal with a reduction of 75% when n = d =
16. This is a lethal number and can lower the attack com-
plexity intended by the designer. Therefore, it is critical to
make the dummy operation indistinguishable from the real
operation.

0 2500 75005000 10000 1500012500 17500

Point

0

–0.4

–0.3

–0.2

–0.1

0.1

Po
w

er
 co

ns
um

pt
io

n

Add ro
und key

Su
b byte

s

Sh
ift ro

ws

Mix 
columns

Add ro
und key

Su
b byte

s

Add ro
und key

Su
b byte

s

Sh
ift ro

ws

Mix 
columns

Figure 1: A power consumption trace of the previous countermeasure at optimization level -Os.

2,000

Point

2,500 3,000 3,500 4,000 4,500

0

–0.4

–0.2

0.2

Po
w

er
 co

ns
um

pt
io

n

Figure 2: A power consumption trace of the first SubBytes of Figure 1.

3Wireless Communications and Mobile Computing



Lee and Han showed for the first time the possibility of
distinguishing dummy operations according to the declara-
tion form of variables used to implement dummy operations
[19]. The dummy operations were distinguished using the

bounded collision detection criterion (BCDC) [20], which
is a simple criterion of signal similarity. To briefly explain
the method, a part of the first Sbox operation section is set
as a reference area, and the BCDC value is obtained for each

n 1

3

16

2

16

32

2

32

32

64

64

64

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

Convolution
3 × 1

Max-pooling 3

n–2

Convolution
3 × 1

(n–2)/2

2Convolution
2 × 1

Max-pooling 3

-2

Convolution
3 × 1

Convolution
3 × 1

2

Max-pooling

Figure 3: Convolutional neural network architecture.

4 Wireless Communications and Mobile Computing



area shifted by 1 point. If the first Sbox is a dummy (real)
operation, the area having a low BCDC value is a part in
which the dummy (real) Sbox operation is performed. As a
result, the attacker can filter out dummy operations with just
two trials even in a situation where the attacker does not
know whether the first Sbox operation is a dummy or a real
operation. However, the attack using BCDC has a disadvan-
tage where the reference region must be selected
heuristically.

The same authors later performed an attack using a neu-
ral network on the side-channel traces collected in a more
noisy environment [17]. A convolutional neural network
(CNN) for multilabel classification problems were used.
The attacks were successful for all other declaration types
except for the countermeasure proposed in their previous
study [19]. However, vulnerability still exists in the counter-
measure that was proposed. There is noise in the experimen-
tal environment used; thus, no vulnerability was found.

2.3. Previous Countermeasure. Lee and Han also presented
a countermeasure against the proposed attack in their
study [19], which proposes the attack that classifies
dummy operations using BCDC. Algorithm 1 is a pseudo-
code of their countermeasures. It was initially thought that
the vulnerabilities occur because the assembly codes are
generated differently. After all, the arrays used by the
dummy operations and the real operations are different,
or the memory addresses referenced are different even
when the same array is used. Therefore, the switch-case
statements were not used to circumvent the vulnerabilities
analyzed. Furthermore, the countermeasure was designed
so that the dummy and the real operations can use the
same array and refer directly to the array in which the
shuffled order is stored.

Listing 1 is an assembly code compiled with WinAVR
20100110 (GCC-4.3.3) by implementing Algorithm 1 in
the C language.

3. Profiled Attacks on
Previous Countermeasure

We implemented AES with hiding schemes of Algorithm 1
on an XMEGA128D4 microprocessor [21] using C language.
The power consumption was measured with a
ChipWhisperer-Pro (CW1200) [18]. WinAVR 20100110
(GCC-4.3.3) is used in the compiling process and it provides
-O0, -O1, -O2, -O3, and -Os as optimization levels. Detailed
descriptions of each compiler optimization levels are as
follows:

(i) -O0: this option does not attempt to optimize the
execution time and code size. It reduces the compi-
lation time and makes debugging generate the
expected results

(ii) -O1: this compiler reduces the code size and execu-
tion time. This option only performs basic
optimizations

(iii) -O2: this compiler performs nearly all supported
optimizations that do not involve a space-speed
trade-off

(iv) -O3: this compiler turns on all optimizations

(v) -Os: this enables all -O2 optimizations, except those
that often increase code size

Figure 1 shows the trace collected at optimization level
-Os. It was collected to include the first two rounds and part
of the third round because we unified the number of points
in the trace to use the same neural network as the experi-
ments (see Section 5). The trace for the SubBytes function
of the first round is shown in Figure 2. Sixteen real and
dummy operations were shuffled and performed, and it is
impossible to visually distinguish whether each operation is
real or the dummy.

