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Outlier generally exists in dam monitoring data which may seriously affect the accuracy of dam safety evaluation results. Aiming
at the outlier detection of dam monitoring data, a novel dynamic detection method of dam outlier data based on SSA-NAR is
proposed. This combined method does not depend on the effect quantity and influence quantity relationship of traditional
dam safety theory and only uses the time series of effect quantity to mine the variation, which can avoid the impact of missing
or abnormal of the influence quantity. The Nonlinear Autoregression (NAR) is a classical time series neural network widely
used in engineering field. However, the prediction accuracy of NAR is greatly affected by the selection of model parameters,
the Sparrow Search Algorithm (SSA) which is a novel model parameter solution method and can be combined with NAR to
derive the optimal parameters of NAR prediction model. The outlier is identified through the analysis of the residual
distribution between the predicted data and the measured data. The case study shows that when the original data does not
contain outliers, the prediction accuracy of the model is high. When the outlier is included, the proposed model has good
robustness which the outlier has little influence on the prediction effect. It can effectively detect the outlier in the original dam
monitoring data and provide a reliable data basis for dam safety evaluation.

1. Introduction

The safety of dam projects is of great importance to society
and people’s lives [1, 2]. Dam monitoring data can objec-
tively and comprehensively reflect the safety status of the
dam, which is obtained by the monitoring instruments
[3–5]. Among the dam monitoring data, there have outliers
inevitably due to the instrumentation and manual monitor-
ing problem [6]. The detection of outliers is the prerequisite
for dam monitoring data analysis.

The outlier detection method of dam monitoring data
generally includes manual judgment and statistical probabil-
ity detection [7]. Manual judgment is based on comparison
of the adjacent monitoring data, which is less efficient and
mostly depends on the level of expert experience. Statistical
probability method is based on statistical hypothesis test;
when the data samples are insufficient or the probability dis-
tribution assumption deviates from the reality, the outlier
detection accuracy of this method is greatly affected [8].
With the development of artificial intelligence technology

[9], deep learning models have been successfully applied to
the diagnosis of outliers in dam deformation monitoring
data, scholars constructed prediction models through the
dynamic relationship between deformation data and impact
factors, and detected outliers through the residual distribu-
tion of predicted values and measured values [10–12]. The
intelligence methods mostly need to determine the model
input, such as water pressure, temperature and aging factor.
When the input data is partly missing or abnormal, the
method may not work normally.

Therefore, the artificial intelligence algorithm that does
not depend on the input-output relationship has good appli-
cability in the detection of dam data outliers. The nonlinear
autoregressive (NAR) neural network which is widely used
in data prediction field that only uses deformation data as
input to complete prediction function [13, 14]. The predic-
tion accuracy of the NAR model largely depends on the
parameters of model network, such as the delay parameter
and number of hidden layer elements. Sparrow Search Algo-
rithm (SSA) is a novel advanced intelligence optimization
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algorithm on the basis of the behavior of sparrows foraging
[15–17]. It has the advantages of high robustness and fast
convergence which can effectively solve the parameter opti-
mization problem of the NAR model.

In this study, the NAR model and SSA optimization
algorithm are integrated to construct a detection method of
outliers in concrete dam monitoring data. SSA is introduced
to obtain the optimal NAR neural network parameters, and
the optimal parameters are used to derive an optimal NAR
dynamic model to predict the dam monitoring data. Then,
the dynamic detection steps of outliers by SSA-NAR are
constructed. Finally, an actual dam project is given to prove
the effectiveness of the outlier detection method.

2. SSA-NAR Detection Model

2.1. SSA Algorithm. The SSA algorithm is proposed in 2020
and mainly on the basis of the foraging behavior of sparrows
[18, 19]. The sparrows are divided into discoverers and
followers during foraging. The discoverers are in charge of
finding food and providing foraging locations, while the
followers use the information of discoverers to get food.
Because the discoverers have priority to obtain food infor-
mation, the discoverers could acquire a larger foraging
search information than the followers. During each foraging,
the location of the discoverer is updated as below:

Xt+1
i,j =

Xt
i,j ∗ exp −i

α ∗ itermax

� �
if R2 < ST

Xt
i,j +Q ∗ L if R2 ≥ ST

8><
>: , ð1Þ

where t indicates the number of iterations, Xi,j is the location
of thei-th sparrow at thej-th dimension. itermax is a constant
with the largest number of iteration. α is a random number,
α ∈ ð0, 1�. R2 and ST express the warning value and the safety
threshold, respectively, ðR2 ∈ ½0, 1�Þ and ðST ∈ ½0:5, 1:0�Þ. Q is
a random variable which satisfies normal distribution. L
shows a matrix that all element inside is 1.

