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Q-value initialization significantly influences the efficiency of Q-learning. However, there have been no precise rules to choose the
initial Q-values as yet correctly, which are usually initialized to a default value. This paper proposes a novel Q-value initialization
framework for cellular network applications and factorization Q-learning Initialization (FQI). The proposed method works as an
add-on of Q-learning that automatically and efficiently initializes the nonupdated Q-values by utilizing the correlation model of
the visited experiences built on factorization machines. In an open-source VoLTE network, FQI was introduced into Q-learning
and four improved variants (Dyna Q-learning, QðλÞ-learning, double Q-learning, and speedy Q-learning) for performance
comparison. The experiment results demonstrate that the factorized algorithms based on FQI substantially outperform the
original algorithms, often learning policies that attain 1.5-8 times higher final performance measured by the episode reward
and the convergence episodes.

1. Introduction

The complexity and large scale of radio access technologies
in future cellular networks impose significant operational
challenges [1]. In a cellular network, there is a multitude of
tunable parameters in every base station (BS) to maintain
and optimize numerous performance indicators. The
parameters have a significant impact on the performance
of BSs and should be cognitively adapted to the dynamically
changing network environments [2]. However, this is by no
means an easy task. First, with more advanced features being
deployed in the networks, the number of such parameters
increases significantly, and the dependencies among these
parameters are more intricate [3]. Moreover, the correlation
between different parameters and performance indicators is
beyond the capability of available analytical models, as cellu-
lar networks evolve to be extremely dynamic and complex
due to the scale, density, and heterogeneity.

Recently, leveraging reinforcement learning (RL) to
obtain the optimal control policy is emerging as a promising
solution [4–6], which enables an autonomous agent to learn
from their actions and consequences in the interactive envi-
ronment. Q-learning [7] is a well-known model-free RL
algorithm that finds an estimate of the optimal action-
value function. For finite state-action problems, it has been
shown that Q-learning converges to the optimal action-
value function [8]. However, it suffers from slow conver-
gence. The main reason is the combination of the sample-
based stochastic approximation and the fact that the Bell-
man operator propagates information throughout the whole
space. Many methods have been proposed to improve and
speed up Q-learning, such as reducing the state space
[9–11], modifying Q-value update [12–20], or specifying ini-
tial Q-values [21–23].

In this paper, we present a novel Q-value initialization
framework and factorization Q-learning initialization (FQI)
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to enhance the convergence of Q-learning for parameter
optimization in cellular networks. We test the proposed
framework on Q-learning and four improved variants (Dyna
Q-learning [12], QðλÞ-learning [13], double Q-learning [14],
and speedy Q-learning [15]) in an open-source cellular envi-
ronment: voice over-LTE (VoLTE) power control. The
experimental results demonstrate that the factorized Q
-learning and its variants based on FQI outperform the orig-
inal algorithms by 1.5-8 times on the valid actions and con-
vergence episodes.

The remainder of this article is organized as follows: Sec-
tion 2 reviews previous works and relates them to the cur-
rent research. In Section 3, we briefly describe the cellular
network model and formulate the optimization problem.
Section 4 introduces the preliminaries of Q-learning. Section
5 presents the FQI framework, its main design motivation,
and the algorithm that we use to build it. Section 6 conducts
extensive experiments to demonstrate the effectiveness of the
proposed framework in an open-source simulated VoLTE
network. Finally, the conclusion of the entire work, along
with the further research possibilities in the area, have been
documented in Section 6.

2. Related Work and Contributions

Q-learning has been widely applied in cellular networks as a
tool for parameter optimization problems [24], such as
backhaul optimization [25], handover optimization [26],
resource optimization [27], and power control [28]. In order
to improve and speed up Q-learning, many works have been
studied, which involve three aspects: reducing the state
space, improving Q-values update, and specifying initial Q
-values.

The first type of method is mainly to reduce the search-
able size of the state space. A hierarchical approach was pro-
posed to decompose the RL problem into subproblems,
where solving each of them will be more powerful than solv-
ing the entire problem [9]. The Kanerva coding approach
was proposed to reduce the number of states of Q-learning
for TCP congestion control [10]. The work in [11] relaxed
the constraint of action space for 5G caching to reduce the
learning complexity of Q-learning from exponential space
size to linear space size.

