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Underwater acoustic localization is an important, yet challenging problem: (1) node mobility issue, (2) Doppler effect, and (3)
clock imperfection. To be specific, underwater nodes are not stationary in real-life due to unpredictable currents. Relative
motion between a transmitter and a receiver causes the time scaling problem on the received signals, where the time scaling
factor is termed as Doppler scale. Then, due to the slow acoustic signal propagation speed, the underwater Doppler scale
becomes more severe compared with the one in terrestrial environments. Thus, the differential Doppler scale (DDS)
measurements should also be collected, other than the time measurements like time-difference-of-arrival (TDOA), for
enhancing the underwater localization. Since DDS/TDOA measurements and clock skew are tightly coupled, clock
synchronization is essential for accurate localization. However, due to the stringent cost and power constrains of underwater
nodes, low-cost clocks with relative low precision are normally employed, which makes it even more difficult to guarantee a
perfect clock synchronization between transmitter/receiver pairs. In order to cope with those issues, we propose an algebraic
underwater localization method using the hybrid DDS/TDOA measurements, which is particularly robust against the node
clock imperfection. A new DDS/TDOA measurement model with clock imperfection is first presented by analyzing the
received signals over underwater acoustic channels. Then, we devise a two-step weighted least square-based estimator, and the
analytical study shows that our estimator can achieve the Cramer-Rao lower bound (CRLB) accuracy under small noise.
Simulations corroborate the theoretical results and the good performance of the proposed method.

1. Introduction

Underwater localization has been an active area in recent
years owing to its extensive applications such as data collec-
tion, environment monitoring, military surveillance, and
assisted navigation [1–5]. Basically, the underwater localiza-
tion process follows two steps, i.e., measurement collection
and measurement fusion. To be specific, the measurements
between the target and the predeployed anchors with prior
known locations are first collected, from which we infer
the target location. Since the Global Positioning System
(GPS) signals are not available in underwater scenarios due
to the severe power attenuation of electromagnetic waves,
we can do nothing but collecting measurements from the
acoustic signals [6]. For acoustic communication, there are

many modulation methods, such as frequency-shift keying
(FSK), phase-shift keying (PSK), and orthogonal
frequency-division multiplexing (OFDM) [7]. For the low
complexity of receivers, which is required to deal with highly
dispersive channels, in our study, we consider the OFDM
scheme for data exchange [8]. There are different types of
measurements that can be extracted from data exchanges,
such as time-of-arrival (TOA), time-difference-of-arrive
(TDOA) [9, 10], received signal strength (RSS), differential
RSS, and angle-of-arrival (AOA) [11]. Among those, the
TDOA-based method becomes the primary concern of most
engineers in designing the underwater localization owing to
its relative high-accuracy ranging results and the relaxation
of clock synchronization requirements [12]. We should also
mention here the kind of differential Doppler scale (DDS)
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measurement, which results from the underwater nodes’ rel-
ative motion that always exist in practice [13]. This kind of
measurement will be explained in details later. With all the
collected measurements, the target’s position can be esti-
mated by different families of measurement fusion methods,
which are maximum likelihood (ML), semidefinite program-
ming (SDP) based, least squares (LS) based, and alternating
direction method of multipliers (ADMM) based [14, 15].
The ML method is asymptotically optimal, but the formed
ML optimization problem is highly nonlinear and noncon-
vex, and thus, a closed-form solutions does not exist [16].
Although it can be solved approximately by iterative
methods, they involve intensive computations and cannot
guarantee the convergence to the correct solution unless
the initial guess is close enough to it. The SDP-based method
relaxes the nonconvex optimization problem to a convex
one such that a global minimum can be effectively found
[17, 18]. However, this method still requires a high complex-
ity as well as a tight relaxation to guarantee an accurate esti-
mate. To allow low complexity implementation as well as to
ensure global convergence, (weighted) LS-based methods
have been proposed in [19–21]. The LS-based method rear-
range the nonlinear equations into a set of linear equations
by introducing extra variables, which are functions of the
target parameters (position and velocity). Furthermore, the
relation between the extra variables and the unknown
parameters of the target can also be utilized to improve the
estimation accuracy, which reaches the Cramer-Rao lower
bound (CRLB) under Gaussian noise at moderate to high
signal-to-noise [19]. Therefore, due to the attractive advan-
tages of the LS-based method over other methods, we choose
it as our measurement fusion method.

Besides choosing the appropriate measurement fusion
method, it is worth noting that when the target is moving,
the DDS measurements can be explored together with the
TDOA measurements to further improve the localization
accuracy. Actually, underwater nodes can hardly maintain
stationary due to the unpredictable ocean currents. A rela-
tive transmitter/receiver motion results into the time scaling
problem on the received signals [22]. The time scaling factor
is conventionally called as Doppler scale. Moreover, the low
propagation speed of acoustic waves (about 1500m/s) makes
the acoustic signals very susceptible to the Doppler scale.
Thus, the DDS measurements have to be effectively
extracted from the received signals and exploited for under-
water localization. It is worth noting that a similar kind of
measurement called frequency-difference-of-arrival (FDOA)
has been extensively studied for terrestrial localization prob-
lem [19–21]. One might ask what is the difference between
the DDS and FDOA measurements. In fact, the DDS is the
difference in received Doppler scales in time-domain, while
the FDOA is the difference in received Doppler frequency
offsets in frequency-domain, and both of them results from
the Doppler effect. However, from the measurement point
of view, narrowband signals will have more precise FDOA
measurements compared with wideband signals [23].
Though underwater channels are wideband in nature
because the signal bandwidth is not negligible compared to
the carrier frequency [24]. To be specific, taking OFDM sig-

nals as an example, each subcarrier experiences a Doppler-
induced frequency offset, which depends on the frequency
of the subcarrier. This kind of Doppler shifts is called as
nonuniform Doppler frequency offsets, and directly estimat-
ing it in frequency domain is intractable [6]. As a result, pre-
cisely estimating the Doppler frequency offsets in frequency-
domain from the received signals over underwater channels
might be difficult. Therefore, we alternatively choose to mea-
sure the time scaling factor of received signals in time-
domain, which results in DDS measurements.