Figure 3 shows the neural network structure to be used
in the experiments in this study. The data length of the 0th
layer in Figure 3 is indicated by n, which is an expression
for generalization because the number of trace points varies
according to the optimisation level. The number of points
collected in the trace at optimisation level -O0 is 62,000,
whereas the number of points collected at the rest is
18,000. This neural network uses a one-dimensional CNN,
five convolution layers, and three pooling layers. ReLU is
used as the activation function for each convolution layer,
and batch normalization is performed after the convolution
layer. The pooling layer is of max-pooling type, and a drop-
out ratio of 0.25 is applied after each pooling layer. After
layer 8, it passes through a dense layer with 32 output nodes.
The kernels of the dense layer are initialized using He nor-
mal initialization [22], and the activation function is Sig-
moid. The neural network is compiled using the Adam
optimizer with a learning rate of 0:001 and decay of 0:0001
and binary cross entropy as the loss function.

The attacker assumption which was set is that the
attacker can collect data to train the neural network and
obtain the shuffled order of operations from the profiling
device. Similar to the previous study [17], the labels are com-
posed of binary that only indicates whether the 32 opera-
tions were real or dummy. For example, if the following
index of the real operations were performed:

2, 3, 5, 6, 8, 10, 14, 16, 17, 18, 19, 24, 26, 27, 30, 31½ �, ð1Þ

Table 1: Test accuracies of the previous countermeasure according
to optimization levels.

Optimization levels Test accuracy

-O0 98.01875%

-O1 99.88125%

-O2 99.65000%

-O3 98.45625%

-Os 99.68125%

5Wireless Communications and Mobile Computing



we can construct the following thirty-two labels:

0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0½ �:
ð2Þ

Here, 0 represents the dummy operation and 1 repre-
sents the real operation.

For each optimization level, 10,000 traces were collected
in the variable key environment, 7,500 were used for training
and 2,500 were used for validation. With a fixed key, 1,000
traces were collected for testing. The batch size was set to
10 and 100 epochs were performed; if the validation accu-
racy did not improve during the 10 epochs, the training
was terminated early.

As a result of the training, the training was terminated early
before 80 epochs in all five optimization levels and the

R0 D0 D1 D15R1 R15

R0 D0 D1 D15R1 R15

S S S S S S

... ...

... ...

(a) In the case of the previous countermeasure

R0D1D15 D0R1 R15

R0 D0D1D15R1 R15

S S S S S S

... ...

... ...

(b) In the case of a novel countermeasure

Figure 4: Methods of applying the shuffling technique to the SubBytes function.

Input: Plaintext P½32� with dummy
Output: Plaintext P with dummy, shuffled orders K½32�, L½32�, and M½32�½4�, and inverse order K−1

1: for i⟵ 0 to 31 do ▷ Initialize arrays as non-shuffled orders
2: K½i�⟵ i and K−1½i�⟵ i ▷ K for AddRoundKey and SubBytes
3: S⟵ ð5 × ði mod 16Þ mod 16Þ + 16 × bi/16c
4: L½i�⟵ S and L−1½S�⟵ i ▷ L for ShiftRows
5: for j⟵ 0 to 3 do
6: M½i�½j�⟵ bi/4c + ði + j mod 4Þ ▷ M for MixColumns
7: end for
8: end for
9: for i⟵ 31 to 1 do ▷ Shuffling

10: R⟵
$ f0,⋯, ig

11: Swap P½i� and P½R�
12: Swap K½i� and K½R�
13: Swap K−1½K½i�� and K−1½K½R��
14: Swap L½i� and L½R�
15: Swap L−1½L½i�� and L−1½L½R��
16: L½L−1½i��⟵ R, L½L−1½R��⟵ i
17: Swap L−1½i� and L−1½R�
18: Swap M½i�½1� and M½R�½1�
19: Swap M½i�½2� and M½R�½2�
20: Swap M½i�½3� and M½R�½3�
21: if M½i�½1� = i and M½R�½3� = R
22: Swap M½M½i�½1��½1� and M½M½R�½3��½3�
23: else
24: Swap M½M½i�½1��½3� and M½M½R�½3��½1�
25: end if
26: Swap M½M½i�½2��½2� and M½M½R�½2��½2�
27: if M½i�½3� = i and M½R�½1� = R
28: Swap M½M½i�½3��½3� and M½M½R�½1��½1�
29: else
30: Swap M½M½i�½3��½1� and M½M½R�½1��½3�
31: end if
32: end for
33: return P, K, L, M, K−1