The second type of method is mainly to modify the Q
-value updating method. Dyna Q-learning [12] was pro-
posed to assign each state-action pair a bonus inversely pro-
portionate to the number of times the pair has been visited.
QðλÞ-learning [13] was proposed to extend Q-learning to
eligibility traces, which combines Q-learning with the
TD(λ) return estimation process. Double Q-learning [14]
was proposed to overcome the overestimation problem by
applying double estimators to Q-learning. Speedy Q-learn-
ing [15] was proposed to address the problem of slow con-
vergence in the standard form of the Q-learning algorithm.
A faster Q-table initialized method was proposed that does
not only update the Q-value of a single state-action pair
but adds estimates for the cost function for all other possible
actions of the current state for the first visiting one state [16].
A matrix-gain approach was designed to accelerate the con-

vergence of Q-learning by optimizing its asymptotic vari-
ance [17]. A linear function approximation to update Q
-values for 5G caching was used to offer faster convergence
and reduce the complexity of Q-learning [18]. An accelera-
tion scheme for Q-learning was proposed by incorporating
the historical iterates of the Q-function [19]. A new Q
-value updating mechanism was used, in which the Q value
of the similar state-action pairs are updated synchro-
nously [20].

The last type of method mainly appropriately specifies
the initialization Q-value. It has been shown that the initial
Q-values have a significant influence on the efficiency of
RL for goal-directed tasks [21]. A method in which the Q
-table is initialized to some maximum value and carefully
lowered towards the empirical estimates was proposed
[22]. A neural network-based Q-learning algorithm was pro-
posed by appropriately specifying initial Q-values [23].
Obviously, a good Q-value initialization method can further
strengthen the two types above methods to improve Q
-learning performance further. Nevertheless, there have been
no precise rules for choosing the initial Q-values as yet cor-
rectly, and Q-values are usually initialized to 0 or a random
value.

To enhance the convergence of Q-learning by initializing
Q-values automatically and efficiently for parameter optimi-
zation in cellular networks, this paper makes the following
specific contributions:

(1) Formulate Q-value initialization for the parameter
optimization problem as a collaborative filtering
problem that builds the correlation model between
the visited experiences

(2) Propose a novel Q-value initialization framework
based on factorization machines, factorization Q
-learning initialization (FQI), which continuously
predicts Q-values that still default value based on
the correlation model built on the visited experiences

(3) Conduct a set of experiments in an open-source sim-
ulated VoLTE network. The results show that the
proposed framework significantly improves the per-
formance of Q-learning and four improved variants
measured by the valid actions and convergence
episodes

3. Preliminaries and Motivation

RL is learning what to do (how to map situations to actions)
so as to maximize a numerical reward signal. The agent is
not told which actions to take but instead must discover
which actions yield the most reward by trying them. We
describe the essential ingredients in the RL in this section
briefly.

3.1. Markov Decision Processes. In order to formalize the RL
problem, Markov decision processes (MDP) formally are
used to describe an environment for most RL. An MDP is
defined by ðS ,A ,R,P , γÞ:
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(i) S is a finite set of possible states

(ii) A is a finite set of possible actions

(iii) R is a distribution of reward given (state, action)
pair, Ra

s = E½Rt+1jSt = s, At = a�
(iv) P is a state transition probability matrix, P a

ss′ =ℙ½
St+1 = s′jSt = s,At = a�

(v) γ ∈ ½0, 1� is a discount factor
All states in MDP has Markov property, referring to the

fact that the current state captures all relevant information
from the history, PðSt+1jStÞ = PðSt+1jS1,⋯, StÞ. A policy π
is the behaviour function of the agent from S toA that spec-
ifies what action to take in each state. The objective of RL is
to find the optimal policy π∗ that maximizes the expected
cumulative discounted reward:

