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Ferrography wear debris in lubricating oil contains abundant worthy information about the state of the machinery and
equipment. In order to develop an online monitoring system based on condition maintenance and fault diagnosis, wear debris
needs to be identified automatically. Through various tribological experiments, a dataset of seven kinds of wear debris was
established. In this study, DenseNet121 was used as the base network to construct a DCNN model (FWDNet) using the
transfer learning method. FWDNet obtained an accuracy of 90.15% through a 10-fold crossvalidation test. The results indicate
that FWDNet and DCNN mode is suitable for the identification of wear debris and can be used in actual condition monitoring
systems in the future.

1. Introduction

One important trend for mechanical equipment mainte-
nance is the application of condition monitoring techniques.
The idea is to analyze real-time data to monitor the health of
the equipment and predict the occurrence of faults [1, 2].
Currently, techniques that get focused on include vibration
analysis, acoustic emission with ultrasound, oil analysis,
and wear debris analysis (WDA). Each one has its own
advantages and constraints. It is widely accepted that a single
technique cannot meet the requirements for all situations;
still, wear debris analysis is considered as one of the most
effective approaches by many users of condition-based
maintenance techniques for the following reasons.

Firstly, wear debris is usually produced in the friction
pairs that move with each other. The relevant parameters
of wear debris, such as size, shape, and surface morphology
can reflect the wear mechanism and judge the position and
severity of wear generation [3, 4].

Secondly, the patterns of quantity and type of wear
debris changes over time have a strong correlation with the
state of the machine. It is possible to predict potential fail-

ures or component’s deterioration from a very early stage
to avoid catastrophic accidents [5, 6].

Although WDA can provide a lot of information for
problem detection and fault diagnosis, the technique has
not been widely used in the industry for that the classifica-
tion of wear debris, and the equipment fault diagnosis tech-
nology relies heavily on the experience of operators. These
limitations lead to the need for automation of this technol-
ogy from which the industry will undoubtedly facilitate
rapid diagnosis of equipment and reduce the need for
human resources [7].

Nowadays, the advancement and availability of the
instrument make it possible to wear debris classification
and equipment fault diagnosis [8]. Therefore, the method
of observing and analyzing the morphological characteristics
of wear debris is a promising online solution [9]. Until now,
researchers have done a lot of work in the establishment of
an automatic classification system of wear debris. It is
reported that various machine learning algorithms can be
used to distinguish wear debris using geometric parameters,
such as area, perimeter, and elongation parameters [10, 11].
The results show that these morphological characteristics
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can distinguish certain kinds of wear debris effectively. How-
ever, there are several kinds of abnormal debris larger than
20μm cannot be accurately identified. In the study by Sta-
chowiak et. al., they used scanning electron microscopy to
observe and analyze the morphological characteristics of
abrasive, fatigue, and sliding debris, such as shape, color,
and texture [12–14]. Studies have shown that these simple
features can distinguish between spherical, cutting, severe
sliding, and nonferrous metal debris. Wu et al.. had done a
lot of research on the real-time online detection of wear
debris [15]. Based on a watershed algorithm for gray image
segmentation, the team developed a set of online visual fer-
rography (OLVF). It made some progress in wear debris
extraction and overlapping particle separation. However,
the device did not obtain the morphological characteristics
of the debris; so, it could not accurately reflect the wear pat-
tern and position. In conclusion, the intelligent identifica-
tion of ferrography wear debris images had been studied
extensively, and the recognition of simple wear debris, such
as cutting and colored debris, had been basically realized.
However, there are still many problems in the realization
of complex wear debris and classification system, such as
the identification of severe sliding, lamellar fatigue, and spal-
ling fatigue debris, which are still the technical bottlenecks of
intelligent identification [16, 17].

Deep convolutional neural network (DCNN) is a branch
of deep learning, which includes a feedforward neural net-
work with convolution computation and deep structure
[18]. With the development of deep learning theory and
the improvement of numerical computing equipment,
DCNN has been developed rapidly and applied to computer
vision, natural language processing, and other fields [19, 20].
DCNN has broad prospects for wear debris’ detection; yet,
relevant research is nearly blank so far.