Algorithm 2:Generate orders for full shuffling

6 Wireless Communications and Mobile Computing



validation accuracies were over 98%. There was no overfitting,
and test accuracy at the optimization levels is shown in Table 1.

4. Novel Shuffling Countermeasure

In this section, we highlight the problem of the previous
countermeasure and proposed a novel shuffling counter-
measure that is safe from profiled attacker’s assumption.

4.1. Motivation. Previous research has shown that the com-
piled assembly codes are different when the variables used
by the real and dummy operations are declared separately,
and the assembly codes are different when the switch-case

Input: State S½32�, round key rk[32], and shuffled orders L½32� and M½4, 32�
Output: State S
1: for i⟵ 0 to 31 do ▷ AddRoundKey
2: S½i�⟵ S½i� ⊕ rk½i�
3: end for
4: for i⟵ 0 to 31 do ▷ SubBytes
5: S½i�⟵ Sbox½S½i��
6: end for
7: for i⟵ 0 to 31 do ▷ ShiftRows
8: T½i�⟵ S½L½i��
9: end for
10: for i⟵ 0 to 31 do ▷ MixColumns
11: temp1⟵ T½M½i�½1�� ⊕ T½M½i�½2�� ⊕ T½M½i�½3��
12: temp2⟵ xtimeðT½i� ⊕ T½M½i�½1��Þ
13: S½i�⟵ temp1 ⊕ temp2
14: end for
15: return S

Algorithm 3: Shuffled round function of AES

D 2

kd2

S

D 2

R 8

kr8

S

R 8

D 10

kd10

S

D 10

R 12

kr12

S

R 12

R 10

kr10

S

R 10

R 9

kr9

S

R 9

R 13

kr13

S

R 13

D 3

kd3

S

D 3

R 4

kr4

S

R 4

D 6

kd6

S

D 6

R 14

kr14

S

R 14

D 14

kd14

S

D 14

R 7

kr7

S

R 7

D 11

kd11

S

D 11

D 7

kd7

S

D 7

R 5

kr5

S

R 5

R 0

kr0

S

R 0

D 9

kd9

S

D 9

R 6

kr6

S

R 6

D 8

kd8

S

D 8

R 3

kr3

S

R 3

D 13

kd13

S

D 13

D 15

kd15

S

D 15

D 4

kd4

S

D 4

R 11

kr11

S

R 11

R 15

kr15

S

R 15

D 1

kd1

S

D 1

R 1

kr1

S

R 1

R 2

kr2

S

R 2

D 5

kd5

S

D 5

D 12

kd12

S

D 12

D 0

kd0

S

D 0

D 10

D 10

R 8

R 8

D 2

D 2

R 12

R 12

R 2

R 2

R 13

R 13

R 1

R 1

D 15

D 15

R 4

R 4

D 14

D 14

R 6

R 6

D 6

D 6

R 3

R 3

D 7

D 7

D 3

D 3

R 9

R 9

R 0

R 0

D 13

D 13

R 14

R 14

D 8

D 8

R 15

R 15

D 1

D 1

D 11

D 11

D 4

D 4

R 7

R 7

R 11

R 11

D 5

D 5

R 5

R 5

R 10

R 10

D 9

D 9

D 12

D 12

D 0

D 0

M M M M M M M M

State

AddRoundKey

SubBytes

State

ShiftRows

State

MixColumns

State

Figure 5: Structure of the novel shuffling countermeasure.

1; OUT[i] = Sbox[IN[i]]
2 movw r26, r22
3 movw r28, r24
4 ld r30, Y+
5 movw r24, r28
6 ldi r31, 0x00
7 subi r30, 0xF6
8 sbci r31, 0xDF
9 ld r20, Z

Listing 2: Assembly code for the novel countermeasure.