π∗ = arg max
π

E 〠
t≥0

γtrt πj
" #

: ð1Þ

3.2. Q-Learning. In Q-learning, the Q-value function is to
measures how good a particular state-action pair is. The Q
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Figure 1: A motivating example for factorization Q-learning initialization. The blue entries indicate the visited state-action, that is, the
visited experiences. The white entries are the Q-values that have never been updated.
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lines. If the factorization threshold is reached, Q-table will be factorized to be completed based on factorization machines.
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Figure 3: Example for sparse real valued feature vectors x that is
created from the visited Q-table in Figure 1. Every row represents
a feature vector xi with its corresponding target yi. The first five
columns (green) represent indicator variables for the visited state;
the next four indicator variables (orange) for the visited action.
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-value function at state s and action a is the expected cumu-
lative reward from taking action a in state s and then follow-
ing the policy π:

Qπ s, að Þ = E 〠
t≥0

γtrt s0j = s, a0 = a, π
" #

: ð2Þ

The optimal Q-value function Q∗ is the maximum
expected cumulative reward achievable from a given (state,
action) pair:

Q∗ s, að Þ =max
π

E 〠
t≥0

γtrt s0j = s, a0 = a, π
" #

: ð3Þ

Q∗ satisfies the following Bellman equation:

Q∗ s, að Þ = Es′~S r + γ max
a′

Q∗ s′, a′
� �

s, aj
� �

: ð4Þ

The optimal policy π∗ corresponds to taking the best
action in any state as specified by Q∗. Q-learning uses the
following value iteration algorithm to solve for the optimal
policy:

Q s, að Þ⟵Q s, að Þ + α r + γ max
a

Q s′, a
� �

−Q s, að Þ
h i

: ð5Þ

Qðs, aÞ is the cumulated reward expected to be obtained
after taking a at state s, which is updated according to the
learning rate α, the discount factor γ, and the expected max-
imum value of the next state s′. Q-learning does converge to
the optimal state-action value function if the state-action

pairs are to be explored infinitely often [8]. During the learn-
ing phase, the agent needs to decide which action to choose,
either to find out more about the environment or to take one
step closer to the goal. Techniques for selecting actions in RL
are called exploration strategies. The most widely used
exploration strategies are ε-greedy and Boltzmann.

(i) ε -Greedy. The agent randomly explores with proba-
bility ε and takes the optimal action most of the time
with probability 1 − ε

(ii) Boltzmann. Boltzmann is an exponential weighting
scheme broadly used for balancing exploration and
exploitation. The probability of choosing an expo-
nential function of the empirical mean of the reward
of that action is denoted as follows:

P a sjð Þ = eQ s,að Þ

∑ae
Q s,að Þ : ð6Þ

PðajsÞ denotes the probability the agent selects action a
in state s.

3.3. Motivation. Q-values are usually set to default values in
Q-learning and represented by Q-table, which has a row for
each state and a column for each action. The update of the Q
-table depends on the interaction with the environment, and
the Q-values of the unvisited state-action pairs will remain
the default value. In the early stages of learning, the visited
state-action pairs are sparse, and most Q-values of the
state-action pairs are default values. Therefore, Q-learning
often performs extremely poorly in the early stages of learn-
ing due to less information about the environment being

Input: Factorization threshold μ, latent factor k, max iterations e
1: Calculate the percentage of visited states p through Eq. (7) and the increment of the percentage of visited states δ by Eq. (8).
2: If δ≥μ then
3: Extract the visited entries ðs, a,Qðs, aÞÞ from Q table as experiences triples.
4: Concatenate the one hot encodings of state s and action a, respectively, in experience

Tuples to form feature vector x and take Qðs, aÞ as the corresponding target.
5: Estimate the model parameters θ at most iterations e by Eq. (12).
6: Complete the Q table via Eq. (9).
7: Replace the original Q table with the factorized Q table.
8: End if

Algorithm 1: Factorization Q-learning initialization (FQI).

Base station 1 Base station L...