The location update description of the follower can be
expressed as

Xt+1
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Q ∗ exp
Xt
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i,j
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where Xp is the optimal location of the discoverers. Xworst

shows the current worst location. A is a matrix that all

element inside is randomly numbered 1 or −1, and A+ =
ATðAATÞ−1.

When the sparrow spots the danger, it will lead to anti-
predation behavior which shows as follows:

Xt+1
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Xt
best + β ∗ Xt

i,j − Xt
best
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where Xbest is the current best location. β is the random
parameter which obeys the normal distribution with the
mean value of 0 and the variance of 1. K is a random num-
ber, K ∈ ð−1, 1Þ. f i is the fitness value of the present sparrow.
f g is the current best fitness values, and f w is the current
worst fitness values. ε is the smallest constant so as to avoid
the denominator to be zero.

2.2. NAR Dynamic Neural Network. Neural networks are
divided into two categories: static neural networks and
dynamic neural networks [20, 21]. Static neural networks
have no feedback and memory capabilities. The output of
the static network only depends on the current input and
has no relationship with the previous input and output.
Dynamic neural networks are divided into two types: feed-
back networks and nonfeedback networks. The output of
the network without feedback depends not only on the cur-
rent input, but also on the previous input. The output of the
network with feedback depends not only on the current and
previous inputs, but also on the previous output. Due to its
memory function, dynamic neural network is more suitable
for prediction of time series which has the advantages of
short training time and high prediction accuracy.

NAR neural network is a widely used dynamic neural
network; the algorithm model can be expressed as

y tð Þ = f y t − 1ð Þ, y t − 2ð Þ,⋯,y t − dð Þ½ �, ð4Þ

where yðtÞ is monitoring value at time t. yðt − 1Þ, yðt − 2Þ,
⋯, yðt − dÞ are the monitoring values from t − 1 to t − d,
respectively. d is the delay parameter. f ½·� is a nonlinear
function obtained through learning and training.

NAR dynamic neural network is composed of input
layer, output layer, hidden layer, and delay parameter. It
has two network modes; one is close-loop network mode;
the output of the neural network will be feedback to the
input layer and continue to learn again with other inputs.
The other is open-loop network mode; the expected output
of the neural network will be feedback to the input layer in
this mode. In order to improve the prediction accuracy, it
selects the commonly used open-loop network mode; the
specific structure is shown in Figure 1. The yðtÞ on the left
represents the network input. d is the delay parameter. p is
number of hidden layer elements. ω is weight. b is the
threshold. The yðtÞ on the right represents the network out-
put. The delay parameter and the number of hidden layer
elements should be determined, and these parameters
directly affect the training and prediction capabilities of the
NAR dynamic neural network.
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2.3. Detection Method of Outliers by SSA-NAR. Outliers in
dam monitoring are generally caused by monitoring system
failures and manual observation errors. The basic character-
istic of outliers is that there is an isolated measurement
value that is significantly larger or smaller than the previ-
ous time ti−1 and the subsequent time ti+1 at time ti. Out-
lier has the characteristics of contingency and discreteness.
Figure 2 is a schematic diagram of a typical characteriza-
tion mode of outliers.

This paper proposes a method for dynamic detection of
outliers in dam monitoring data based on SSA-NAR. This
method uses the SSA to optimize the delay parameter and
the number of hidden layer elements and introduces the
optimal parameter in the NAR dynamic neural network for
prediction. The residual distribution of predicted and mea-
sured values is used to identify outliers, which can carry
out outlier inspection on the latest monitoring data in time,
so as to provide technique basis for the project management
department to check and correct the information in time.
The model flow chart is shown in Figure 3, and the specific
steps are as follows:

(1) Data set acquisition: Obtain dam monitoring data
through safety monitoring system

(2) Dam data prediction: Use SSA optimization to deter-
mine the delay parameter and the number of hidden
layer elements, and establish NAR dynamic neural
network for prediction

(3) Outlier detection: According to the definition of
outlier, when the residual between the expected
value and the measured value exceeds a certain
threshold, the measured value is called outlier.
Hence, there are two key problems in the detection
of outlier: one is the determination of expected
value, and the other is the determination of thresh-
old. The expected value can be determined by the
prediction of SSA-NAR model. The “3σ criteria” is
commonly used in outlier detection to determine
the threshold. Therefore, the formula of outlier
detection is as follows:

where yt is the measured value at time t, ŷt is the
predicted value of SSA-NAR model at time t, and σ is the
standard deviation of the sample.

yt − ŷtj j > 3σ, ð5Þ

3. Case Study

3.1. Project Overview. A concrete gravity dam is located on
Muyang River, Fujian Province, China. The maximum
dam height is 72.4m, and dam crest length is 206m. The
dam body is divided into 9 dam sections. In this case analy-
sis, the deformation data which is commonly analyzed is
taken as an example to verify the effectiveness of the pro-
posed model. In order to monitor the deformation of the
dam, the tension line, vertical line, and other methods are
introduced. The distribution map of dam deformation mea-
suring points is shown in Figure 4.