7Wireless Communications and Mobile Computing



statement is used even when the same variable is used [19].
Therefore, similar to Algorithm 1, the authors made the real
and dummy operations use the same array and operated by
directly referencing the array in which the shuffled order is
stored without using a switch-case statement. Therefore,
the assembly codes for the real and dummy operations are
generated identically as shown in Listing 1. Based on this,
the authors assumed that their countermeasure was safe.

Their experiment has a limitation in that the experimen-
tal verification was conducted on a white card with many
noises compared to the ideal environment. Because of the
low signal-to-noise ratio in noisy environments, leakage is
obscured by noise, making accurate experimental verifica-
tion difficult. Therefore, because of the experimental safety
verification of the previous countermeasure in a low-noise
environment, it was not safe at all optimization levels (see
Table 1).

To analyze the cause of this vulnerability, the assembly
code of Listing 1 was noted. Lines 3 and 4 of Listing 1 store
the address of the ORD array to the r26 and r27 registers.
Then, in line 7, the value of the element of the currently
pointed ORD array is loaded into the r18 register, and the
address of the following element is pointed. It was assumed
that the attacker could see the shuffled order (see Section
3). Therefore, line 7, in which the value of shuffled order is
stored in the register, is a vulnerable cause. The traces were
collected by deleting line 7 and attempted to attack the col-
lected traces, which yielded a test accuracy of nearly 50%.

Therefore, this demonstrated that line 7 is a vulnerable
cause.

This study concluded that the method of applying shuf-
fling should be modified to eliminate the abovementioned
vulnerability. A schematic of the method for applying the
shuffling scheme to the SubBytes function of the previous
countermeasure is shown in Figure 4(a). The values for real
and dummy operations are sequentially stored in the array,
and the operations are performed regardless of the order
stored in the array by referring to the shuffled order. Because
the vulnerability exists in the section that refers to the shuf-
fled order, it is necessary to configure the plaintext to be
stored in the shuffled order from the start (see
Figure 4(b)). However, it is difficult to perform encryption
while storing the values in the array in the shuffled order.
This is because, among the internal operations of the AES
encryption algorithm, ShiftRows and MixColumns are
byte-dependent operations. AddRoundKey and SubBytes,
which are byte-independent operations, can sequentially
operate on the shuffled and stored state array, but byte-
dependent operations must calculate the indices of the
values to be operated together. This will be covered in more
detail in the following section.

4.2. The Expansion of Shuffling Scheme to Other Operations.
In this section, a method was proposed for expanding the
shuffling scheme used in SubBytes to ShiftRows and Mix-
Columns, which are byte-dependent operations of AES.

0 2500 7500 10000 15000125005000

Point

17500
–0.4

–0.2

0
Po

w
er

 co
ns

um
pt

io
n

Add ro
und key

Add ro
und key

Mix 
columns

Sh
ift ro

ws

Su
b byte

s

Figure 6: A power consumption trace of the novel countermeasure at optimization level -Os.

3,000 3,200 3,400 3,600 3,800 4,000 4,200 4,400 4,600 4,800 5,000 5,200 5,400

Point

–0.4

–0.2

0

0.2

Po
w

er
 co

ns
um

pt
io

n

Figure 7: A power consumption trace of the first SubBytes of Figure 6.

8 Wireless Communications and Mobile Computing



Algorithm 2 is a pseudocode that shuffles plaintext array and
order arrays for AddRoundKey, SubBytes, ShiftRows, and
MixColumn. In this algorithm, 16 dummy operations are

used. P is the plaintext array with dummy added, and K , L,
and M are the order arrays of AddRoundKey and SubBytes,
ShiftRows, and MixColumns, respectively. Additionally, a
reverse-order array K−1 of K is generated for the recovery
of the ciphertext. Only the order array M for MixColumn,
where four bytes are used for operation at once, is a two-
dimensional array with a size of 32 × 4, and the rest are all
one-dimensional arrays with a length of 32.

First, lines 1 to 8 initialize the arrays in order before
applying the shuffling scheme. After that, lines 9 to 32 apply
the shuffling scheme using Fisher-Yates shuffle [23]. This
loop from the highest index to the lowest, and lines 11 to
13 shuffle the plaintext array and the order array for
AddRoundKey and SubBytes, respectively. Lines 14 and 17
shuffle the order array for ShiftRows, which is different from

0 20 40 60 80 100
0

0.5

1.5

1

Epoch

Lo
ss

Loss
Validation_loss

(a) Loss

Epoch

A
cc

ur
ac

y

Accuracy
Validation_accuracy

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

(b) Accuracy

Figure 8: Training result of the novel countermeasure with optimization level -Os.

