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Credit scoring analysis has gained tremendous importance for researchers and the financial industries around the globe. It helps
the financial industries to grant credits or loans to each deserving applicant with zero or minimal risks. However, developing an
accurate and effective credit scoring model is a challenging task due to class imbalance and the presence of some irrelevant
features. Recent researches show that ensemble learning has achieved supremacy in this field. In this paper, we performed an
extensive comparative analysis of ensemble algorithms to bring further improvements in the algorithm oversampling, and
feature selection (FS) techniques are implemented. The relevant features are identified by utilizing three FS techniques, such as
information gain (IG), principal component analysis (PCA), and genetic algorithm (GA). Additionally, a comparative
performance analysis is performed using 5 base and 14 ensemble models on three credit scoring datasets. The experimental
results exhibit that the GA-based FS technique and CatBoost algorithm perform significantly better than other models in terms
of five metrics, i.e., accuracy (ACC), area under the curve (AUC), F1-score, Brier score (BS), and Kolmogorov-Smirnov (KS).

1. Introduction

Credit risk assessment is one of the most sensitive issues in
the financial industry which identify the position of the
potential borrower. Different types of risks are associated
with the banking industries which may affect their business
and their customers. Credit scoring is one of the major risks
associated with the banks; it helps to make crucial decisions to
lend some loan to the applicant or not. The banking sector
access the creditworthiness of their applicants to grant loans
by implementing the credit scoring models. Thus, developing
an effective credit scoringmodel has become a demanding tool
for researchers and the financial industries to precisely distin-
guish risky customers from nonrisky ones [1].

The credit scoring analysis is often treated as a binary
classification problem, in that it determines whether the
new credit applicants are “good” or “bad” by comparing
their socioeconomic attributes. The models are initially
developed using statistical methods, such as discriminant
analysis and logistic regression (LR) [2], which are the most

common methods in this category. AI-based credit scoring
models were proposed in recent decades to optimize accu-
racy and minimize error rates. Some commonly used
machine learning (ML) techniques are decision tree (DT)
[3], k-nearest neighbors (KNN) [4], support vector machine
(SVM), and Naïve Bayes (NB) [5]. AI-based models gain
more popularity than statistical models due to high accuracy
labels [6], can easily handle nonlinear classification prob-
lems [7], and effectively handle high-dimensional datasets
[6–8]. However, the credit scoring models are not always
fully machine-dependent. In the semiautomated systems,
before approving loans to the applicant, banks process the
applications through two steps. First, it should be approved
by the financial analyst (or experts), and then, the approved
applications must be processed through computational
models [9]. In these systems, the loans are approved based
on the decisions made by the combined effect of expert
knowledge and ML techniques. But, in the case of automated
credit scoring systems, the applications are approved based
on the decisions made by the ML techniques. However,
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semiautomated credit scoring models are very rarely pro-
posed in the literature [10, 11]. In this study, only the fully
automated credit scoring models are discussed.

A single machine learning algorithm may not provide
the best results in every case. In recent works [12, 13],
ensemble models are developed for credit scoring problems,
which results in more advanced and accurate models than
single classification methods. The performance of the
ensemble models improves by compensating the limitations
of the base learners [14]. The performance can be further
enhanced by implementing certain preprocessing mecha-
nisms, such as feature selection (FS) and resampling the
instances. Several studies [15, 16] have applied FS techniques
in their credit scoring models to reduce the high-
dimensional feature space and improve the overall perfor-
mance of the model. In the paper [15], five traditional FS
techniques, such as t-test, correlation matrix, stepwise
regression, PCA, and factor analysis, are proposed to build
a bankruptcy prediction model, and their performances are
analyzed using MLP neural networks. In the research work
of [16], multiple FS techniques are used to build the credit
scoring model. FS techniques like LDA, rough set theory,
DT, and F1-score were used, and the performances are
examined through an SVM classifier. To improve the accu-
racy and stability of the credit scoring model, GA and
ANN are used to select the optimal features [17].

The lack of a balanced dataset, i.e., a dataset with equally
populated tuples for each class, creates a problem for the
intended classifier. Skewness towards the positive class
requires extra caution from the side of the model designer
to make this impact as negligible as possible [18]. Imbal-
anced data is one of the common problems in credit scoring
datasets, where the number of “bad” customers is much less
than that of “good” customers. This makes the classifier
biased towards majority class samples and leads to huge
financial losses when the classifier incorrectly predicts the
bad customer as good. Synthetic minority oversampling
technique (SMOTE) is one of the widely used resampling
techniques to deal with imbalanced datasets, and it achieves
optimized performance by oversampling the minority class
samples [19].

From the above studies, it is understood that the credit
scoring models are designed considering three factors, i.e.,
(1) ensemble methods, (2) resampling, and (3) FS tech-
niques. Most of the researchers implemented either one fac-
tor or a combination of any two factors to build the models.
To the best of our knowledge, very few articles might have
implemented all the three factors in their credit scoring
models. Table 1 shows the studies related to credit scoring
models, five papers have combined ensemble and resam-
pling techniques, and four papers have combined FS and
ensemble techniques. However, none of the papers have
implemented all the three factors in their models. To fill this
research gap, this paper proposed a credit scoring model by
considering simultaneously all the three factors. In this
paper, all three factors are considered in different phases to
build an effective and accurate credit scoring model. In the
resampling phase, SMOTE oversampling method was
applied to tackle the imbalanced dataset. In the FS phase,

three FS techniques, namely, IG, PCA, and GA, are
employed to identify the informative features, which help
to reduce the models’ dimensionality and complexity. In
each phase, 19 base and ensemble of classifiers are used for
model building. The baseline classification algorithms (i.e.,
LR, SVM, DT, NB, and KNN) and the ensemble of classifiers
(i.e., bagging, boosting, and tree-based) are used in the
experiment using three publicly available credit scoring
datasets, i.e., Australian, German, and Japan. The predictive
performances of the credit scoring models are evaluated
against five evaluation metrics: ACC, AUC, F1-score, BS,
and KS. Additionally, the ranks of each model are obtained
using the Friedman and Nemenyi post hoc statistical tests
[20]. The performances of the classifiers are compared by
conducting a set of experiments in terms of the above met-
rics. In brief, the contributions of this paper are as follows:

(1) It implements all three approaches: resampling, FS,
and ensemble methods on three credit scoring
datasets

(2) It provides experimental results of 5 base classifiers
and 14 ensembles of classifiers in terms of ACC,
AUC, F1-score, BS, and KS

(3) It implements three FS techniques, i.e., IG, PCA, and
GA, to select the relevant features

(4) It implements five sets of experiments to identify the
best combination of machine learning algorithm and
the FS technique that could able to build an accurate
and reliable credit scoring model

The main objective of this work is to identify the best
combination of FS technique and machine learning algo-
rithms to build an accurate and reliable ensemble-based
credit scoring model.

Table 1: Studies of credit scoring models.

Year Paper FS approach Ensemble method Resampling

2012 [21] ✓

2021 [22] ✓ ✓

2014 [23] ✓

2015 [24] ✓ ✓

2015 [25] ✓

2016 [26] ✓ ✓

2017 [27] ✓

2017 [17] ✓ ✓

2018 [28] ✓ ✓

2018 [29] ✓

2018 [30] ✓

2019 [31] ✓ ✓

2020 [32] ✓

2020 [33] ✓ ✓

2020 [34] ✓ ✓

2021 [35] ✓ ✓
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The remaining part of the paper is outlined as follows:
Section 2 presents the literature survey of related works,
ensemble, and feature selection techniques for the credit
scoring model. In Section 3, the proposed methodology with
preprocessing techniques is discussed. Experimental setup,
evaluation metrics, and statistical tests are given in Section
4. In Section 5, results are discussed, and finally, we draw
conclusions and future work in Section 6.