The research objective is to establish a deep convolu-
tional neural network for debris’ identification from scratch,
solving practical problems such as generating different kinds
of wear particles, DCNN model selection, and transfer learn-
ing testing [21]. Using this network to complete the task of
accurately identifying severe sliding, lamellar fatigue, spal-
ling fatigue, cutting, normal, spherical, and nonferrous metal
debris provides technical support for the online application
of ferrography. The main reason why we use the above seven
types of wear debris is that they are common in the process
of wear and can reflect the wear mechanism and machine
state.

2. Methodology

2.1. Dataset. In this study, according to the generation mech-
anism of severe sliding, fatigue laminar, chunky spalling
wear debris, and under the condition of strict control of tem-
perature, load, and speed, the experiment was carried out by
Bruker Universal Mechanical Tester shown in Figure 1(a),
which had a multipurpose foundation that can be fitted with
a series of driving modules that simulate rotation, linear or
oscillatory motion, and an upper bracket with a force trans-
ducer. Simulating different wear patterns by a series of tribo-

logical experiments had been performed: pin-disk test,
reciprocating sliding test, and four-ball test.

Here, Figure 1(b) showed the pin-disk module. The
upper sample was a fixed pin made of AISI 420 stainless
steel, and the lower sample was a rotating disk made of AISI
E52100 steel. 10ml of Great Wall L-CKT220 lubricating oil
was added to the friction pair. The load of the experiment
was set to 28 kg (274.4N) with a rotational speed of 900 r/
min and duration of 24 hours. When the friction pairs slid
relative to each other, the material was sheared off into wear
debris due to the adhesion effect. In the process of the pin-
disk test, slight and severe adhesive wear debris was
generated.

The reciprocating sliding test was used to generate severe
sliding wear debris. The upper sample was a reciprocating
pin made of HT250 cast iron, and the lower sample was a
fixed disk made of GCr15 steel. 12ml of Great Wall L-
CKT220 lubricating oil was added to the friction pair. The
load of the experiment was set to 45 kg (441N) with a recip-
rocating frequency of 5Hz on the stroke of 15mm and dura-
tion of 12 hours. Due to the excessive load and/or the high
speed, local adhesion and severe surface plastic flow on the
surface of the material, resulting in some severe sliding wear
debris.

The fatigue wear debris was generated by a four-ball test
machine, and Figure 1(c) shows the four-ball module. The
fatigue wear debris was generated by running for 30 hours
with a maximum load of 150 kg (1470N) and a velocity of
300 r/min. The microvolume of the friction surface material
was repeatedly deformed by the cyclic contact stress, result-
ing in cracks and the separation of wear debris.

In addition, we produced cutting debris by adding parti-
cles to the system and embedding them into the soft surface
and replaced the friction pair with aluminum alloy or copper
alloy to produce nonferrous wear debris. Spherical debris is
obtained from the lubricating oil of the rolling bearing.

SPECTRO-T2FM500 Ferrography analyzer was shown
in Figure 1(d), which can separate wear debris from lubricat-
ing oil by magnetic force. Images were photographed by the
optical microscope OlypusBX51 with a color charge couple
device (CCD) Camera, as shown in Figure 1(e). Most of
the pictures were taken under ×200 magnification because
it produces a sharp and clear image of the debris of size
20μm to 200μm, which are of particular interest in this
study. According to the size, shape, and surface texture of
the wear debris, different types of wear debris images were
strictly selected from the original images to make the dataset.
The advantage of an optical microscope is that sample prep-
aration is relatively easy, and it is possible to be transformed
to real-time on-line image capturing. Besides the pictures
were taken in the experiments described above, parts of the
images in Wear Particle Atlas were also included in the data-
set for diversity. Figure 2 shows some images of wear debris
produced in experiments.

