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UAV is difficult to detect by visual methods at a long distance, so a UAV detection and tracking algorithm is proposed based on
image super-resolution. Firstly, a saliency transformation algorithm is built to focus on the suspected area. -en, a generative
adversarial network is established on the basis of ROI to realize the super-resolution of weak targets and restore the high-
resolution details of target features. Finally, the cooperative attention module is built to recognize and track UAV. Our ex-
periments show that the proposed algorithm has strong robustness.

1. Introduction

Small UAV has the characteristics of portability and strong
mobility and also has broad application space in unmanned
investigation. However, for long-distance UAV, only a
limited number of pixels are displayed on the image, which is
of great significance for its accurate discrimination [1]. -e
research on UAVmainly focuses on target tracking. Ibrahim
et al. [2] use UAV to track moving targets. Zhou et al. [3]
construct a Kalman filter to realize UAV tracking. Nodland
et al. [4] propose the track optimization strategy. Liu [5]
introduces prediction points to assist UAV track detection.
Ragi and Chong [6] propose an algorithm to dynamically
realize multi-UAV tracking. Yoo and Hong [7] realize UAV
detection and tracking by visual means. Kadouf and Mus-
tafah [8] analyze the color characteristics of UAV to realize
UAV tracking. Yu et al. [9] propose a new coordinate system
to analyze the attitude of UAV. Teuliere et al. [10] build a 3D
model to track the UAV flying indoors. Choi and Kim [11]
use monocular to analyze the UAV track. Quintero et al. [12]
use the output-feedback model to predict UAV flight tra-
jectory. Santos et al. [13] build a ground visual tracking
system to detect UAV. Zhou et al. [14] construct a Hough
transform to detect and track UAV. Vetrella et al. [15] realize

dynamic navigation through a multi-UAV network. Elloumi
et al. [16] propose a low-power tracking algorithm from the
perspective of UAV energy. Greatwood et al. [17] use parallel
means to realize rapid detection and tracking of UAV.
Santos et al. [18] propose a 3D model for UAV positioning.
Zhang et al. [19] use deep learning to build a coarse to fine
detection algorithm to realize UAV detection and tracking.
Huang et al. [20] build correlation filters based on deep
learning to realize UAV tracking. Rabah et al. [21] build a
model based on fuzzy set theory to realize target tracking.
Kokunko and Krasnova [22] propose variable constraint
mechanism to realize UAV tracking. Li et al. [23] propose
augmented memory for correlation filters to realize UAV
tracking. Li et al. [24] use deep learning network to extract
features and realize UAV object tracking. Moon et al. [25]
realize multi-UAV tracking based on deep learning network.

-rough the above analysis, main problems of many
research studies on UAV detection and tracking are as
follows. (1) Traditional target detection algorithms cannot
be effectively applied to UAV due to the small size of
UAV. (2) -e number of pixels on the image of UAV is
limited, and its features are not obvious. (3) -e flight
uncertainty of UAV leads to the construction difficulty of
the unified model.
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-erefore, on the basis of images, (1) a complete UAV
detection and tracking process is proposed, (2) the en-
hancement algorithm is built to improve the spatial reso-
lution of the target and a new idea of UAV detection is
proposed, and (3) according to the principle of visual
perception, a depth-based attention model is built to focus
on the area, where UAV is located to realize tracking.

2. Algorithm

According to the characteristics of UAV images, a UAV
detection and tracking algorithm is proposed based on
image super-resolution, as shown in Figure 1. Firstly, the
image composition is analyzed and the suspected area ex-
traction module is constructed. -en, a super-resolution
model is constructed to highlight local information and
increase signal strength. Finally, a deep learning module is
constructed to realize UAV tracking based on the attention
mechanism.

2.1. ROI Extraction. -e UAV is usually at a long distance,
so it presents a limited number of pixels on the image, which
leads to difficult detection from the spatial domain.
-erefore, the salient area is introduced to extract ROI. First
of all, the features are obtained by linear difference:

Cf � p1 + Ob fr R fθ( (  , (1)

where p1 is the characteristic, Ob is the gradient third-order
matrix, fr is the activation function, and R(fθ ) is the con-
volution calculation performed by θ. -e salient target area
model is constructed by supervised learning, and the image
is described as If(yj � 1 | Mi

t); then, yj represents the re-
liability of pixel j. -e corresponding cross-entropy loss
function is