2. Literature Review

In recent decades, most credit scoring models have been
proposed using an ensemble of classifiers due to their supe-
rior performance. In this section, the credit scoring and its
related works, ensemble learning techniques in credit scor-
ing, and credit scoring models with and without feature
selection techniques are reviewed.

2.1. Credit Scoring and Its Related Works. The credit scoring
model act as a decision-making system for the banks; it helps
to make crucial decisions to approve a loan to the applicant
or not. The models are designed using different methods,
such as judgmental methods, statistical methods, rule-
based methods, reject inference methods, profit-based
methods, and machine learning methods. In the beginning,
due to the nonavailability of data science methodology, the
judgmental approaches of the expert team were being
followed and approved the loans by reviewing the applica-
tion form. In certain situations, accurately estimating the
risk may be challenging for experienced professionals [24].
But, with the development of the technologies, many effec-
tive statistical credit scoring models have been proposed.
Statistical techniques, such as LR and LDA have been proved
to be superior credit scoring models as compared to the tra-
ditional expertise-based models [24]. These methods can
determine the linear relationship between the attributes
and the class variables. However, they cannot analyze the
nonlinear mappings between the variables of the credit scor-
ing data [36]. In rule-based credit scoring models, the rule
extraction algorithms are combined with machine learning
techniques to predict the creditworthiness of the applicants.
The main advantages of these models are they can easily
identify the patterns in complex problems and using these
patterns the rules can be easily extracted. But, it is difficult
to implement these rules in large dimensional credit scoring
problems [9]. Traditionally, the credit scoring models are
designed using the data that contains the records of only
accepted applicants. Then, these models will have a selection
bias, since they are trained only on accepted applicants and
not on rejected applicants [37]. In reject inference credit
scoring methods, the models are trained using labeled
(accepted applicants) and unlabelled (rejected applicants)
[38]; such models can correctly classify all types of loan
applications. In the profit-based credit scoring methods,
the model was aimed at maximizing the profit by granting
loans to the applicants. These models gain profit by maxi-
mizing the benefits and minimizing the losses due to bad
credits [39]. The credit scoring models designed using
machine learning techniques become more popular. ML

methods can automatically extract the relevant information
from the instances and can build advanced credit scoring
models. In the last two decades, ML has achieved more
popular and is effectively used to estimate the probability
of defaulters. It can automatically extract the relevant infor-
mation from the instances and can build advanced credit
scoring models. In the studies [40], it has been observed
that ML algorithms have achieved significantly better
results than statistical methods. However, there are some
limitations with these methods, such as (1) hyperparameter
tuning is required, (2) normally stick at local minima, (3) it
may overfit, and (4) computationally more expensive to
train the model.

Different ML techniques have been employed to build
the credit scoring models. SVM separates the class samples
by an optimal hyperplane and thereby significantly increases
the performance of the models [41]. A probabilistic-based
Gaussian algorithm was proposed to build the credit scoring
model that gives better accuracy than LR and SVM [42].
However, financial industries are not able to correctly
identify the defaulters by employing a single classification
algorithm. As a result, to mitigate the default risks, the
researchers have proposed high predictive models by
employing ensemble methods [34, 35].

In the study [43], a set of experiments was conducted
and determined that an ensemble model performs better
than a single classifier. In some ensemble methods, such as
AdaBoost, gradient boosting decision tree (GBDT), and
extreme gradient boosting (XGBoost), DTs are used as a
base classifier [44, 45]. According to [46], the loan defaulters
list can be estimated in a better way by employing RF than
LR and KNN. Similarly, RF outperforms the other tradi-
tional classifiers, such as SVM, KNN, and LR for predicting
the best borrowers in peer-to-peer lending [46]. RF is an
ensemble algorithm that generates good accuracy and gener-
ates a model that can avoid overfitting, faster, and above all,
effectively handle outliers and noises [27].

Credit scoring datasets may include some unimportant
or redundant features that increase the training time and
reduce the algorithms’ performance level. FS technique helps
to minimize the complexity, reduces the training time, and
improves the accuracy level of the algorithms by selecting
the informative features from the datasets [47]. Each FS
technique has some pros and cons, like the filter method
selects the features based on a certain ranking criterion.
The top-ranked features are randomly used in the classifica-
tion process while ignoring the impact of the features on the
classifier’s performance. The wrapper method selects the
optimal feature subset according to the classifier’s perfor-
mance. This wrapper method results in the best feature
subset, but computationally, it is more expensive. The
hybridization method combines the application of both
methods. The advantages of both methods are reflected in
this hybrid approach; i.e., it achieves high classification accu-
racy and is computationally less expensive [48]. In the work
of [49], two FS algorithms were proposed using a set of ML
algorithms, such as LR, RF, SVM, MARS, XGBoost, and deep
neural networks (DNN). XGBoost and DNN incorporating
RF-based new approach (NAP) FS method result in high
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ACC and AUC, respectively. In the paper [40], five tradi-
tional FS techniques, such as t-test, correlation matrix, step-
wise regression, PCA, and factor analysis, are proposed to
build a bankruptcy prediction model, and their performances
are analyzed using MLP neural networks. In the research
work of [15], multiple FS techniques are used to build the
credit scoring model. FS techniques like LDA, rough set the-
ory, DT, and F1-score were used, and the performances are
examined through an SVM classifier.

2.2. Ensemble Learning Techniques in Credit Scoring.
Improving the performance level is one of the biggest issues
in ensemble models. Ensemble models can be implemented
using single base learners with different variants (called a
homogenous ensemble) or combining different base learners
(called a heterogeneous ensemble). By the application of
multiple algorithms, the ensemble model outcomes increase
as compared to the outcomes of each base algorithm. It has
been universally accepted that the diversity and the perfor-
mance of the base learners are two key factors of ensemble
models. To improve the generalization and robustness of
the ensemble models, it is needed to focus on these two
key factors. It has been observed that the diversified base
learner enhances the performance of the ensemble model
[27]. To create diversification, it is required to train the
base learners using different data subsets. Bagging [50]
and boosting [26, 51–53] are the two common approaches
to generate diverse members. Building an ensemble model
undergoes two stages, namely, the creation of diverse base
learners and the combining of the output of the learners.
The outputs can be combined using techniques such as
majority voting, weighted average, performance weighting,
and stacking [6, 47].

2.3. Credit Scoring Models with and without Feature Selection
Techniques. Dataset may include some irrelevant or redun-
dant features which may increase the complexity of the
training process, and it leads to a reduction in the perfor-
mance level of the model. The feature selection (FS) tech-
nique helps to reduce the complexity of the problem by
eliminating the irrelevant features and also helps to increase
the predictive capability of the model [15, 54]. In the paper
[30], a hybrid FS technique has been proposed HMPGA,
in which three feature subsets are shortlisted using three dif-
ferent filter methods, such as IG ratio, F1-score, and Pear-
son’s correlation. Then, the optimal feature subset is
finalized using a wrapper method called MPGA (multiple
population genetic algorithm). Similarly, another hybrid FS
method IGDFS for credit scoring problems has been pro-
posed in [29]. It implements the IG filter method to select
the feature subsets and the best subset is selected using
GA. FS techniques help to build models using complicated
nonlinear related variables without considering the model’s
assumptions [26]. It also helps to identify the relationships
between independent and dependent variables in large data-
sets and reduces the training processing time of the models,
especially for large datasets.