To better assess the validity and applicability of the
model, the dataset was randomly divided into three parts,
namely, the training set, the validation set, and the test set.
The training set was applied to build the model. The valida-
tion set was applied to determine the network structure or
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set the hyperparameters of the model. The test set was
applied to evaluate the model finally. To prevent overfitting,
an important principle was that the test set cannot be ana-
lyzed or used in any way until the final model was obtained.
In our image dataset, wear debris was split into seven classes:
severe sliding, lamellar fatigue, spalling fatigue, cutting, nor-
mal, spherical, and nonferrous metal debris. There are a total
of 1400 images, 200 for every kind of debris, among which
40 were labeled images in the test set, 40 were in the valida-
tion set, and 120 were in the training set. An example of a
data splitting strategy was shown in Figure 3.

2.2. Deep Convolutional Neural Network. DEEP convolu-
tional neural network is a common form for image recogni-
tion tasks. Krizhevsky used the CNN with extended depth to
win the first place in the Image Net competition with the
best classification accuracy in 2012 [20]. It is like opening a

window, and DCNN models have been widely used in the
field of image identification and classification. DCNN used
the local receptive field to form the final global feature by
combining the local learned features. When the same convo-
lution kernel operated on different local receptive fields,
weight sharing was used, which significantly reduced the
amount of parameter calculation in the process of network
operation.

The DCNN network mainly consists of an input layer,
convolution (CONV) layer, pooling layer, fully connected
(FC) layer, and an output layer and is shown in Figure 4.
The purpose of the convolution operation is to extract differ-
ent features of the input. The first CONV layer may only
extract some low-level features such as edges, lines, and
angles. The network with more layers can extract more com-
plex features iteratively from low-level features [22]. The FC
layer usually appears in the last few layers, making weighted

(a) Bruker Universal Mechanical Tester (b) The pin-disk module

(c) The four-ball module (d) SPECTRO-T2FM500

(e) OlypusBX51

Figure 1: Instruments and equipment.
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summation for the preceding features. Nonlinearity refers to
an activation function that is usually applied after convolu-
tion or fully connected layer. The introduction of nonlinear
elements into the network enables the network to solve non-
linear problems, such as classification problems. The most
representative nonlinearity is ReLU, which can solve the
problem of gradient disappearance to a great extent [23].

From the demonstration figure, one can see that there are
also pooling and normalization layers. After feature extrac-
tion in the CONV layer, the output feature map will be
transferred to the pooling layer for feature selection and
information filtering. The function of the pooling layer is
to replace the result of a single point in the feature map with
the statistic of the feature map of its adjacent area. Normal-
ization is an operation to scale data into a small specific
interval, which can also solve the problem of gradient disap-
pearance and explosion to some extent [24].

The CONV and FC can be calculated as follows:

Xl
j = f 〠

i∈Mj

Xl−1
i ×Wl

ij + blj

 !
, ð1Þ

where Xl
j, Xl−1

i , Wl
ij, and blj are the feature matrices of the

output, the input, filters, and biases, i and j represent the
components of the input and output matrices, and f ðÞ is
the activation function.

The pooling can be calculated as follows:

Xl+1
j = down Xl

j

� �
, ð2Þ

Figure 2: Images of wear debris produced in experiments.

Training set
120 (60%)

Validation set
40 (20%)

Test set
never touched during training

40 (20%)

Figure 3: Data splitting strategy.
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where Xl+1
j and Xl

j are the feature matrices of the output
and the input, and downðÞ is the mean or maximum opera-
tion of the input feature matrices calculated by a filter with
the specified size.

2.3. The Basic Architecture of DCNN. In the past decade,
many DCNN models have been developed for image classi-
fication, such as AlexNet, VGGNet, GoogLeNet, ResNet, and
DenseNet [20, 22, 25–27]. These DCNNmodels have proved
their own effectiveness according to their respective datasets.
However, these models have not classified images of wear
debris; so, it is difficult to compare their classification perfor-
mance directly.