Ei C; M
i
t  � − 

j∈X+

log If yj � 1|C; M
i
t  + 

j∈X−

log If yj � 0|C; M
i
t ⎡⎢⎢⎣ ⎤⎥⎥⎦, (2)

where X+ and X− represent the edge and background pixels
of the salient target area, respectively. Image segmentation is
realized through the edge of the salient target area, but the
resolution, affected by the multilayer transmission archi-
tecture, will gradually decrease with the change of layers,
which needs to be further strengthened:

Ci � Ob Ce,i; θ  + fh Ci+1( , (3)

where fh(Ci + 1) represents the enhancement processing of
the features of the previous layer. -e cumulative loss
function between the corresponding estimation result and
the real image is

ET � 
i

Ei Ce,i; M
i
t  + Ei Ci; M

i
t  . (4)

-e idea of edge enhancement is used to suppress the
weakening caused by multiple layers in the process of feature
fusion, in order to achieve more accurate salient target area
estimation. During the convolution operation, the feedback
mechanism is introduced to continuously input the edge
features and salient target area features of the image into the
convolution operation to obtain a new estimation graph
function:

It �
U R1(I(x, y); θ), R2 I

p
(x, y); θ( ; q( , t � 1,

U R1(I(x, y); θ), R2 I
t− 1

(x, y); θ ; q , t> 1,

⎧⎨

⎩ (5)

whereU(.) is deconvolution, Ip(x,y) is a priori graph, and q is
convolution parameter. Divergence occurs during feedback
correction. In order to solve this phenomenon, any two
pixels adjacent to each other can be used as a path in I(x,y).
Let all paths corresponding to n pixels be expressed as q�

{q0, . . ., qn}. -en, after obtaining the salient target edge, the
loss function is calculated as

L(x) � min
q,x



n
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⎩
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⎭. (6)

Let the width and height of L(x) bew and h.-emapping
matrix M � [mij]w×hcan be constructed:
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According to the mapping matrix, the position of the
salient target can be determined. On the basis of a priori
information feedback correction, the position of the edge of
the salient target can be distinguished to prevent the per-
formance degradation of the feedback correction and realize
the suspected area extraction.

2.2. ROI Super-Resolution Reconstruction. -e motion area
has been extracted in the previous section. On this basis, the
research on ROI super-resolution reconstruction is carried
out in this section to further determine whether UAV is
included. Because the target area is smaller than the back-
ground area, when the target area is enlarged, the back-
ground is enlarged at the same time, resulting in coarse-
grained information after over division.-erefore, we design
the feature super-resolution GAN, transform the weak target
features into super-resolution features through super-res-
olution processing in the feature space, and enhance the
feature representation of the weak target. -e structure is
shown in Figure 2.
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Let the original input image be XI. -e image X0.5I is
obtained by 2 times downsampling to obtain a pair of
low-resolution and high-resolution target features.
-e output features FI � F1I , F2I , . . . , Fq

I  and
F0.5I � F10.5I,F

2
0.5I, . . . , Fq

0.5I  are obtained through the
feature network. -e weak target features Fq

0.5I are iter-
atively generated into super-resolution features Sq

0.5I so
that the super-resolution features are similar to the
features Tq

I output by the supervisor as much as possible.
-e feature loss function is defined as

LF � 
C

q�1
T

q
I − S

q
0.5I

����
����
2
2. (8)

-e generator loss function is defined as

LG � − 
C

q�1
log D S

q
0.5I( . (9)

-e feature super-resolution discriminator adopts a
three-layer perceptron to train and distinguish Sq

0.5I and Tq

I .
-e discriminator loss function is defined as

LD � − 
C

q�1
log D T

q
I(  + log 1 − D S

q
0.5I( (  . (10)

-e feature super-resolution supervisor extracts the
high-resolution target feature TI similar to the low-resolu-
tion input feature as the supervision signal for super-reso-
lution model training, in order to enhance the stability of
training and improve the quality of super-resolution. In
order to avoid the inconsistency between the receptive fields
of low-resolution features and high-resolution features, a
feature extraction backbone-shared parameter network is
designed to extract the qth feature Tq

I which is more suitable
for training the super-resolution model without adding
parameters.