Serving signal Interfering signal

Serv
ing s

ign
al

Figure 4: Network environment. Performing power control on the signal from the serving BS while coordinating interference from the
other BS.
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forced to act more or less randomly. It is precisely these
challenges above that constitute the prime motivations of
this article. We are motivated to investigate the following
issue: how to utilize the visited experiences to initialize the
Q-values that have never been updated automatically and
efficiently to bootstrap Q-learning exploration?

Assuming that there are m UEs and n BSs in a cellular
network, we derive states, actions, and rewards from con-
structing the RL process to learn the best control strategy.
In the following, we describe them one by one.

(i) States. Let S = fsi = hsi1, si2,⋯, siui, sij ∈Oj, 1 ≤ j ≤ u, 1
≤ i ≤ jO1j × jO2j × ,⋯ , × jOujg be the set of states
of cellular networks with the size jSj, where Oj is
the discretization value set of the j-th network per-
formance indicator or attribute

(ii) Actions. Let A = faj = haj1, aj2,⋯, ajli, aji ∈Di, 1 ≤ i ≤
u, 1 ≤ j ≤ jD1j × jD2j × ,⋯ , × jDljg be the set of
parameter combinations of cellular networks with
the size jAj, where Di is the valid value set of the
i-th network parameter

(iii) Rewards. The reward signal rs,a is obtained from the
cellular networks after the agent takes a parameter
setting a when it is in state s and moves to the next
state s′

(iv) Q -Value Function. The state-action value function
is denoted Qðs, aÞ. It is the expected cumulated
reward when starting in state s and selecting an
action a

A motivating example is shown in Figure 1 to compre-
hend the idea of FQI better. The Q-table example has five
states (s1, s2, s3, s4, and s5) and four actions (a1, a2, a3, and
a4). Initially, the default value of the Q-table is set to 0,
which means that the agent has no information about the
environment. Some state-action pairs are explored as the
agent interacts with the environment, and the corresponding
Q-values are updated. The explored experiences are illus-
trated by blue entries in the visited Q-table. Then, the prob-
lem we study is transferred to precisely predicting the Q
-values with default values (white entries) based on the vis-
ited experiences. Once the unvisited entries are accurately
predicted, the risk of random exploration to discover these
unknown low Q-values (red numbers) can be reduced
according to the factorized Q-table.

4. Factorization Q-Learning Initialization

This section shows the motivation behind this work and
describes the proposed framework in detail. The key idea is
to continuously capture the correlation between the states
and actions from the visited experiences to predict the Q
-values that have never been updated to mitigate the possi-
bility of selecting poor parameter settings.

4.1. Proposed Framework. This section presents a novel Q
-value initialization framework and factorization Q-learn-

ing initialization (FQI). The principal structure and the main
building modules of FQI are shown in Figure 2, which bases
on two main modules: (1) Q-table monitoring and (2) Q
-table factorization. Q-table monitoring determines whether
to factorize the Q-table, and Q-table factorization predicts
the Q-values that have never been updated. The original Q
-learning algorithm consists of the modules in the left box,
and the direction of the solid black and red lines is the work-
flow. FQI (dotted lines) replaces the original action selection
process (solid red line) with Q-table monitoring and Q-table
factorization. Each is depicted in green and yellow blocks,
respectively, and described in the subsequent subsections.

4.1.1. Q-Table Monitoring. To determine when to factorize Q
-table, the percentage of visited states p will be calculated
after each interaction with the environment:

p =
∑ Sj j

i=1 J ∑ Aj j
j=1Ii,j

� �
> 0

� �
Sj j , ð7Þ

where Ii,j is the state-action indicator that is equal to 1 if
action aj at state si has been visited and 0 otherwise. Jð·Þ is

Table 1: Simulation parameters.

(a)

Q-learning parameters Value

Learning rate α 0.2

Discount factor γ 0.995

Number of states Sj j 46656

Number of actions Aj j 16

Initial exploration probability (ε-greedy) 1

Minimum exploration probability (ε-greedy) 0.05

Exploration decay rate (ε-greedy) 0.9995

λ (Q λð Þ-learning) 0.5

Number of planning (Dyan Q-learning) 100

(b)

Factorization parameters Value

Latent factor k 8

Max iterations e 500

Optimization algorithm Stochastic gradient descent

Linear regularization λ1 1e − 10
Regularization λ2 1e − 08
Factorization threshold μ 0:01,0:02,0:03,0:04,0:05f g

(c)

Network parameters Value

SINR target 0 dB

UE movement speed 2 km/h
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the visited state indicator function that is equal to 1 if an
action has been visited at state si and is equal to 0 otherwise.