We firstly determined a basic architecture of DCNN,
which was selected from AlexNet, VGG16, InceptionV3,
ResNet50, and DenseNet121, by transfer learning with our
image dataset of wear debris. Here, transfer learning refers
to fine tuning of the model parameters with the dataset of
wear debris based on a model which has been trained on a
huge dataset such as ImageNet, so as to achieve an excellent
performance for our dataset quickly. Studies have shown
that transfer learning is almost always better used on a
new dataset.

As shown in Table 1, the architecture of 5 DCNN
models has completely different frameworks in terms of
the number of layers, convolution kernels, and connection
modes. The input size indicates the pixel size of the input
image. The data in the CONV block is expressed as “Recep-
tive field, Number of channels.” The data in the dense net is
expressed as “Connection type, Number of nodes.”

AlexNet consists of 5 CONV layers and 3 FC layers with
a total of 8 layers. In training, we changed the nodes of the
output layer from 1000 to 7 for the classification of our wear
debris.

VGG16 contains 16 weight layers, including 13 CONV
layers and 3 FC layers. This model adopts the strategy of
convolution layer stacking, which makes several continuous
convolution layers into a convolution layer group instead of
pooling immediately after convolution. At the same time, it

unifies the convolution kernel and the pooling size, that is,
3 × 3 convolution and the maximum pooling.

InceptionV3 has a depth of up to 22 layers. This model is
built in the form of network stacking and each subnetwork
as an inception module. This model consists of three types
of inception modules, named inception A, inception B, and
inception C, respectively, and their detailed structure is
shown in Figure 5. The inception module has two main
functions: one is to filter the input feature map on the con-
volution kernel of 3 × 3 and 5 × 5, respectively, which
improves the diversity of the learned features and enhances
the robustness of the network to different scales, and the
other is to combine the filtering results of different channels
with high correlation through 1 × 1 convolution, so as to
accelerate the convergence.

ResNet50 goes even deeper to 50 layers. The model
considers that it is impossible to learn a better network by
simply stacking layers. The reason is that, on the one hand,
gradient disappearance and explosion always exist;
although, technologies such as ReLU and Batch Normaliza-
tion can be alleviated to some extent; on the other hand,
with the deepening of the network, the accuracy reaches
saturation first and then degenerates quickly [28]. A bee-
line module containing identity mapping and residual
mapping was proposed to solve this problem. Instead of
learning the loss function, the bee-line module learns the
residual function FðxÞ, as shown in Figure 6(a). After con-
tinuous training and optimization, the residual mapping
will be pushed to 0, and the error is only left identity map-
ping. At this time, the network is always in the optimal
state. Therefore, the network will not degrade with the
increase of depth. Each block of ResNet50 is composed of
some residual blocks. The structure of the residual block
is shown in Figure 6(b).

DenseNet121 goes even deeper to 121 layers. In addition
to the basic operations of input layer and output layer, the
model has four dense blocks and transition layer between
each dense block. The transition layer is mainly used for
dimension reduction. Each dense block contains 5 layers,
each of which is directly connected to all the preceding

Modern deep CNN: 5 - 1000 layers

CONV
layer

Low-level
features

Convolution Non-linearity Norm-
alization

Pooling

Optional

Fully
connected

Non-linearity

Mid-level
features

Class
score

1 - 3 layers

High-level
features

CONV
layer

CONV
layer

FC
layer

Figure 4: The framework of DCNN.
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layers to achieve feature reutilization. Based on the design
concept of dense block, the network becomes narrower and
less parameter. The basic structure of dense block is shown
in Figure 7. The connection mode of DenseNet121 is equiv-
alent to that each layer directly connects input and loss,
which makes the transfer of features and gradients more
effective, and the network can also be deeper.

3. Transfer Learning Implementation

In the actual implementation process, researchers seldom
train an entire DCNN from scratch, because it is relatively
rare to have a dataset of sufficient size. What is commonly
done is to reuse a pretrained model on a huge dataset for
another task.