2.3. UAV Tracking. -rough the online recognition net-
work, we can enhance the discriminative power of the
classifier to distinguish the target from other interfering
objects in the background, minimize the false detection rate,
and complete the rough positioning of the target. We use the

depth regression structure to construct the network struc-
ture, as shown in Figure 3, which uses two-layer convolution
neural network:

f(x, w) � φ2 w2 ∗φ1 w1 ∗ x(  , (11)

where x is the countermeasure network feature graph
generated by feature super-resolution, w1 and w2 represent
the weight of the convolution layer, ∗ is a convolution
operation, and φ is the activation function. -e loss function
is defined as

L(w) � 
m

j�1
cj f xj; w  − yj

�����

�����
2

+ 
k

λk wk

����
����
2
, (12)

where m is the total number of feature graph samples, cj is
the learning weight, yj is the regression classification con-
fidence of every feature sample xj, and λk is a regular term.
Gauss–Newton algorithm is used to solve the problem.

We transform the target tracking task into a similarity
measurement problem and take the first frame z and the
candidate region x of subsequent frames as the input images
of template branch and detection branch, respectively.
Feature extraction network based on weight sharing φ(.)
maps to the feature space, and the metric function f(z.x) is
learnt to compare the similarity between the template image
and the candidate area search image. Finally, return the
response graph. In order to highlight the importance of
different spaces, a spatial collaborative attention module is
designed.

Channel attention models the dependencies between
channels, learns the association between features from the
semantic level, optimizes features, activates feature channels
more related to the target, and removes redundant features.
Suppose that the feature diagram extracted by MobileNetV2
network template branch and detection branch is φ(z) and
φ(x). A typical MobileNetV2 network template is shown in
Figure 4. -e global information of each channel is obtained
by global average pooling and condensing spatial dimen-
sions to provide salient target features. Input the results to
the input layer, hidden layer, and output layer. We reduce
the number of channels in the hidden layer to 1/16 of the
input layer. Output channel attention weight Ac{φ(z)} and
Ac{φ(x)}. Finally, the channel attention feature graph is

UAV

Input image sequence Suspected area extraction ROI feature
super-resolution

Others

UAV tracking
route

Figure 1: Algorithm flowchart.
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obtained by point multiplication with the input feature φc(z)
and φc(x).

In the collaborative attention module, each branch code
is integrated into another branch to make full use of the
background information. In order to facilitate matrix
multiplication with features, the output collaborative at-
tention weight A{φ(x)} and A{φ(z)}. After passing through
the channel attention and collaborative attention modules,
the weights of the two branches are fused to obtain φ′(z) and
φ′(x).

Spatial attention focus is used to describe the position,
which can construct the relationship between different
positions in the feature graph, and supplement the channel
attention through position weighted fusion. Feature graph
φ′(.) compresses along the channel dimension to obtain the
spatial attention weight As(.) and then obtains the final
attention feature graph.

-e feature graphs of each layer output by template
branch and detection branch in the network are normalized
by adjusting the convolution operation of layers, in order to
make the feature graph with uniform resolution and the
same number of channels.

Let the qth layer adjusted feature graph of classified
branch input be φq

cls(z) andφq

cls(x). -e adjusted feature
diagrams of the qth layer of regression branch input are
φq
reg(z) and φq

reg(z). Finally, the output is weighted and
fused:

A
q

cls � φq

cls(x)∗φq

cls(z),

A
q
reg � φq

reg(x)∗φq
reg(z).

⎧⎨

⎩ (13)

When classifying the foreground or background of each
candidate area, the same target may exist in multiple
overlapping rectangular boxes at the same time, so non-
maximum suppression (NMS) is used for elimination to
accurately track the target.

3. Experiment and Result Analysis

-e experimental data include 20 groups of UAV visible
light data from far to near, as shown in Figure 5, with an
image resolution of 1024×1024.

Based on the network structure, the image is normalized
to 512× 512 in order to ensure that small targets are not lost.
On Win10 operating system with Intel ® Core ™ I5-6500
CPU, 3.20ghz system, the proposed program is run by 8
frames/s, which cannot meet practical requirement. How-
ever, due to the continuity of the target, the images can be
processed at an interval of 1 frame, which can achieve near
real-time operation speed.

3.1. ROI Extraction Algorithm Performance. We introduce
the following indicators to measure the algorithm perfor-
mance [26], as shown in Table 1:

SEN �
TP

TP + FN
,

SPE �
TN

TN + FP
,

ACC �
TP + TN

TP + FP + TN + FN
,

FPF � 1 − ACC,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where SEN reflects the detection performance of the algo-
rithm for real targets, SPE reflects the detection performance
of the algorithm for false targets, ACC reflects the ratio of
correct test results to all samples in the test results, and FPF
reflects the ratio of false test results diagnosed as true targets.