In the literature, several credit scoring models have been
proposed without implementing FS techniques. A set of ML

algorithms, such as LR, Classification and regression trees
(CART), ANN, and SVM have been implemented in these
models. In the paper [55], a three-layered neural network
model is proposed using a back-propagation learning algo-
rithm to predict whether to grant or reject the loan applica-
tion in an automated processing system. A hybrid credit
scoring model was proposed in the paper [56] by combining
genetic programming with deep learning network. Genetic
programming was applied to extract rules and deep learning
network was used to build the credit scoring model. In the
paper [57], a few limitations in the credit scoring problems
were identified, such as correctly setting the cut-offs for clas-
sifying good/bad borrowers, dealing with imbalanced credit
datasets, and the implementation of ensemble methods. A
profit-based credit scoring model using reinforcement learn-
ing is proposed [58] to determine the optimal threshold
value. Similarly, to address the imbalance credit scoring
problems, an improved SMOTE algorithm using AdaBoost
and deep learning technique is proposed [35].

3. Proposed Methodology

In the proposed methodology, three methods are integrated,
i.e., FS, resampling of minority class instances using
SMOTE, and an ensemble of learners to build an effective
credit scoring model. The flow of the proposed work is illus-
trated in Figure 1. It consists of four phases: (1) data prepro-
cessing, (2) resampling using SMOTE, (3) feature selection,
and (4) model generation. In the subsequent sections, the
details of each phase are discussed.

3.1. Data Preprocessing. In the first phase, some necessary
steps are employed to preprocess the dataset. Data prepro-
cessing helps to enhance the accuracy and efficacy of the
classifier. Each dataset undergoes different methods to make
it more appropriate for the classification process. In this
phase, data cleaning and normalization technique are imple-
mented. In data cleaning, missing values are handled which
is a common issue in many real-world problems. Data impu-
tation is a method used to fill the missing values of an attri-
bute by using the existing information. Mean imputation is a
technique in which the mean of the existing data replaces the
missing values.

In most cases, the domain range of the features differs by
a large value. The features with a higher range of values cre-
ate more influence on the classification model. Data normal-
ization is another preprocessing technique in which the
feature values are transformed into a particular range so that
all the features will have equal influence. Normally, all the
feature values are scaled within the range of [0, 1], which
is expressed as

Scaledx =
actualx −min allvaluesð Þ

max allvaluesð Þ −min allvaluesð Þ : ð1Þ

3.2. Resampling. This paper implements SMOTE to address
the imbalanced issues before modeling. It oversamples the
minority class subset by generating a specific number of arti-
ficial minority class samples. For each instance, xi belongs to
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the minority class subset,Tmin, and its k-nearest neighbors
from the minority class subset are identified using Euclidean
distances. Then, a random sample xj is selected from Tmin, and
finally, along the line segment between xi and xj, a newminor-
ity sample xnew is obtained using the following equation:

xnew = xi + xi − xj
� �

∗ rand 0, 1ð Þ, ð2Þ

where rand ð0, 1Þ generates random numbers between 0 and
1. xnew is added to Tmin to make the imbalanced ratio (IR) to 1.

Additionally, three different oversampling methods are
used in the experiment, namely, random oversampling
(ROS), adaptive synthetic sampling (ADASYN) [59], and
Borderline-SMOTE [60]. ROS randomly replicates the
minority class samples to make its number equal to the
number of majority class samples. ADASYN assigns differ-
ent weights to the minority class samples, and more weights
are assigned to the samples that are hard to classify. More
synthetic samples are generated for instances having higher
weights. But, in the case of Borderline-SMOTE, the samples
that lie near the borderline are assumed to have more impact
on classification. These samples are used to generate syn-
thetic samples through interpolation.

3.3. Feature Selection. In the third stage, we applied three FS
techniques, such as IG ratio, GA, and PCA to select the rel-
evant features from the datasets. Through FS techniques,
valuable feature subsets are chosen and help to achieve
highly optimized model performance in the subsequent
stages. FS technique not only improves the model efficiency
but also reduces the complexity and running time of algo-

rithms. The three FS techniques are discussed in the follow-
ing subsections.

3.4. Information Gain (IG). IG adopts feature ranking prin-
ciples to find out the best features that are very much related
to the class variables. The features with high IG are selected
to enhance the classification of the model [54]. The IG of a
feature is computed by evaluating the overall reduction in
entropy. Entropy quantifies the expected value of a feature
that is used while classifying an instance. Let X be an input
feature vector and Y be the corresponding class variable;
the entropy of Y is computed by taking the probability dis-
tribution of each y∊Y , which is expressed as

Info Yð Þ = −〠
y∈Y

P yð Þ ∗ log2P yð Þ, ð3Þ

where pðyÞ is the probability of Y belonging to class y.
Now considering the feature vector X, the entropy is
defined as

Info
Y
X

� �
= −〠

x∈X
P xð Þ ∗ 〠

y∈Y
P

y
x

� �
∗ log2P

y
x

� �
: ð4Þ

Finally, the IG of feature vector X is defined as

IG Xð Þ = Info Yð Þ − Info Y
X

� �
: ð5Þ

3.5. Genetic Algorithm (GA). GA [61] is an evolutionary
heuristic search algorithm where selection, cross-over,

Resampling 

k-Fold cross validation

Hyper-
parameters

tuning
using grid-

search

SMOTE , ADASYN, BSMOTE, ROS

Feature selection

IG , PCA, GA

Performance evaluation

ACC, AUC, F1-score, BS, KS Test set

Model generation

Baseline classifiers

(LR, SVM , CART,
KNN, NB)

Ensemble of
classifiers

(Bagging, Boosting,
TBE)

Credit dataset

Data pre-processing

Training set Test set

Figure 1: Flow diagram of the proposed model.
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and mutation operators are used to find the optimal fea-
ture subset. It is an optimal search technique in which
the chromosome represents the feature subset in the form
of binary strings. Each feature subset is evaluated based on
the fitness score. The feature subset is selected based on a
higher fitness score. The features are selected from the
subset if the bit is 1; otherwise, the feature is discarded.
According to the study [62], if a single metric is used to
evaluate the performance of the classification algorithm,
AUC is a more appropriate choice to be used in the fitness
function to evaluate each individual of the population.

3.6. Principal Component Analysis (PCA). PCA is a feature
transformation technique used to transform the high-
dimensional feature vector ℝd to lower-dimensional relevant
feature vector ℝp [63], where d > >p. The resultant features
are principal components, which are evaluated using the
eigenvalue of the covariance matrix of the feature vector.
These orthogonal principal components are used to identify
the correlated essential features.

3.7. Model Generation. In the final stage, the models are gen-
erated by applying a set of base and ensemble of classifiers.
In the subsequent sections, the details of each classifier are
discussed.