Table 2: Test accuracies of the novel countermeasure according to
optimization levels.

Optimization levels Test accuracy

-O0 49.56250%

-O1 50.25625%

-O2 50.23750%

-O3 50.60625%

-Os 49.93125%

9Wireless Communications and Mobile Computing



order K for byte-independent operation, since values refer-
ring to the swapped value must also be swapped, so line 17
is required. Lines 18 to 31 should be shuffled in the order
of MixColumns. In the case of M, because it is a two-
dimensional array and four bytes are used in the operation
immediately, a maximum of 12 values must be swapped.

Algorithm 3 is the pseudocode for the round function
that uses the shuffled orders generated in Algorithm 2.
AddRoundKey and SubBytes are byte-independent opera-
tions, and because the state array has already been shuffled
and stored, sequential operations are performed in the order
in which they are stored. ShiftRows is a one-byte dependent
operation that operates regarding the order array L (line 8).
In MixColumns, the operations from lines 11 to 13 are con-
ducted. The operation on one column of MixColumns is a
polynomial product with a fixed polynomial mðxÞ using x4

+ 1 as the multiplied modulo over GFð28Þ, which is given by

m xð Þ = 03f gx3 + 01f gx2 + 01f gx + 02f g: ð3Þ

Formulating this in terms of the coefficient is as follows:

si′= 02f g · si ⊕ 03f g · s i+1ð Þ mod 4 ⊕ s i+2ð Þ mod 4 ⊕ s i+3ð Þ mod 4:

ð4Þ

This can be written as follows:

si′= s i+1ð Þ mod 4 ⊕ s i+2ð Þ mod 4 ⊕ s i+3ð Þ mod 4
� �

⊕ 02f g · si ⊕ s i+1ð Þ mod 4
� �

:

ð5Þ

The codes from lines 11 to 13 of Algorithm 3 are the
same as Equation (5). Here, xtime means f02g · x.

Figure 5 schematically shows Algorithm 3. The index of
the state array is an example, and arrows in the schematic of
ShiftRows and MixColumns change each time according to
shuffling.

5. Demonstration

In this section, the safety of the novel shuffling countermea-
sure proposed in Section 4 is experimentally confirmed.
First, the assembly code generated by the compiler was
observed. Listing 2 is the assembly code of the SubBytes part
of the novel countermeasure. Sbox operations are performed
in the order stored in the state array without referring to the
order array.

Figure 6 shows the power consumption trace of the
novel countermeasure. Compared with Figure 1, the length

of one round is approximately 2.1 times longer. In detail,
the length is increased by applying the dummy operation
and shuffling scheme to AddRoundKey, ShiftRows, and
MixColumns, whereas the length of SubBytes is shortened
by reducing the array reference once. The power consump-
tion trace of the SubBytes part is shown in Figure 7. It is
impossible to distinguish between the dummy and the real
operation.

The traces of the novel countermeasure were also col-
lected in the same environment as the traces of the previous
countermeasure. The power consumption trace of the XME-
GA128D4 chip was collected with ChipWhisperer-Pro (see
Section 3). At each of the four optimization levels, 10,000
traces were collected with the variable key and 1,000 traces
were collected with the fixed key. Additionally, the artificial
neural network also used the same model used in the previ-
ous countermeasure (see Figure 3). The experiments were
conducted using the same learning environment in Section
3. The learning graph at the optimization level -Os is shown
in Figure 8. The learning graphs at the remaining optimiza-
tion levels also have a similar shape to Figure 8. While the
training loss decreases and the training accuracy rises, the
validation loss increases again and the validation accuracy
stops around 0.5. The test accuracy of the novel countermea-
sure at all optimization levels is shown in Table 2. The accu-
racy of 0.5 indicates that the neural network does not
properly classify because it is a binary classification problem.
Therefore, our novel countermeasure is safe at all optimiza-
tion levels because attackers cannot distinguish between real
and dummy operations.