Typical measuring point EX4 is selected as the analysis
object. The monitoring time is from June 6, 2017, to October
22, 2018. There are totally 500 sets of monitoring data. 300
sets of data from June 6, 2017, to April 5, 2018 are used as
training data. 200 sets of data from April 6, 2018, to October
22, 2018 are used as test data. The test data process line is
shown in Figure 5.

In order to test the effect of the proposed method, five
monitoring data (the data number is 9, 15, 71, 156, and 166,
respectively) are randomly selected to construct the outlier
by adding or subtracting a constant ε. According to the defini-
tion of outlier, ε − 3σ is generally selected. Based on the SSA-
NAR model principle, when the outlier is larger, the influence
of outlier on the accuracy of the model is more remarkable. In
order to illustrate that the accuracy of SSA-NAR model has
little influence on the outlier, ε − 5σ and ε − 6σ are selected
for comparative analysis. The test samples and three groups
of test samples with outlier are shown in Figures 5–8.

3.2. Parameter Optimization by SSA. Before obtaining the
optimal NAR model parameters, it is necessary to set the
parameters of SSA model. The parameters are selected on
basis of a lot of references [22–24].

(1) Fitness function f i. Select the root mean squared
error of the training data as the fitness function;
the formula is as follows:

f i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i=1 yi − ŷið Þ2
N

s
, ð6Þ

where N is the number of training data. yi and ŷi are
the measured value and predicted value of the training
data, respectively
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Figure 1: Schematic diagram of NAR dynamic neural network structure.
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(2) Population size. In the SSA algorithm, the popula-
tion size generally takes 10 to 30. When the popula-
tion size is large, the prediction effect is not
obviously improved, but the convergence speed is
reduced. Considering the convergence accuracy and
speed, 10 is selected as the population sizes

(3) Number of discoverers. Select the recommended
value of the model, 20% of the population size

(4) Safety value ST . Select the recommended value 0.8 as
the safety value

(5) The maximum number of iterations. The greater the
number of iterations, the greater the possibility of
obtaining the optimal parameters; meanwhile, the
training time of the model is longer, and over-

fitting is prone to occur. Therefore, the maximum
number of iterations in this study selects 100

After optimization of the SSA, the optimal delay param-
eter is 6, and the optimal number of hidden layer elements is
10. The fitness curve is shown in Figure 9.

3.3. Result Analysis. The result analysis is divided into two
parts. The first part verifies the prediction accuracy of the
model based on the training data without outlier, and the
other part verifies the outlier detection ability of the model
based on the training data with outlier.

In order to verify the prediction performance of the
proposed model based on the training data without outlier,
BP model and LSTM model are used for comparison and
verification. BP neural network is a classical artificial intelli-
gence model and is widely used in dam deformation
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Figure 2: Schematic diagram of typical representation mode of outliers.
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Figure 3: Outlier detection algorithm flowchart base on SSA-NAR.
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prediction. As a representative of deep learning in recent
years, LSTM has also made a lot of research results in dam
monitoring model. BP neural network adopts double-layer
neural network, and the neuron of each layer is set to 64.
The LSTM model also selects a double-layer neural network,
and the neuron of each layer is set to 64. The dropout
parameter is set to 0.3 and the active function is tanh. Mean
absolute error (MAE), root mean squared error (RMSE), and

mean absolute percentage error (MAPE) are used as evalua-
tion index to analyze the prediction accuracy of the model.
The calculation formula of each index is as follows:

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
yi − y′i
� �2s

, ð7Þ
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Figure 6: Test data process line with 3σ outlier.
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MAE = 1
n
〠
n

i=1
yi − y′i
�� ��, ð8Þ

MAPE = 100
n

〠
n

i=1

yi − y′i
yi

�����
�����, ð9Þ

where n is number of test data. yi and y′i are the measured
value and predicted value of the test data, respectively.

The sequence of measured values and model predicted
values is shown in Figure 10. The predictive performance
evaluation indexes are shown in Table 1. It can be found

from the chart that the BP model has a good prediction
effect, but the accuracy of BP model is the lowest among
the three models. Compared with the LSTM model, the
MAE, RMSE, and MAPE values of SSA-NAR model reduce
by 6.42%, 5.78%, and 10.05%, respectively. The residual dis-
tribution diagram of the prediction results of the SSA-NAR
model is shown in Figure 11, which indicates the SSA-
NAR model has high prediction accuracy.