3.7.1. Baseline Classifiers

(1) Logistic regression (LR): LR is the most traditional sta-
tistical method and is widely used in credit scoring
problems [43]. For the binary classification problems,
it transforms the output from continuous values [-∞,
+∞] to 0 or 1. For credit scoring problems, LR can be
used to estimate the probability of a customer’s default
using the logistic transformation function

(2) Support vector machine (SVM): SVM classifies the
instances of both the classes by an optimal hyper-
plane such that the data points of both the classes
are separated by maximal distance [64]. SVM can
also classify the nonlinear data points more accu-
rately than other methods. It handles such classifica-
tion by transforming the data points into high-
dimensional space using different kernel functions,
such as linear, polynomial, Gaussian, and radial basis
functions (RBF)

(3) Naïve Bayes (NB): NB is a probabilistic-based ML
algorithm that uses the Bayes theorem and provides
better predictive performance for high-dimensional
input feature vectors [65]. It implements Bayes’ rule
and can predict whether the applicant is eligible for a
loan or not. The rule estimates the probability that
an instance x belongs to class y having the highest
posterior probability

(4) Decision tree (DT): DT is very popular and easy to
interpret because its graphical structure looks very
similar to human reasoning [66]. In DT, the attri-
butes are represented as nodes, the branches split
the instances into smaller subsets, and the terminal

nodes represent the class label. The tree is built using
the training instances and the class label of each test
sample can be easily predicted from its structure.
This study employs a classification and regression
tree (CART) to build the credit scoring model. It
implements all the possible combinations for split-
ting each attribute to build an optimized model

(5) K-nearest neighbor (KNN): KNN is a nonparametric
classifier that does not need to train the model [4].
The classifier can predict the new instances based
on k-nearest training instances. For each test obser-
vation, its k-nearest training samples are identified
and the class outcome is predicted based on the
majority class of k-nearest neighbors

3.7.2. Ensemble of Classifiers. Some of the widely used
ensemble techniques are boosting, bagging, and tree-based
ensembles.

(1) Boosting: boosting operates sequentially by imple-
menting a set of weak learners (normally shallow
DT). Initially, a weak leaner gets trained on the
training set by assigning weights ð1/NÞ to all the N
samples. In every iteration, the instances that were
incorrectly classified in the current step are given
more weight in the next iteration to correctly classify
those misclassified instances [67]. All the instances
with their respective weights are used to train the
next weak classifier. More weightage is assigned to
the classifier that performs well. By repeating the
process, the performance of the classification
increases by taking more weak learners. Finally, the
resultant superior model is generated by linearly
combining the classifiers with higher weights

(2) Bagging: bagging is another ensemble approach in
which different sets of training subsets are generated
using the bootstrap aggregation method [50]. In this
approach, K different classifiers are trained by ran-
domly selecting the training subsets with replace-
ment. Each classifier predicts the output for each
input vector and the final output is generated using
the majority voting technique. Random forest (RF)
implements bagging approaches in which a set of
DTs is constructed by selecting the training subsets
using bootstrap samples and randomly selecting the
features. At each round, different trees are built and
each of them predicts the output for a given input
pattern. The output predicted by each tree is aggre-
gated and the final output is generated based on
majority voting [68]

(3) Tree-based ensembles (TBE): different tree-based
ensemble methods, such as gradient boosting deci-
sion tree (GBDT), extreme gradient boosting
(XGBoost) [69], light gradient boosting (LGBM)
[70], and categorical boosting (CatBoost) [71] are
used in this study. GBDT is a boosting algorithm in
which a set of weak decision trees are combined to
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build a strong ensemble model [67]. In this case, the
sample data are updated along the negative gradient
to reach a point where the algorithm converges glob-
ally [68]. XGBoost is an improved version of GBDT,
which is designed to minimize the computational
cost and above all increase the model efficiency both
for classification and regression type problems. Like
GBDT, XGBoost can handle overfitting problems
by using the learning rate, number of boosting, the
tree’s maximum depth, and subsampling [67]. As
compared to GBDT, XGBoost increases the effi-
ciency of the model by optimizing the objective
function

The high performance of LGBM is due to the application
of the “best-first” tree and histogram-based decision tree.
XGBoost trained the model by increasing the size of the tree
depth-wise, whereas LGBM adopts the “best-first” tree by
growing the tree leaf-wise and limiting the depth-wise
growth. The best-first helps to minimize the loss function
rapidly but may lead to overfitting issues; LGBM prevents
the tree depth and the splitting of the nodes.

CatBoost is another powerful GBDT-based algorithm
that operates on two advanced algorithms, i.e., ordered
boosting and techniques to handle categorical features.
Through ordered gradient boosting techniques, it helps to
reduce the biased gradient estimates and the overfitting
issues. Categorical features are usually present in the credit
scoring datasets. Normally, the hot-encoding technique is
used to transform the categorical attributes into numeric
values but it may lead to overfitting. CatBoost can easily
handle the overfitting issue by converting these features to
the gradient at each step.

4. Empirical Study

In this section, the experimental setup is designed to evalu-
ate the performance of the proposed credit scoring models.
It includes the descriptions of three credit scoring datasets
and performance metrics to evaluate the experimental
results, and finally, the performance of the classifiers is ana-
lyzed using statistical tests. The experiments are imple-
mented in Python 3.8 on a Jupyter notebook on a PC with
Intel Core 4 CPU, 4GB RAM, and Windows 10 operating
system.

4.1. Credit Scoring Datasets and Experimental Settings. For
the experimental analysis of different models, the three most
commonly used credit scoring datasets were applied. These
datasets are collected from the UCI ML repository1, such
as Australian, Japanese, and German datasets. Table 2 shows
the brief descriptions of these datasets, and all these datasets
are relatively small but contains the total data. The Austra-
lian credit dataset contains 690 instances, of which 307 are
positive and the remaining 383 are negative, yielding an
imbalance ratio (IR) of 1.25. Similarly, in the case of the Jap-
anese dataset, the total number of samples is 690, with an
imbalanced ratio (IR) of 1.25. The German dataset contains
1000 instances, out of which 700 are positive and 300 are

negative, with a class distribution of 2.33. The “#instance”
column represents the number of instances, the “#feature”
column is the number of feature/attributes, “%Good” and
“%Bad” column represents the percentage of good/positive
and bad/negative applicants, and the IR column represents
the imbalance ratio.

In the proposed work, an experiment is conducted to
perform an extensive comparative analysis of the perfor-
mances of baseline and ensemble models. In total, 5 base
classifiers + 14 ensemblemodels = 19models are used to per-
form comparative analyses on a set of credit score datasets.
All the experiments have been conducted using 5-fold
cross-validation to limit the effect of variability that occurs
in random partitioning and able to achieve optimized
results. Each dataset is partitioned into five folds, one fold
is used as a test set to evaluate the model and the remaining
four folds are used for training purposes. The experiments
were carried out by repeating ten times the 5-fold cross-
validation process for tuning the hyperparameters.

4.2. Evaluation Metrics. To evaluate the effectiveness of the
credit scoring models, five evaluation metrics were used, i.
e., accuracy (ACC), the area under the curve (AUC), the
F1-score, Brier score (BS), and the Kolmogorov-Smirnov
statistic (KS). These measures are most commonly used in
this problem domain, as they cover each feature of the
model’s performance. ACC, AUC, and F1-score metrics
can be defined using the confusion matrix (shown in
Table 3), in which one class is labeled as positive and the
other class as negative. True negative (TN) and true positive
(TP) represent the number of correctly classified negative
and positive cases, respectively. Similarly, false negative
(FN) and false positive (FP) represent the number of incor-
rectly classified negative and positive cases, respectively.