Inception A

3x3

3x3

1x1

3x3

Filter concat

1x1

Base

1x1

Pool 1x1

Inception C

nx1

1x1

1xn

nx1

Base

1x1

1xn

Pool

1x1

1x1

nx1

1xn

Filter concat

Inception B

Base

Pool1x1 1x1

3x3 1x3 3x1 1x1

1x1

1x3 3x1

Filter concat

Figure 5: The inception module.

Table 1: The framework of 5 DCNN models.

AlexNet (8 layers) VGG16 (16 layers) InceptionV3 (22 layers) ResNet50 (50 layers) DenseNet121 (121 layers)

Input size 227 × 227 224 × 224 299 × 299 224 × 224 224 × 224

CONV block 1 11 × 11, 96
3 × 3, 64
3 × 3, 64

Max. pool, 64

3 × 3, 32
3 × 3, 32
3 × 3, 64

Max. pool, 64

7 × 7, 64
Max. pool, 64

7 × 7, 64
Max. pool, 64

CONV block 2 5 × 5, 256
3 × 3, 128
3 × 3, 128

Max. pool, 128

3 × 3, 64
3 × 3, 80
3 × 3, 192

3 ×
1 × 1, 64
3 × 3, 64
1 × 1, 256

0
BB@

1
CCA 6 ×

1 × 1, 32
3 × 3, 32

 !

Avg. pool, 128

CONV block 3 3 × 3, 384
3 × 3,256
3 × 3, 256
3 × 3, 256

Max. pool, 256

Inception A, 288
Inception A, 288

4 ×
1 × 1, 128
3 × 3, 128
1 × 1, 512

0
BB@

1
CCA 12 ×

1 × 1, 32
3 × 3, 32

 !

Avg. pool, 256

CONV block 4 3 × 3, 384
3 × 3, 512
3 × 3, 512
3 × 3, 512

Max. pool, 512

Inception B, 768
Inception B, 768
Inception B, 768
Inception B, 768
Inception B, 768

6 ×
1 × 1, 256
3 × 3, 256
1 × 1, 1024

0
BB@

1
CCA 24 ×

1 × 1, 32
3 × 3, 32

 !

Avg. pool, 512

CONV block 5 3 × 3, 256
3 × 3, 512
3 × 3, 512
3 × 3, 512

Max. pool, 512

Inception C, 1280
Inception C, 1280

4 ×
1 × 1, 512
3 × 3, 512
1 × 1, 2048

0
BB@

1
CCA 16 ×

1 × 1, 32
3 × 3, 32

 !

Dense net
Fc, 4096
Fc, 4096
Fc, 1000

Fc, 4096
Fc, 4096
Fc, 1000

Avg. pool, 2048
Fc, 1000

Avg. pool, 2048
Fc, 1000

Avg. pool, 1024
Fc, 1000
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Figure 7: The basic structure of dense block.

(a) Residual learning: a building block (b) ‘Bottleneck’ building block for ResNet-50
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Figure 8: The validation accuracy curve of 5 DCNN models in the
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In the experiment, firstly, we build the above five DCNN
models based on the TensorFlow [29], including the net-
work structure and the training parameters and weights of
the corresponding dataset and ran on 2 NVidia GeForce
1080 Titan GPU. Secondly, we changed the input layer and
output layer of the pretrained model, the size of the input
image was processed according to Table 1, and the output
category was set to 7 according to the category of wear
debris. Thirdly, we keep the base network and parameters
unchanged and trained the added part. In training, we
employed operations such as displacement, rotation, scaling,
and flipping for the input image to expand the training data-
set, so as to improve the generalization ability and robust-
ness of the network. Finally, we verified the accuracy of the
model on the validation set.

The validation accuracy curve of 5 DCNN models was
shown in Figure 8. Obviously, the classification perfor-
mance of DenseNet121 and VGG16 was better than that
of the other three models. Resnet50 was the worst, and
its accuracy remained around 40%. The convergence speed
of AlexNet was the slowest, and it only converged around
the 20th epochs.