This part verifies the outlier test ability of the proposed
model. After SSA-NAR model training, the prediction
results of three groups of test sets with outliers are shown
in Figures 12–14. It can be indicated from the figure that
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even if the original data contains outliers, the accuracy of
SSA-NAR model is still high, and the outliers have little
impact on the overall accuracy of the model. With the
increase of outliers (from 3σ to 6σ), the accuracy of the
model does not decrease significantly, indicating that SSA-
NAR prediction model has a strong ability to resist outlier.

After the predicted value is obtained, the outlier of dam
deformation data can be identified according to Equation
(5). The first step is to calculate the residuals between the test
data and the predicted data; the second step is to use the
“criteria” to detect outliers on the residuals. The residual cal-
culation results of three groups are shown in Figures 15–17.
The detection accuracy (number of detected outliers/num-
ber of actual outliers) is shown in Table 2. A total of 5 out-
liers were added artificially; when the outliers are 3σ and
5σ in the test data, all the outliers were detected. When the

outliers were 6σ, a total of 4 were detected, and the detection
accuracy was 80%.

According to the detection results, the detection accu-
racy of deformation outlier is 100% in the test data with 3
σ and 5σ outlier. All outliers are detected by the SSA-NAR
model. For the test data with 6σ outlier, four of the five out-
liers were detected. The reason is that when the outlier is
large, the outlier has an impact on the prediction perfor-
mance of the model. The predicted value of the second
outlier is close to the outlier, resulting in a small difference
between the predicted value and the measured value. There-
fore, this outlier point is not detected. In practical dam engi-
neering, the outliers of dam deformation monitoring data
are mostly near 3σ, and rarely more than 5σ. Even in the
case of large outlier, the detection accuracy of SSA-NAR
method is relatively high. Therefore, the proposed model
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Figure 10: The measured value and the predicted value process line of three models.

Table 1: Forecast performance index comparison table.

Model MAE/mm RMSE/mm MAPE/%

SSA-NAR 0.1573 0.2020 10.11

BP 0.1720 0.2305 12.35

LSTM 0.1681 0.2144 11.24
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Figure 11: The residual distribution diagram of the SSA-NAR model.
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can effectively detect the outliers in the deformation
sequence and provide a reliable data basis for the analysis
of dam deformation data. Outliers are generally caused by
manual errors and systematic errors which is inevitable dur-
ing the operation of the dam. After identifying abnormal
values, it can further analyze the causes of abnormal values
by checking the original data and put forward safety sugges-
tions for the operation of the project.

4. Conclusions

The outlier of monitoring data may have a great impact on
the results of dam safety monitoring. In order to improve
the accuracy of outlier detection, a new technique which
comprehensively combines the SSA optimization algorithm,
and the NAR dynamic neural network is applied in the out-
lier diagnosis of dam monitoring data. Due to the combina-
tion of the SSA algorithm, the problem that the prediction
accuracy of NAR model is greatly affected by parameter
selection is solved. Based on the definition of outlier and
the prediction model, the outlier detection method is con-
structed, and the following conclusions are obtained through
a dam engineering example:

(1) At present, most dam deformation prediction
methods rely on the input-output relationship
between effect quantity and influence quantity.
When the effect quantity data is abnormal or miss-
ing, the prediction function of dam deformation can-
not be realized. This method does not depend on the
relationship between effect quantity and influence
quantity; the effect quantity is predicted by deeply
mining the internal relationship of effect quantity
time series. Compared with BP and LSTM methods,
it is verified that the SSA-NAR prediction model has
high accuracy

(2) SSA is introduced to optimize the parameters of
NAR neural network, which reduces the influence
of the parameter selection of artificial random input.
When there is outlier in monitoring data, it can still
effectively predict the data without being signifi-
cantly affected by outlier

(3) When the outlier is less than 5σ, the model can effec-
tively identify the outlier in the monitoring data, and
the accuracy is 100%. When the outlier is large, the
prediction performance of the model may be
disturbed by the outlier, mistakenly inferred that the
outlier is the real value, resulting in the deviation of
the predicted value from the real value. Therefore, it

is necessary to conduct further study to reduce the
interference of large outlier to the model in the future

(4) The proposed method can only identify the location
of outliers, but cannot identify the reason of outliers.
It needs to build various outlier identification
methods according to the reason and characteristics
of outlier and establish analysis methods for other
abnormal data except outliers
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