Then, the increment of the percentage of visited states δ
is also obtained after every interaction as follows:

δ = p − p∗, ð8Þ

where p∗ is the percentage of visited states of the last Q-table
factorization, and its initial value equals 0. If δ is greater than
or equal to the introduced parameter factorization threshold
μ, the Q-table will be replaced with the factorized Q-table
based on Q-table factorization. Then, the agent selects
actions based on the factorized Q-table. Otherwise, the agent
selects actions according to the current Q-table.

4.1.2. Q-Table Factorization. The core idea of Q-table factor-
ization is to capture the potential correlation between states
and actions from the visited experiences to predict the Q
-values that are still default values. Inspired by [29], we build
the Q-table’s correlation model between states and actions
via factorization machine [30]. Factorization machines can
model the interactions between different variables using fac-
torized parameters even in problems with huge sparsity
combining the advantages of support vector machines with
a factorization model. The predicted Q-values of the factor-
ization machine model equation are defined as

ŷ xð Þ =w0 + 〠
n

i=1
wixi + 〠

n

i=1
〠
n

j=i+1
xixj 〠

k

f=1
vi,f vj,f , ð9Þ

where x is an n-dimensional feature vector, which is com-
posed of the one-hot encodings of states s and actions a.
An example of feature vector from the motivating example
is shown in Figure 3. k is a hyperparameter that decides
the dimensionality of the factorization, and the model
parameters Θ = fw0,w1,⋯,wp, v1,1,⋯, vp,kg are

w0 ∈ R,w ∈ Rn, V ∈ Rn×k: ð10Þ

w0 is the global bias. wi models the strength of the i-th
feature variable. vi,f and vj,f are the f -th value in the i-th fea-
ture variable and the j-th feature variable, respectively.
∑k

f=1vi,f vj,f models the interaction between the i-th and j
-th variable by factorizing it.

For the sake of simplicity, we denote ŷ = ŷðxÞ. The
parameters of the factorization machine model Eq. (9) are
estimated by solving the following least square minimization
problem:

min
w,v

〠
p

i=1
〠
q

j=1
Ii,j ŷ − yð Þ2 + λ1 wik k22 + λ2 vi,f

�� ��2
2, ð11Þ

where λ1 is the linear regularization parameter, and λ2 is the
L2 regularization parameter, which is used to prevent over-
fitting problems. The gradient of the factorization machine
model is

∂
∂θ

ŷ xð Þ =

1, if θ isw0,
xi, if θ iswi,

xi 〠
n

j=1
vj,f xj − vi,f x

2
i , if θ is vi,f :

8>>>>><
>>>>>:

ð12Þ

Algorithm 1 sketches how FQI works. First, the value of
the factorization threshold μ is set. After every interaction
with the environment, the increment of the percentage of
visited states δ is calculated (line 1). Q-table factorization is
activated if δ is above μ (line 2). Then, the visited entries
in Q-table will be extracted as the experiences triples (line
3). After the factorization machine model parameters have
been estimated (line 4 and line 5), the Q-table will be
completed via Eq. (9) (line 6). The factorized Q-table is
used to bootstrap further exploration (line 7). In this
way, the Q-learning agent is exposed continually to the
factorized Q-table from the early stages of the learning
process, thereby mitigating the possibility of selecting poor
parameter settings in random exploration to discover these
unvisited Q-values.

Table 2: Comparison of performance.