The above experiments were carried out on the basis of
freezing the base network and parameters, only changing
the output layer nodes. The effect may be affected by the
original training dataset, which cannot fully reflect the appli-
cability of the model to the image of wear debris. Next, we
unfroze each CONV blocks of the base network one by

one and fine-tuned the training parameters until the whole
base network was completely unfrozen.

From Figure 9, one can see the validation accuracy curve
of 5 DCNN models in the case of unfrozen the whole net-
work. Obviously, DenseNet121 and ResNet50 achieved the
best validation accuracy of more than 90%, but ResNet50
converged slower than DenseNet121. Especially in the initial
stage of learning, the validation accuracy of ResNet50 had
less than 30%, and the reason may be that the initial weight
was not applicable to the new task, resulting in the increase
of calculation cost. Although the convergence speed of Alex-
Net was the slowest, it needed to converge almost the 40th
epoch, and the validation accuracy was also the lowest, but
even more than 70%.

Table 2 shows the time cost per epoch in different blocks,
the validation accuracy, and the test accuracy of 5 DCNN
models. Because the number of layers of AlexNet was less
and the cost of calculation was lower, the whole network
was trained directly instead of fine-tuning its layers.

From the perspective of validation accuracy, with the
increase of the number of unfrozen network blocks, the val-
idation accuracy of all models was also increasing and
tended to be stable. Generally, the validation accuracy of
training on the whole network was the highest. From the
perspective of test accuracy, the test accuracy of all models
was slightly lower than the validation accuracy. Dense-
Net121 achieved the highest test accuracy of 88.39%. From
the perspective of time cost per epoch, ResNet50 had the

Table 2: The contrast of experimental results of 5 DCNN models.

DCNN models Fine-tuned layers Time cost per epoch (s) Validation accuracy (%) Test accuracy (%)

AlexNet The whole network 745 76.00 74.60

VGG16

Dense net 759 75.00

Block 5 760 81.00

Block 4 766 83.00

Block 3 759 85.00

Block 2 763 83.00

The whole network 759 84.00 83.99

InceptionV3

Dense net 770 70.00

Block 5 784 85.00

Block 4 791 88.00

Block 3 794 89.00

The whole network 798 88.00 82.19

ResNet50

Dense net 409 44.00

Block 5 420 89.00

Block 4 430 89.00

Block 3 437 91.00

The whole network 441 92.00 87.99

DenseNet121

Dense net 413 72.00

Block 5 437 86.00

Block 4 451 89.00

Block 3 486 93.00

The whole network 535 92.00 88.39
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highest efficiency, while DenseNet121 was slightly lower
than it, and the time cost of training for the other three
models was higher than them. This may be mainly due to
the contribution of the residual block and dense block struc-
tures. But with the improvement of computing ability, the
time cost of fine-tuning a DCNN model may become less
important. For example, the time to fine-tune the whole
InceptionV3 is about 60 minutes compared to only half the
time for DenseNet121.

Through the above analysis, DenseNet121 was used as
the basic structure for further optimization in this study.

4. Results and Discussion

Through transfer learning, we established a network frame-
work, including CONV layers and FC layers. Then, we
needed to adjust the network hyperparameters to make it
suitable for the classification of wear debris images. In order
to choose the optimal hyperparameters, we designed a series
of comparative experiments. These experiments were based
on the network structure of DenseNet121, which we trained

before. The optimization of one variable in the experiment
was based on other variables remain unchanged.

Wear debris image recognition is a multiclassification
problem; so, some properties of the model are determined.
A Softmax function was used to convert the linear prediction
value to the classification probability in the output layer.
RMSprop was used as the method of stochastic gradient
descent. The crossentropy loss function was chosen as the
objective function.