The countermeasure of the study is not only safe but also
effective. The cycles per byte of AES implementations are
shown in Table 3. The implementation with the novel coun-
termeasure takes approximately eight times more cycles per
byte than the unprotected implementation, and approxi-
mately 1.8 times as long as the implementation with the pre-
vious countermeasure applied. The previous
countermeasure used dummy operations for only the Sub-
Bytes function, but the novel countermeasure used dummy
operations for all functions, so the overhead is inevitable.
According to H. Kim et al. [24], when a masking counter-
measure is applied to AES, the first and second masking
takes approximately 1.7 times and 23.7 times more cycles
per byte, respectively, compared to the nonprotected imple-
mentation. Considering this, the cost of adding dummy
operations and applying shuffling to the entire encryption
process, which is eight times more cycles, is tolerable.

6. Conclusions

In this study, the authors questioned the safety of the previ-
ous shuffling countermeasure. In a previous study [17], the
authors designed the countermeasure to be safe against
attackers using machine learning and performed experimen-
tal verification but were unable to fully confirm the counter-
measure because the experimental environment was set to a
noisy environment. As a result of reverification in the appro-
priate environment, it was confirmed that the previous
countermeasure was not safe.

Table 3: Cycles per byte of AES implementations with and without
a countermeasure.

Implementation Cycles per byte

Unprotected AES 127

AES with the previous countermeasure 572

AES with the novel countermeasure 1028

10 Wireless Communications and Mobile Computing



Previous countermeasures applied the hiding schemes
only to the byte-independent operations of the crypto-
graphic algorithm. The cause of the weakness of the previous
countermeasure was analyzed, and a novel countermeasure
was designed using the shuffling and random insertion of
dummy operations schemes up to the byte-dependent oper-
ation of AES to avoid the weakness. Moreover, to confirm
the safety of the proposed countermeasure, an experimental
verification was conducted in an environment with as little
noise as possible. As a result, even assuming a strong
attacker who knows the indices of the dummy operations,
the neural network has not learned to distinguish the
dummy operations. Therefore, the proposed countermea-
sure is safe.

In future works, countermeasures for other block ciphers
can be designed similarly to those designed for AES in this
paper. Since the types of components used for each block
cipher are different, a dedicated design for each is required.
In this paper, an optimized design of the proposed counter-
measure was not considered. Therefore, an optimized design
for the full-hiding scheme is also required.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2021-0-
00903, Development of physical channel vulnerability-based
attacks and its countermeasures for reliable on-device deep
learning accelerator design).

References

[1] Cisco, Cisco annual internet report (2018-2023), 2020, https://
www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internetreport/white-paper-c11-741490
.html.

[2] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks:
Revealing the Secrets of Smart Cards, vol. 31, Springer Science
& Business Media, 2008.

[3] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Annual international cryptology conference, pp. 388–397, Ber-
lin, Heidelberg, 1999.

[4] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis
with a leakage model,” in International Workshop on Crypto-
graphic Hardware and Embedded Systems, pp. 16–29, Springer,
Berlin, Heidelberg, 2004.

[5] C. Herbst, E. Oswald, and S. Mangard, “An AES smart card
implementation resistant to power analysis attacks,” in Inter-

national conference on applied cryptography and network secu-
rity, pp. 239–252, Berlin, Heidelberg, 2006.

[6] M. Rivain and E. Prouff, “Provably secure higher-order mask-
ing of AES,” in International Workshop on Cryptographic
Hardware and Embedded Systems, pp. 413–427, Springer, Ber-
lin, Heidelberg, 2010.

[7] M. Rivain, E. Prouff, and J. Doget, “Higher-order masking and
shuffling for software implementations of block ciphers,” in
International Workshop on Cryptographic Hardware and
Embedded Systems, pp. 171–188, Springer, Berlin, Heidelberg,
2009.

[8] J. G. van Woudenberg, M. F. Witteman, and B. Bakker,
“Improving differential power analysis by elastic alignment,”
in Cryptographers’ Track at the RSA Conference, pp. 104–119,
Berlin, Heidelberg, 2011.

[9] D. Strobel and C. Paar, “An efficient method for eliminating
random delays in power traces of embedded software,” in
International Conference on Information Security and Cryptol-
ogy, pp. 48–60, Berlin, Heidelberg, 2011.

[10] F. Durvaux, M. Renauld, F. X. Standaert, L. V. Oldeneel tot
Oldenzeel, and N. Veyrat-Charvillon, “Efficient removal of
random delays from embedded software implementations
using hidden Markov models,” in International Conference
on Smart Card Research and Advanced Applications,
pp. 123–140, Berlin, Heidelberg, 2012.