The ACC metric is used to find the proportion of
instances that are correctly predicted by the model, which
is defined in Equation (6). The AUC evaluates the discrimi-
natory ability of the model based on the receiver operating
characteristic curve (ROC). The AUC value lies between 0
(indiscernible) and 1 (perfectly discernible), and 0.5 indi-
cates the predictive ability of a random classifier. The F1-
score evaluates both positive and negative accuracies of the
test samples by taking the weighted average of the precision

Table 2: Description of the credit scoring datasets.

Dataset #instance #feature %Good %Bad IR

Australian 690 14 44.5 55.5 1.25

German 1000 20 70.0 30.0 1.25

Japanese 690 15 45.3 54.7 2.33
1https://www.ics.uci.edu/~mlearn/MLRepository.html.

Table 3: Confusion matrix.

Predicted bad
(negative)

Predicted good
(positive)

Actual bad (negative) True negative (TN) False positive (FP)

Actual good (positive) False negative (FN) True positive (TP)
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and recall scores. Precision defines the exactness, i.e. the
number of samples that are predicted as positive that are
actually positive, whereas recall defines the completeness, i.
e. the number of positive samples that are correctly pre-
dicted.

ACC =
TP + TN

TP + FP + TN + FN
, ð6Þ

F1 − score =
2 × Precision × Recall
Precision + Recallð Þ , ð7Þ

where

Precision =
TP

TP + FPð Þ , ð8Þ

Recall =
TP

TN + FNð Þ : ð9Þ

The BS metric evaluates the accuracy of the probability
predictions. It computes the mean-squared error between
the probability predictions and the actual label (0 or 1). It
is defined as

BS =
1
N
〠
N

i=1
Pi − yið Þ2, ð10Þ

where Pi is the predicted score and yi is the actual label of
the sample ith sample.

The KS statistic is used to evaluate the maximum differ-
ence between the cumulative score of positive and negative
samples.

Table 4: Search space of the hyperparameters and the best parameters in each dataset.

Classifier Parameter search space
Best parameters in German

dataset
Best parameters in
Australian dataset

Best parameters in Japan
dataset

LR
C ∊ [-15,15], solver ∊ [newton-cg,
lbfgs, liblinear], penalty ∊ [l1, l2]

C=4, penalty= l2, solver=
liblinear

C=2, penalty= l1, solver=
liblinear

C=10, penalty= l2, solver=
newton-cg

KNN

n_neighbors ∊ [2, 21],
weights ∊ [uniform, distance],
metric ∊ [euclidean, manhattan,

minkowski]

Metric= manhattan, n_
neighbors=9, weights=

distance

Metric= manhattan, n_
neighbors=11, weights=

distance

Metric=manhattan, n_
neighbors=15,

weights=distance

SVM
C∊ [-10,10], gamma ∊ [-10,10],
kernel ∊[poly, rbf, sigmoid]

C=2, gamma=1, kernel = rbf
C= 0.1, gamma=1, kernel =

rbf
C =2, gamma=1, kernel = rbf

CART
Criterion ∊ [gini, entropy],
max_depth ∊ [1, 20], min_

samples_leaf ∊ [1, 10]

Criterion=gini, max_
depth=20, min_samples_leaf

=10

Criterion=gini, max_depth=
3, min_samples_leaf =20

Criterion=gini, max_
depth=10, min_samples_leaf

= 50

AdaBoost
learning_rate ∊ [0.0001,1],
n_estimators∊ [5,100]

learning_rate = 0.001, n_
estimators = 50

learning_rate = 0.001, n_
estimators =10

learning_rate = 0.1, n_
estimators = 5

Bagging n_estimators ∊ [10,1000] n_estimators =1000 n_estimators =200 n_estimators =200

RF

bootstrap [True],
max_depth ∊ [2, 50],
max_features ∊ [2, 10],

min_samples_leaf=[3,4,5], min_
samples_split= [8, 10, 12],
n_estimators ∊ [2,500]

Bootstrap= True, max_
depth=20, max_features=2,
min_samples_leaf= 3, min_

samples_split= 8, n_
estimators=300

Bootstrap= True, max_
depth= 50, max_features= 3,
min_samples_leaf=4, min_

samples_split=10, n_
estimators=100

Bootstrap= True, max_
depth=20, max_features= 3,
min_samples_leaf= 3, min_

samples_split= 8, n_
estimators=100

XGBoost

gamma = [0,0.1,0.2,0.4,0.8,1],
learning_rate = [0.01, 0.1, 0.2, 0.3,

0.5, 0.6, 0.7], max_depth =
[5,6,7,8,9,10], n_estimators =

[50,65,80,100,200]

gamma= 0, learning_rate=
0.5, max_depth=10, n_

estimators'=200}

gamma=0.8, learning_
rate=0.1, max_depth= 6, n_

estimators= 65

gamma= 0.8, learning_rate=
0.3, max_depth=7, n_

estimators=50

LGBM

learning_rate ∈ [0.1, 1], n_
estimators ∈ [1, 200], max_depth ∈

[1, 10]
min_child_weight ∈ [0.001, 1000]

num_leaves ∈ [6, 50]

learning_rate=0.5, max_
depth=4, min_child_
weight= 0.01, n_
estimators=200,
num_leaves=18

learning_rate=0.3, max_
depth= 1, min_child_

weight= 0.01, n_
estimators=50,
num_leaves=36

learning_rate=0.5, max_
depth=4, min_child_
weight= 0.01, n_
estimators=200,
num_leaves=18

GBDT
learning_rate ∈ [0.1, 1], n_

estimators ∈ [1, 200], max_depth ∈
[1, 10]

learning_rate= 0.7, max_
depth=1, n_estimators=170}

learning_rate= 0.01, max_
depth=1, n_estimators=10}

learning_rate=0.01, max_
depth=1, n_estimators=10

CTB
learning_rate ∈ [0.1, 1], n_

estimators ∈ [1, 200], max_depth ∈
[1, 10]

learning_rate=0.2, max_
depth= 5, n_estimators=100

learning_rate=0.4,
max_depth=4, n_
estimators=200

learning_rate=0.2,
max_depth=3, n_
estimators=200
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4.3. Statistical Tests. Even though we are using several mea-
sures but without statistical tests, we cannot conclude the
model’s superiority over others [20]. The statistical test
needs to be carried out to show that the model’s perfor-
mance is statistically different from others. In this experi-
ment, nonparametric tests are used to compare the
performance of all the algorithms over the different datasets.
The algorithms are ranked using the Friedman test, ranked 1
is assigned to the best algorithm, ranked 2 to the second-
best, and so on. The test is carried out over each algorithm
K using chi-square with K-1 degree of freedom. This value
is computed using the rank ðr jiÞ of each classifier j on each
dataset i⟶ 1⋯N , where N indicates the number of data-
sets. It is defined using the following equation:

Χ2
F =

12N
K K + 1ð Þ 〠

j

1
N
〠
i

r ji

 !2

−
K k + 1½ �2

4

" #
: ð11Þ

The Friedman test is applied to determine the significant
differences in performances of all the classifiers. If the null
hypothesis that there is no significant difference is rejected,
then the Nemenyi post hoc test can be applied to determine
significant differences in performances between each pair of
classifiers. According to the Nemenyi post hoc test [20], the
performances of two or more classifiers are significantly dif-
ferent if their respective average ranks differ by at least the
critical difference (CD), which is defined as

CD = qα,∞,L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K K + 1ð Þ
12N

,
r

ð12Þ

where the value qα,∞,L is based on the studentized range sta-
tistic table.