Si =
ei

∑ jej
, ð3Þ

sdw = βsdw + 1 − βð ÞdW2,
sdb = βsdb + 1 − βð Þdb2,

W =W − α
dWffiffiffiffiffiffi
sdw

p + ε
,

b = b − α
dbffiffiffiffiffiffi
sdb

p + ε
,

ð4Þ

H P,Qð Þ = Εx~P −log Q xð Þ½ �, ð5Þ
where Si is the probability score of the i-th element in an

array containing j elements. sdw and sdb are the gradient
momentum of the loss function accumulated in the previous
iteration, β is an exponent of the gradient accumulation, W
and b represent weight and bias matrix, respectively, and ε is
generally 10-8. HðP,QÞ represents the crossentropy loss
function of the probability distributions P and Q, while
Ex~P means that we use the probability distribution P to cal-
culate the expectation.

Firstly, we optimized the number of nodes in the FC
layers. The number of nodes in the last FC layer was deter-
mined, which was 7, which was the classification of wear
debris images. The validation loss of the 40th epoch for the
number of nodes in the penultimate FC layer was shown
in Figure 10. The experimental results showed that the opti-
mal number of nodes was selected to 512.
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Secondly, we optimized the dropout rate in FC layers.
Dropout is an effective way to prevent overfitting [30]. It
represents the proportion of randomly discarding several
output features of the layer during training. The validation
loss of the 40th epoch for the dropout rate was shown in
Figure 11. The experimental results showed that 0.5 was
the best choice for the dropout rate.

Finally, we optimized the learning rate. One suitable
learning rate can enable the loss function to converge to
the local minimum value at the appropriate time. When
the learning rate was set too small, the convergence process
became very slow. On the contrary, when the learning rate
was set too large, the gradient may oscillate back and forth
near the minimum value and may even fail to converge.
The validation loss of the 40th epoch for the learning rate
was shown in Figure 12. The experimental results showed
that the learning rate was selected to 10-5.

After the above experiments, we constructed a DCNN
model for ferrography wear debris image recognition, which
we named FWDNet. The final hyperparameters and test
accuracy of the network model were shown in Table 3. In
order to verify the fitting and generalization ability of the
model, we used the method of 10-fold crossvalidation test
[31]. During the crossvalidation, the wear debris dataset
was randomly divided into ten subsamples. Among the ten
subsamples, one subsample was reserved as the validation
dataset, and the remaining nine subsamples were reserved
as the training dataset. The crossvalidation process was
repeated ten times, and each subsample was used as valida-
tion dataset once. Finally, the average accuracy of 10 valida-
tion resulted in evaluating the model. From Table 3, one can
see that the accuracy of 10-fold crossvalidation was 90.15%.

Therefore, FWDNet is an excellent DCNN model for
image classification of ferrography wear debris and can be
used for real-time online detection of wear debris.

5. Conclusion

In this study, DenseNet121 is used as the base network to
construct a DCNN model (FWDNet) using the transfer
learning method for intelligent classification of ferrography
wear debris images. FWDNet contains up to 121 weight
layers, and the efficiency of feature extraction and gradient
descent is greatly improved by adopting the dense block
design concept. FWDNet obtained an accuracy of 90.15%
through a 10-fold crossvalidation test.

The intelligent identification and classification of ferro-
graphy wear debris images can reflect the wear state and
wear mechanism, which can provide the basis for condition
maintenance and fault diagnosis of equipment. In this study,
a dataset containing seven kinds of wear debris, including

severe sliding, lamellar fatigue, spalling fatigue, cutting, nor-
mal, spherical, and nonferrous metal debris, was established
through a series of tribological experiments. In order to con-
struct a real-time online wear debris intelligent recognition
system, expanding the dataset should be a long-term task.

Instead of manually designing and selecting the features,
FWDNet can automatically learn the features through mul-
tiple processing layers composed of nonlinear transforma-
tions to realize end-to-end processing, that is, from the
original image to the identification of different kinds of wear
debris, avoiding the accumulation and transmission of errors
caused by numerous steps applied in a traditional linear pro-
cess, and improving the efficiency and accuracy of wear
debris analysis.

In future research, we will pay more attention to pixel-
level segmentation algorithm to find a better ferrography
wear debris recognition algorithm.
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