-e experimental results are shown in Table 2. -e color
model built in [8] has a good detection effect on UAVs with
close range and obvious color characteristics. However, for
long-distance UAVs, it is difficult to obtain color infor-
mation and results in poor effect. Based on the target
composition structure, Zhou et al. [14] construct the model
through texture features, which is more stable than the color
model, and the effect is significantly improved. However, for
specific UAVs, the detection rate is limited. Zhang et al. [19]
construct a deep learning network based on the deep re-
inforcement learning (DRL) model to realize ROI detection.
It is the current mainstream target detection algorithm, and
the effect and performance are further improved. However,

Feature Extractor

ResNet
XI TI

XI FI

Feature Map

Feature Extractor

ResNet

X0.5I F0.5I

Feature Map Feature Super
Resolution

Fq
0.5I

Fq
I

Tq
I Discriminator

Conv BN ReLu Conv BN ReLu

Figure 2: Feature super-resolution countermeasure GAN.
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this process needs to traverse the global image, and the
computational cost is high and cannot meet the detection of
targets with different scales. Our proposed algorithm in-
troduces saliency region (SR) and focuses on the region of
interest step by step. It conforms to the principle of visual
perception and uses a priori knowledge to extract ROI. ACC
has reached 95. For areas with too small area, there is still a
risk of missing detection. On the basis of SR super-resolution
module is added to establish the relationship between low-
resolution and high-resolution target features, which further
improves the detection of small targets.

3.2. UAV Tracking Algorithm Performance. We introduce
the tracking success rate curve to intuitively show the al-
gorithm performance, as shown in Figure 6. For short-range
UAV tracking, all algorithms have achieved good results
because of the high-resolution of the target displayed on the
image. With the increase of distance, the performance of the

algorithm decreases. Kalman filter algorithm is the most
obvious. Because the size of the target changes greatly in the
image, the tracking is easy to be affected by the surrounding
environment. According to the difference between UAV and
background characteristics, fuzzy set constructs a segmen-
tation algorithm to realize target tracking and has certain
robustness to target size. Due to the UAV flying at low speed
and uniform speed, the model updating is stable, and all
algorithms have good tracking effect. However, in the face of
turning flight or sudden acceleration or deceleration, Kal-
man filter and fuzzy set algorithm will not track due to the
limitation of model updating speed. Augmented memory for
correlation filters has achieved good results in analyzing
short-time flight states. In depth network, UAV information

Feature
map
input

Coordination attention module

MaxPool

AvgPool

Shared
MLP Sigmoid × +

MaxPool

AvgPool

Conv

Sigmoid

Channel attention module

Spatial attention module

+
Feature

map
output

Figure 3: Spatial collaborative attention module.

Conv 1×1
Relu

Conv 1×1
Linear

Conv 1×1
Linear

Conv 1×1
Relu

Input Dwise 3×3
Relu ×

Stride=1

Stride=2

Input
Dwise 3×3

Stride=2 Relu

Figure 4: Convolution module block diagram.

Figure 5: UAV data.

Table 1: Test result indicators.
TP (True positive) FP (False positive)
FN (False negative) TN (True negative)

Table 2: Detection effect.

Algorithm SEN SPE ACC FPF
Color 73 21 76 24
Texture 82 20 86 14
DRL 88 12 90 10
SR 91 9 92 8
SR +UR 93 5 95 5
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Figure 6: Successful ratio curves of different algorithms.
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is obtained through a large number of training samples to
build the model, but the time dimension information is not
used, resulting in some limitations of the algorithm.
However, the proposed algorithm introduces the spatial
collaborative attention module to focus the target hierar-
chically to achieve target tracking, which decreases slowly,
and the performance is better than other algorithms.

4. Conclusion

Aiming at the difficulty of visual detection and tracking of
long-distance UAV, a complete set of weak and small UAV
detection process is proposed from the perspective of visual
cognition. -e ROI area is focused step by step to establish
and generate the GAN according to the idea of image super-
resolution. -e target details are restored to highlight the
characteristics of weak targets, and a collaborative attention
module is built to identify and track UAVs. -e algorithm
can be applied to fixed cameras, and the region of UAV can
be further determined by the difference between frames.
However, the proposed algorithm can also be applied to
mobile cameras to focus the UAV area according to the
saliency area. It can provide a new idea for the detection and
recognition of weak and small targets.
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