4.4. Hyperparameter Tuning. The performance of the classi-
fiers depends on the hyperparameters. To improve the per-
formances significantly, these hyperparameters need to be
modified. Therefore, the grid search method, a popular
hyperparameter optimization method, is employed to deter-
mine the best parameters from a prespecified parameter list.
Table 4 presents the parameter searching space for all the
classifiers and the best parameter obtained for all the data-
sets. The classifiers used in this study are LR, SVM, KNN,
CART, AdaBoost, bagging, RF, XGBoost, LGBM, GBDT,
and CatBoost; all these classifiers have a set of hyperpara-
meters that needs to be optimized. However, NB is the clas-
sifier whose classification is only based on the prior
probability of the features in the training set to estimate
the posterior probability, so no parameter tuning is essential
for it.

5. Results and Discussion

In the experiment, we build 5 baseline classifiers, i.e., LR,
SVM, DT, NB, and KNN, and 14 ensemble models are gen-
erated by combining the baseline classifiers with AdaBoost,
bagging, and tree-based ensemble methods. In the AdaBoost
method, 4 ensemble models are generated by using LR,

SVM, DT, and NB algorithms as base classifiers, represented
as A_LR, A_SVM, A_DT, and A_NB, respectively. Similarly,
in the bagging approach, 6 ensemble models are generated, i.
e., random forest, and the remaining 5 are generated by
using DT, SVM, LR, NB, and KNN as base classifiers, which
are represented as B_DT, B_SVM, B_LR, B_NB, and B_
KNN. In the tree-based approach, 4 ensemble models are
generated by using XGBoost (XGB), GBDT (GB), CatBoost
(CTB), and LGBM (LGB) as base classifiers.

All the models are evaluated concerning ACC, AUC, and
F1-score metrics in four separate experiments. They are as
follows:

(i) Performance analysis of each classifier without
resampling and FS

(ii) Performance analysis of each classifier with resam-
pling but without FS

(iii) Performance analysis of each FS technique

(iv) Performance analysis of each classifier with resam-
pling and GA-based FS technique

Finally, in the last two experiments, the performance
analysis of each classifier using nonparametric statistical
tests and the comparison of the computational cost of each
classifier is performed.

5.1. Experiment I: Performance Analysis of each Classifier
without Resampling and FS. In this experiment, the perfor-
mance of all the five individual classifiers and 14 ensemble
learnings is compared prior to oversampling and FS tech-
niques to the datasets. Table 5 represents the results of each
base and ensemble model. The best classifiers in each metric
are highlighted in bold fonts. Additionally, we also rank the
classifiers from best (rank-1) performer to worst performer

Table 6: Results of the oversampling methods using DT (bold
indicate best results).

Dataset SMOTE ROS ADASYN BSMOTE

German

ACC 77.7 68.8 74.9 75.3

AUC 77.0 69.5 75.1 74.8

F1-score 77.9 68.7 75 75.3

BS 0.296 0.322 0.33 0.34

KS 60.87 64.2 63.1 59.7

Australian

ACC 83.8 81.8 81.6 81.5

AUC 82.7 82.7 81.4 81.3

F1-score 83.6 80.3 81.6 80.8

BS 0.169 0.183 0.222 0.188

KS 69.7 61.7 56.7 66.8

Japan

ACC 82.3 79.5 80.1 80.5

AUC 81.7 80 80.3 82.3

F1-score 82.6 80.9 81.4 82.9

BS 0.198 0.188 0.183 0.178

KS 57.3 62.8 60.6 59.9
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using Friedman’s rank in terms of ACC (R_ACC), AUC (R_
AUC), F1-score (R_F1), BS (R_BS), and KS (R_KS) for all
the datasets. All the tests have been carried out by taking
the level of significance (α) value equal to 0.05.

From Table 5, we can observe that CTB is the best per-
former and RF is the second best considering all the three
datasets. The mean scores of CTB in terms of different met-
rics are ACC (84.56%), AUC (89.73%), F1 (76.56%), BS
(0.116), and KS (65.06%). Among the base learners, LR is
the best performer with a mean rank of 7.7 and CART is
the worst performer with a mean rank of 15.6.

After applying ensemble methods, some improvements
in performance levels were observed in most of the datasets
for all the base learners. Especially, DT (CART) has shown
maximum improvements as compared to other base
learners. The accuracy level of DT has enhanced by 5.5%
to 9.8% in all the datasets after applying bagging (RF). Sim-
ilarly, XGBoost brings improvements in accuracy by 5.3% to
10%. In general, ensemble methods obtain significant
improvements in different metrics as compared to all the
base learners.

5.2. Experiment II: Performance Analysis of Each Classifier
with Resampling but without FS Technique. Through this
experiment, we aim to show the effect of resampling on
the performance of the classifiers. In the 5-fold cross-
validation process, oversampling is implemented 5 times
on all the training folds, while in all the testing folds, the
class distribution is kept intact. That is, all the classification
algorithms are tested on the dataset having the original class
distribution.

In this experiment, four popular oversampling methods
are implemented on all three datasets using DT classifica-
tion. Oversampling methods used in the experiment are
random oversampling (ROS), ADASYN, SMOTE, and
Borderline-SMOTE (BSMOTE). After implementing over-
sampling methods, the performances of DTs are measured
in terms of ACC, AUC, F1-score, BS, and KS which are
shown in Table 6.

Now to show the effect of oversampling on the classifica-
tion algorithms, we balance all the datasets using SMOTE
and the algorithms are trained on those balanced datasets.
Table 7 illustrates the performances of all the base and
ensemble learners before oversampling (BO) and after over-
sampling (AO) in terms of each metric. The bold fonts indi-
cate the performance level of the classifier increase after
implementing oversampling. After implementing SMOTE,
it has been observed that most of the classifiers have shown
improvements in ACC (i.e., 0.2-5%), AUC (i.e., 0.5-5%), F1-
score (7-20%), and KS (i.e., 0.5-3%). But, very few classifiers
have shown slight improvements in BS. From this experi-
ment, we conclude that SMOTE method brings significant
improvement in ACC, AUC, and F1-score metrics for most
of the classifiers.

5.3. Experiment III: Performance Analysis of Each FS
Technique. Through this experiment, we aim to study the
impact of FS techniques on the performance of the classifica-
tion algorithms. As stated above, the class level distribution
of the training dataset is made balanced using SMOTE,
and then, FS techniques are applied to these balanced data-
sets. Next, the top-ranked features are identified and the

Table 7: Performance of each classifier before oversampling (BO) and after oversampling (AO) and bold font indicates when performance
level increases after oversampling.