Algorithms Factorization
Convergence episodes Average episode reward

ε-Greedy Boltzmann ε-Greedy Boltzmann

Q-learning
Original 54.6 367.8 -12.14 -0.590

Factorized 480.7 774.1 8.514 11.91

Dyna Q-learning [12]
Original 64.9 357.4 -10.26 -1.806

Factorized 471.5 702.6 9.246 13.16

Q λð Þ-learning [13]
Original 57.1 374 -11.90 0.018

Factorized 464.1 718.6 7.253 10.42

Double Q-learning [14]
Original 56.8 340.6 -12.60 -0.510

Factorized 479 824.8 9.393 14.25

Speedy Q-learning [15]
Original 68.7 365.6 -8.884 1.151

Factorized 522 699.1 14.39 14.11
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Figure 5: Continued.
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Figure 5: Continued.
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4.2. Complexity. The main computation of Algorithm 1
mainly lies in the execution times of factorizing the Q
-table. The main computation for each Q-table factorization
is to evaluate the loss function Eq. (11) and its gradients
against the variables. It can be computed in linear time Oð
knÞ [30], where k is the number of latent factors and n is
the dimensionality of the feature vector. Therefore, the main
increased computation complexity compared with the stan-
dard Q-learning has only complexity Oðkn/μÞ where μ is
the approximation threshold.

5. Experimental Results

In this section, we evaluate the performance of factorization
Q-learning initialization (FQI) in an open-source simulated
VoLTE network [31]. We deployed FQI on Q-learning
(QL), double Q-learning (DQL), QðλÞ-learning (QðλÞL),
Dyna Q-learning (DynaQ), and speedy Q-learning (SQL)
to evaluate performance improvements on the measures of
the valid actions and convergence episodes. First, we
describe the adopted setup in Section 5.1 before delving into
the experimental results in Section 5.2.

5.1. Simulation Setting. We consider an orthogonal fre-
quency division multiplexing (OFDM) multiaccess down-
link cellular network of L base stations (BS)s. There
consists of one serving BS and at least one interfering BS.
The user equipment (UE) are randomly scattered and mov-

ing in the BS service area engaged in VoLTE shown in
Figure 4. Further system details are referred to [31].

There are two BSs and two UEs, in which the UEs are
moving with both log-normal shadow fading and small-
scale fading. The target of QL applied in this environment
is to jointly optimize the transmit power at the two BSs to
make the UEs meet the target SINR. There are 16 parameter
settings (actions) to choose from in this environment, which
increase or decrease concurrently the transmit powers of the
serving and interfering BSs. The environment has 46656
states which are discretized by the positions of the two
UEs and the transmit powers of the serving and interfering
BSs. ε-Greedy and Boltzmann are used to select actions,
respectively.

An episode has a duration of 20 timesteps, where the
agent selects an action to interact with the environment
and receives a reward every timestep. If the SINR target of
UEs is fulfilled, the agent receives a reward of 100, and the
episode goes on. Otherwise, the episode is terminated pre-
maturely, and the reward is -20. An episode is called
converged if the target objective was fulfilled within ten
timesteps. The main hyperparameters for QL and FQI in
the experiment are shown in Table 1. All algorithms are
implemented and available at [32].

5.2. Results and Observations. We ran the original and fac-
torized algorithms based on FQI several times with random
seeds. The aggregated results of the convergence episodes
and average episode reward across five different factorization
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Figure 5: Cumulative convergence episodes for the original and factorized algorithms.
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Figure 6: Continued.
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thresholds μ are reported in Table 2. The average episode
reward directly reflects the SINR quality of UEs, while the
convergence episodes refer to the continuous fulfillment of
the SINR target. The larger the value of these two indicators,
the power parameter tuning based on DRL algorithms can
better allow UEs to meet the SINR target. We observed sig-
nificant improvements for the factorized algorithms over the
original algorithms, with average performance gains of 1.5-8
times higher final results for the original QL, DynaQ, QðλÞL,
DQL, and SQL. Since exposure to the factorized Q-table
from the early stages of the learning process, the factorized
algorithms can reach final higher results. Moreover, the fac-
torized algorithms improve the performance under both ε
-greedy and Boltzmann, and the algorithms with Boltzmann
can obtain better performance than ε-greedy. This is because
Boltzmann selects an action with probability based on Q
-values through Eq. (6), rather than blindly accepting any
random action such as ε-greedy, when it comes time for
the agent to explore the environment.