[11] L. Wu and S. Picek, “Remove some noise: on pre-processing of
side-channel measurements with autoencoders,” IACR Trans-
actions on Cryptographic Hardware and Embedded Systems,
vol. 2020, no. 4, pp. 389–415, 2020.

[12] Y.-S. Won, X. Hou, D. Jap, J. Breier, and S. Bhasin, “Back to the
basics: seamless integration of side-channel pre-processing in
deep neural networks,” IEEE Transactions on Information
Forensics and Security, vol. 16, pp. 3215–3227, 2021.

[13] D. Kwon, H. Kim, and S. Hong, “Non-profiled deep learning-
based side-channel preprocessing with autoencoders,” IEEE
Access, vol. 9, pp. 57692–57703, 2021.

[14] H. Maghrebi, “Assessment of common side channel counter-
measures with respect to deep learning based profiled attacks,”
in 2019 31st International Conference on Microelectronics
(ICM), pp. 126–129, Cairo, Egypt, 2019.

[15] H. Maghrebi, Deep Learning Based Side Channel Attacks in
Practice, Cryptology ePrint Archive, 2019.

[16] L. Masure, C. Dumas, and E. Prouff, “A comprehensive study
of deep learning for side-channel analysis,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, vol. 2020,
no. 1, pp. 348–375, 2020.

[17] J. Lee and D.-G. Han, “DLDDO: deep learning to detect
dummy operations,” in International Conference on Informa-
tion Security Applications, pp. 73–85, Cham, 2020.

[18] NewAE, CW 1200: Chipwhisperer-pro, NewAE Technology,
2021, https://media.newae.com/datasheets/NAE-CW1200_
datasheet.pdf.

[19] J. Lee and D.-G. Han, “Security analysis on dummy based side-
channel countermeasures–case study: AES with dummy and
shuffling,” Applied Soft Computing, vol. 93, p. 106352, 2020.

[20] I. Diop, P.-Y. Liardet, Y. Linge, and P. Maurine, “Collision
based attacks in practice,” in 2015 Euromicro Conference on
Digital System Design, pp. 367–374, Madeira, Portugal, 2015.

[21] Atmel, AVR XMEGA D4 Devices Datasheet, Atmel Corpora-
tion, 2021, http://ww1.microchip.com/downloads/en/

11Wireless Communications and Mobile Computing

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internetreport/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internetreport/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internetreport/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internetreport/white-paper-c11-741490.html
https://media.newae.com/datasheets/NAE-CW1200_datasheet.pdf
https://media.newae.com/datasheets/NAE-CW1200_datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8135-8-and-16-bit-AVRmicrocontroller-ATxmega16D4-32D4-64D4-128D4_datasheet.pdf


DeviceDoc/Atmel-8135-8-and-16-bit-AVRmicrocontroller-
ATxmega16D4-32D4-64D4-128D4_datasheet.pdf.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into recti-
fiers: surpassing human-level performance on ImageNet clas-
sification,” in Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, Santiago, Chile,
2015.

[23] R. Durstenfeld, “Algorithm 235: random permutation,” Com-
munications of the ACM, vol. 7, no. 7, p. 420, 1964.

[24] H. Kim, S. Hong, and J. Lim, “A fast and provably secure
higher order masking of AES S-Box,” in International Work-
shop on Cryptographic Hardware and Embedded Systems,
pp. 95–107, Springer, Berlin, Heidelberg, 2011.

12 Wireless Communications and Mobile Computing

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8135-8-and-16-bit-AVRmicrocontroller-ATxmega16D4-32D4-64D4-128D4_datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8135-8-and-16-bit-AVRmicrocontroller-ATxmega16D4-32D4-64D4-128D4_datasheet.pdf

	Novel Shuffling Countermeasure for Advanced Encryption Standard (AES) against Profiled Attack in Mobile Multimedia Services
	1. Introduction
	1.1. Our Contributions
	1.2. Organization

	2. Preliminaries
	2.1. Hiding Schemes
	2.2. Related Works
	2.3. Previous Countermeasure

	3. Profiled Attacks on Previous Countermeasure
	4. Novel Shuffling Countermeasure
	4.1. Motivation
	4.2. The Expansion of Shuffling Scheme to Other Operations

	5. Demonstration
	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