Classifier ACC (BO) ACC (AO) AUC (BO) AUC (AO) F1-score (BO) F1-score (AO) BS (BO) BS (AO) KS (BO) KS (AO)

LR 80.43 80.83 84.57 84.93 75.07 80.57 0.13 0.12 65.87 66.7

KNN 81.43 82.50 84.53 88.27 70.53 81.83 0.15 0.17 59.23 61.3

CART 77.53 80.77 75.03 80.30 69.13 79.57 0.22 0.21 53.37 54.3

NB 77.30 77.50 85.17 85.40 69.03 76.70 0.21 0.20 58.50 59.2

SVM 81.80 82.27 82.70 82.93 73.40 81.97 0.18 0.18 57.30 58.3

A-DT 77.07 80.23 75.40 80.47 68.83 79.67 0.22 0.25 54.47 54.2

A-SVM 72.33 74.67 79.83 82.43 41.20 71.67 0.21 0.20 52.83 52.63

A-NB 59.57 57.17 74.90 73.83 37.27 41.63 0.23 0.20 38.83 39.4

A-LR 80.60 81.67 85.87 86.10 75.20 82.13 0.24 0.24 64.83 65.8

XGB 83.87 85.43 88.40 90.53 76.00 85.77 0.13 0.13 63.30 64.3

LGB 83.43 85.87 88.33 92.70 75.50 80.97 0.14 0.15 61.50 62.8

GB 83.77 84.90 86.47 90.40 75.83 85.17 0.18 0.14 64.00 64.5

CTB 84.57 86.73 89.73 92.40 76.57 85.50 0.12 0.11 65.07 66.9

RF 83.90 86.33 88.93 90.27 74.20 86.80 0.13 0.13 64.90 63.5

B-SVM 82.40 82.30 88.40 89.57 73.33 81.03 0.16 0.18 63.67 63.98

B-NB 77.37 77.57 85.80 86.07 69.50 76.60 0.20 0.21 58.50 61.4

B-DT 83.37 84.37 88.43 88.63 75.63 85.63 0.13 0.14 61.97 62.8

B-LR 81.60 81.70 88.13 88.07 75.03 81.43 0.13 0.14 65.63 66.8

B-KNN 81.60 83.30 85.53 89.03 70.40 83.90 0.14 0.16 61.67 63.5
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classifier gets trained on these selected features. Finally, the
testing set with the same set of features is used to evaluate
the performance of the classification. The FS techniques
are implemented and their parameters are adjusted accord-
ing to the performance of the SVM classifier.

In the IG FS approach, only the number of selected fea-
tures in each subset varies. Each feature subset is evaluated
using ACC, AUC, F1-score, BS, and KS. The results of each
subset are shown in Table 8. In the German and Australian
datasets, model-4 (i.e., selecting 12 important features)
obtains best results than others in the classification process.
In the Japan dataset, model-2 (i.e., selecting 6 important fea-
tures) obtains best results than others.

Similarly, in the case of PCA, the feature space is reduced
by taking a different number of components. The best fea-
ture subset is determined based on SVM classification per-
formance. The results of the classification are shown in
Table 9. According to the classification report, model-3 (i.
e., 8 numbers of components) obtains the best results in
the German dataset and model-4 (i.e., 12 numbers of com-
ponents) obtains the best results in the Australian and Japan
dataset.

In the GA FS technique, a set of parameters with differ-
ent combinations are chosen by referring to the studies. To
obtain the best feature subset, a series of experiments are
conducted with various ranges of population size [50-300],
mutation rate [0.001-0.3], cross-over rate [0.01-0.9], and
the number of generations [20-100]. Finally, Table 10 pre-
sents, the best combination of parameters that are obtained
after comparing all the combinations of parameters. The fea-
tures that are selected using these optimal parameters are the
best feature set, which is then applied to the SVM classifica-
tion algorithm; the results are shown in Table 11.

The features that are selected using IG and GA for all
three datasets are shown in Table 12. In Australian and Jap-

anese datasets, the features are named as [X1-X14] and
[F1-F15], respectively. Finally, Table 13 shows the mean
values of each metric of all the FS techniques. From
Table 13, we conclude that GA is the best FS technique,
and the features that are selected using this technique are
applied to all the datasets in the model generation phase.

5.4. Experiment IV: Performance Analysis of Each Classifier
with Resampling and GA-Based FS Technique. In this exper-
iment, the optimal feature subset of each dataset is employed
by all the classification algorithms on the balanced training
set. Table 14 presents the results of each algorithm after
implementing the GA-based FS technique on the over-
sampled sampled dataset. From Table 14, it is clear that
the CTB and XGB are the two best classification algorithms
of the credit scoring problems. The mean ACC, AUC, F1-
score, BS, and KS values of CTB are 87.1%, 91.5%, 86.53%,
0.112, and 68.22%; and in case of XGB, the respective values
of the corresponding metrics are 85.67%, 90.30%, 84.0%,
0.121, and 64.94%. From experiments I-III, it is clear that
the performance level of most of the classifiers improves
after employing SMOTE and the performance level gets
further improved after implementing the GA-based FS tech-
nique on the oversampled dataset.

Table 10: Optimized GA parameters.

Parameter Values

Population size 50-300

Cross-over rate 0.5

Mutation rate 0.05

No. of generations 20-50

Fitness function AUC

Stopping criteria Maximum number of generations

Table 9: Performance of SVM classifier using PCA (bold indicates best results).

Model
No. of

components
German Australian Japan

ACC AUC F1-score BS KS ACC AUC F1-score BS KS ACC AUC F1-score BS KS

1 4 70.8 71.1 77.5 0.19 46.7 84.1 84.2 81.6 0.13 70.7 75.8 74.6 70.2 0.16 55.6

2 6 73.2 72.3 79.8 0.19 38.5 86.5 86.6 82.3 0.12 69.7 74.9 73.8 69.4 0.17 56.6

3 8 74.4 74.1 80.7 0.17 46.9 81.6 82.11 79.3 0.13 68.8 75.4 74.4 70.2 0.17 55.8

4 12 70.8 70.6 77.6 0.18 45.14 86.95 88.33 86.01 0.112 73.37 83.09 83.76 82.05 0.136 68.72

5 15 69.6 68.7 77.3 0.18 45.95 — — — 82.6 83.2 81.44 0.138 67.35

Mean 71.76 71.3 78.5 0.18 44.63 84.76 85.29 82.29 0.122 70.62 78.35 77.95 74.66 0.156 60.82

Table 8: Performance of SVM classifier using IG FS technique (bold indicates best results).

Model No. of FS
German Australian Japan

ACC AUC F1-score BS KS ACC AUC F1-score BS KS ACC AUC F1-score BS KS

1 4 61.3 66.9 67.4 0.20 36.5 83.5 85.3 83.8 0.20 72.3 81.7 87.6 86.7 0.14 73.5

2 6 68 68.5 75.1 0.19 38.1 85.7 86.6 87.1 0.2 72.1 82.5 88.2 86.8 0.13 75.7

3 8 68.8 69.5 75.6 0.19 38.4 83.8 84.6 82.9 0.20 73.5 81.6 88.5 85.2 0.14 73.6

4 12 72.8 71.6 78.3 0.18 40.9 86.4 87.1 88 0.19 74.6 82.1 86.5 86 0.15 74.5

5 15 70.8 69.4 78.1 0.202 40.1 — — — — — 81.6 85.5 81.9 0.15 74.2

Mean 68.34 69.18 74.9 0.196 38.8 85.1 85.9 85.5 0.20 73.1 81.9 87.2 85.3 0.14 74.3
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5.5. Experiment V: Performance Analysis of Each Classifier
Using Statistical Tests. In each experiment, the Friedman test
is conducted to rank the classifiers according to their predic-
tive performances. In all three cases, the p value is less than α
(0.05). This indicates that the performance measures of the
classifiers are significantly different, and therefore, the null
hypothesis is rejected.