More detailed results are provided in Figures 5 and 6 to
distinguish the difference in performance at different factor-
ization thresholds μ. Figure 5 shows the cumulative conver-
gence episodes for the original and factorized algorithms for
different factorization thresholds μ. In general, the perfor-
mance of the factorized algorithms (solid markers) outper-
forms the original algorithms (blank markers). For the
factorized algorithms, adopting Boltzmann (solid circle
markers) is better than the performance of ε-greedy (solid
square makers). However, when the parameter μ is 0.05,

the performance curve of the factorized algorithms with ε
-greedy partially coincides with the curve of the original
algorithms with Boltzmann, indicating that the performance
of the two algorithms is similar.

The results of the average episode reward of different μ
are demonstrated in Figure 6. The main point to note is that
the factorized algorithms (solid markers) are significantly
better than the original algorithms, and the original with ε
-greedy (blank square makers) is the worst. This means that
the factorized algorithms can adjust the transmit power of
BSs more efficiently than the original algorithms to allow
UEs to meet the SINR target more. At the beginning of
training, the original and factorized algorithms performed
similarly. However, the performances of the factorized algo-
rithms soon become superior to the original algorithms as
training progresses. Furthermore, we can observe that the
learning curve of the factorized algorithms with μ = 0:01 is
steeper than the original algorithms at the initial stage of
learning and reaches the plateau faster.

To further study the impact of the factorization thresh-
old μ, the average performance of original algorithms and
factorized algorithms with different μ is shown in Figure 7.
A key point to note is that the performance of the factor-
ized algorithms improves as the parameter μ decreases. It
should also be noted that lower μ leads to faster learning,
but even a high threshold captures most of the benefits of
Q-table factorization. This is because the smaller the
parameter μ, the earlier and more frequently the factorized
algorithms perform Q-table factorization to predict the
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Figure 6: Average episode reward for the original and factorized algorithms.
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nonupdated Q-values, which bootstraps agent exploration
more.

6. Conclusion

In this article, we sought to enhance the convergence of Q
-learning for parameter optimization in cellular networks.
A Q-value initialization framework based on factorization
machines and factorization Q-learning initialization (FQI)
was proposed to keep on predicting the nonupdated Q
-values based on the visited experiences to bootstrap
exploration. We described the details of FQI and showed
its effectiveness on Q-learning and its several improved
variants, Dyna Q-learning, QðλÞ-learning, double Q-learn-

ing, and speedy Q-learning with two widely used explora-
tion strategies, ε-greedy, and Boltzmann. The experimental
results in an open-source simulated VoLTE network show
that the factorized algorithms based on our proposed
framework are substantially better than the original algo-
rithms, exceeding their final performance by 1.5-8 times.
In addition, earlier and more Q-table factorization can
improve the performance of the algorithms due to more
guidance for agents to explore, which is more evident in
the early stage of learning with too little information to
explore efficiently.

A major issue for this work is that it cannot be directly
used in the environment of continuous state and action.
However, we note that the network parameters in cellular
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networks are always discrete. Moreover, the continuous state
space of each feature can be discretized, and these continu-
ous values can be modeled by utilizing them as additional
features.

7. Future Work

Interesting future work would include research to obtain
more insight into the merits of the FQI framework. For
instance, in a multiagent Q-learning scenario, FQI can be
used to model the state-action interaction between multiple
agents to maintain a union Q-table. Possibly, to learn sophis-
ticated feature interactions behind agents’ behaviors, replac-
ing factorization machines in the proposed algorithm with
DeepFM [33] can yield better results. More analysis on the
performance of Q-learning and related algorithms such as
zap Q-learning and delay Q-learning is desirable. Further-
more, it would be interesting to see how factorization zap
Q-learning, factorization delayed Q-learning, and other
extensions of Q-learning perform in practice when applied
to FQI.

Data Availability

https://github.com/bszeng/Factorization_Q-learning_
Initialization
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