Finally, to make further analysis, a Nemenyi post hoc
test [20] with α = 0:05 is applied to make pairwise compari-
sons of each classifier using the mean ranks of all the classi-
fication algorithms. Table 15 presents the ranks of each
classifier in terms of ACC (R_ACC), AUC (R_AUC), F1-
score (R_F1), BS (R_BS), and KS (R_KS) and the last col-
umn presents the mean ranks. Figure 2 represents the graph-
ical representation of the global ranks. The CD defines the
mean-ranking score difference among the classifiers [20].
The algorithms present on the right-hand side of the dia-
gram are considered the top-ranked algorithms, and among
them, CTB is the best one. The graphical representation
shows that CTB is the superior algorithm among all the base
and ensemble models.

5.6. Comparison of Computational Cost. Computational cost
is another important metric that needs to be considered for
the credit scoring model. An ideal credit scoring model
should respond quickly to whether to allocate loans to the
applicants or not. Except for SVM, each base learner com-
paratively takes less training time than that of ensemble
models, because the base learners get trained only once,
while the ensemble models get trained multiple times. More-
over, tree-based ensemble methods, such as GBDT,
XGBoost, LGBM, and CatBoost, take comparatively low
computational time due to GPU computing systems. The
computational cost of the classifiers is determined by com-
puting the single training time [12], which represents the
training time of a single cross-validation process. Figure 3
shows the average computational time of base and ensemble
models. SVM consumes maximum computational time, so it
may not be appropriate to design a credit scoring model
using SVM in the CPU computing system. However, the
computational cost of the ensemble model can be further
improved by implementing advanced computing mecha-
nisms, such as distributed environment and GPU computing
systems. Hence, instead of more computational cost, ensem-
ble models should be used to build the credit scoring models.

6. Conclusions and Future Work

Effectively analyzing the default customers is an important
process to improve the financial status of banks and financial
industries. Advanced credit scoring models are an effective
tool needed to identify the default customers. As stated in
the literature section, different approaches have been

Table 11: Performance of SVM classifier using GA FS technique (bold indicates best results).

Model
German Australian Japan

ACC AUC F1-score BS KS ACC AUC F1-score BS KS ACC AUC F1-score BS KS

1 66.3 69.5 73.05 0.144 72.6 83.97 83.2 85.21 0.18 72.6 82.08 86.18 83.05 0.138 72.2

2 69.3 70.8 76.29 0.135 74.8 84.1 84.5 85.5 0.179 73.4 83.49 87.13 83.45 0.134 74.9

3 70.3 71.9 77.69 0.123 76.5 85.8 88 86.5 0.166 75.8 84.6 88.8 84.1 0.122 76.5

Mean 68.7 70.7 75.67 0.134 74.6 84.62 85.23 85.74 0.174 73.9 83.39 87.37 83.53 0.131 74.5

Table 12: Feature selected/features ordered rank-wise using GA and IG.

FS technique Dataset FS selected/feature order rank-wise

GA German

Features selected: status of existing checking account, duration in months, credit history, credit amount, savings
account/bonds, present employment since, installment rate in percentage of disposable income, personal status
and sex, other debtors/guarantors, property, age, other installment plans, housing, number of existing credits at

this bank, number of people being liable to provide maintenance for, and telephone

Info-gain German

Feature order rank-wise: credit amount, status of existing checking account, duration in months, age in years,
credit history, savings account/bonds, purpose, property, present employment since, housing, other installment

plans, personal status and sex, foreign worker, other debtors/guarantors, instalment rate in percentage of
disposable income, number of existing credits at this bank, job, telephone, present residence since, and number

of people being liable to provide maintenance for

GA Australian Features selected: X2, X3, X4, X5, X7, X8, X9, X11, X12, X13, and X14

Info-gain Australian Feature order rank-wise: X8, X10, X14, X5, X7, X9, X13, X6, X4, X3, X2, X1, X11, and X12

GA Japan Features selected: F1, F4, F6, F9, F11, F13, and F15

Info-gain Japan Feature order rank-wise: F9, F11, F10, F15, F8, F4, F6, F3, F14, F13, F5, F2, F1, F7, and F12

Table 13: Comparison of mean results of all the FS techniques.

IG PCA GA

Mean ACC 78.45 78.29 78.89

Mean AUC 80.76 78.18 81.12

Mean F1 81.90 78.48 81.65

Mean BS 0.18 0.15 0.15

Mean KS 62.07 58.69 74.36
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proposed to build the credit scoring model. This study
develops a hybrid credit scoring model by applying SMOTE
and different FS techniques to base and ensemble learners.
Three FS techniques are applied in the proposed work, such
as IG, GA, and PCA on the balanced training set to select the
best predictors. In the experiment, 5 base and 14 ensembles
of classifiers are used and the effectiveness of the models is

validated in terms of ACC, AUC, F1-score, BS, and KS
metrics across three benchmark credit scoring datasets, i.e.,
German, Australian, and Japan.

Applying the SMOTE method, we observe some improve-
ments in most of the algorithms, and among them, CTB is the
best classifier. Next, FS techniques are applied to all the algo-
rithms and result in further improvements in the performance

Table 15: Ranks in terms of ACC, AUC, and F1-score and the mean ranks of all the classifiers.

R_ACC R_AUC R_F1 R_BS R_KS Mean rank

LR 10.1 11.6 11.8 2.1 5.5 8.22

KNN 8.6 11.3 8.3 10 12 10.04

CART 12.6 15.3 14 15.3 12.3 13.9

NB 12.3 12.2 9.3 15 13.8 12.52

SVM 13 13.5 7.8 11 6.6 10.38

A-DT 12.6 13.7 13.6 15 15.3 14.04

A-SVM 17.3 13.4 18 14.1 15.5 15.66

A-NB 19 18.3 19 16.6 19 18.38

A-LR 10 11.1 9.6 17.6 4.5 10.56

XGB 3 3.3 5 3.1 7.5 4.38

LGB 8.8 5.3 10.6 7.5 11.6 8.76

GB 5.3 3.1 10.3 10.6 9.3 7.72

CTB 1 1.2 1 1.8 1 1.2

RF 5.8 4.5 4.1 5.8 5.1 5.06

B-SVM 7.8 11.6 7.3 10.6 6 8.66

B-NB 14.1 13.6 10.1 13.8 14.5 13.22

B-DT 9.1 8.1 13 6.3 11.5 9.6

B-LR 9.3 10 8 4.5 7..3 7.95

B-KNN 9.6 8.5 8.6 8.6 11.1 9.28

A_LR

19 18 17 16
CD 0.237

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

LR
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Figure 2: Graphical representation of mean ranks using Nemenyi post hoc test.
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of the models. GA is the best FS technique that brings the
highest improvements in the model. Therefore, this study sug-
gests that combining the CTB machine learning algorithm
with the GA-based FS technique could build an accurate and
reliable credit scoring model. The experimental results reveal
that all the financial industries could use the proposed hybrid
model to predict the defaulters effectively.

The proposedmodel can be further improved in classifica-
tion in future studies by incorporating different optimized
techniques, such as particle swarm optimization, GA, and
ant colony optimization methods. Moreover, multiple base
learners can be combined using different ensemble methods,
such as random subspace, stacking, and DECORATE. Addi-
tionally, more FS techniques, like RELIEF, chi-square, and
rough sets, can be applied, and optimized feature subsets can
give better results. Finally, more credit scoring datasets should
be explored to validate the conclusions of this paper further.
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