It is well known that time-based localization is very sus-
ceptible to the clock imperfection that always exists in prac-
tice. For example, due to the stringent cost and power
constrains of underwater nodes, low-cost clocks are nor-
mally employed. This implies that the clock parameters of
underwater nodes, i.e., clock skew and clock offset, might
drift away over time. Although the anchor nodes can be syn-
chronized with a reference clock by precalibration, the target
node is usually very difficult to be guaranteed the same par-
ticularly for underwater scenarios. Even though the target is
synchronized with the anchors, the clock imperfection might
still exist due to the fact that the synchronization perfor-
mance might significantly deteriorate in severe underwater
communication environments. This will certainty incur the
clock imperfection for the target node. Thus, taking into
account the clock imperfection in underwater localization
becomes an important task. In this work, we assume an
independent clock for the target node and synchronized
clocks among all the anchors. Traditionally, clock imperfec-
tion are usually considered while developing TOA- or
TDOA-based localization algorithm [25, 26]. Compared
with the TOA-based localization, TDOA technique resolves
the clock offset ambiguity, though it can still suffer from
the clock skew [27]. Other than the TDOA measurements,
we also use the DDS measurements for enhancing the
underwater localization. Obviously, the DDS measurement
provides more information for localization. As a trade-off,
when considering the clock imperfection, using the DDS is
at price of a complicated measurement model since the mea-
sured DDS at the receiver is actually a combination of the
Doppler effect and the clock skew between the transmitter/
receiver pair, which will exacerbate the nonlinearity issue.
However, the coupling nature between the DDS and clock
skew is often overlooked in Doppler measurement based
localization approaches. Recently, some pioneering research
works noticed the potential coupling relationship between
the Doppler scale measurement and clock skew [28–30].
However, they only explored the time synchronization prob-
lem in underwater sensor networks (UWSNs) using the
clock skew-interfered Doppler scale measurements. In a nut-
shell, the clock imperfection will significantly degrade the
DDS/TDOA-based localization performance, and hence,
the localization methods that are robust against to this
imperfection are ungently required.

To tackle the aforementioned clock imperfection prob-
lem, the first contribution of this work is proposing a new
DDS/TDOA model with the clock imperfection by analyzing
the received signals over underwater acoustic channels.
Based on this model, we then contribute to localization
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algorithm development by exploiting the linearization
approach. Based on the pseudolinear equations with nui-
sance variables, two weighted least square (WLS) estimators
are devised. The first one ignores the built-in relationships
between the unknown parameters and gives a coarse solu-
tion. The second one improves the solution by exploiting
the known relationships between the estimates resulted from
the first WLS estimator. Since only two WLS estimators are
involved, our proposed method is computationally attrac-
tive. We compare analytically the location accuracy of the
proposed estimator to the Cramér-Rao lower bound (CRLB)
for Gaussian measurement noise. We also conduct simula-
tions to compare the performance of the proposed localiza-
tion method with the corresponding CRLB and that of the
WLS method assuming perfect clock [19] and the proposed
method using a mismatched DDS model under different
noise conditions. The numerical results verify the effective-
ness of the proposed localization method.

1.1. Notations. Column vectors and matrices are denoted by
bold lower- and uppercase letters, respectively; aðiÞ and Aði
, jÞ are the ith element of a and the ði, jÞth element of A,
respectively; aði : jÞ denotes a subvector with the ith to the
jth elements of a; Aði, :Þ represents the ith row of A; k·k is
the Euclidean distance norm; δð·Þ denotes the Dirac delta
function; ∗ denotes the convolution operator; superscript
T denotes the transpose of a matrix (vector); e denotes the
element-wise multiplication; 1 and 0 are vectors (or
matrixes) of 1 and 0, O is zero matrix, I denotes the identity
matrix (size indicated in the subscript if necessary); diag ð·Þ
and blkdiagð·Þ represent the diagonal and the block-
diagonal matrices; Eð·Þ denotes the expectation operator.

2. Problem Formulation and CRLB

In this section, we first show how the underwater acoustic
channel and clock imperfection affect the DDS and TDOA
measurement model, then the localization problem is formu-
lated. The Cramér-Rao lower bound (CRLB) is also derived.

2.1. Problem Formulation. As depicted in Figure 1, consider
a three-dimensional underwater localization scenario where
N moving anchors are used to determine the position u =
½x, y, z�T and velocity _u = ½ _x, _y, _z�T of a moving target using
the DDS and TDOA measurements. The anchors are prede-
ployed in the interested monitoring area, and their positions
and velocities are known to the localization algorithm as si
= ½xi, yi, zi�T and _si = ½ _xi, _yi, _zi�T , i = 1,⋯,N , respectively.
Assume the anchors are synchronized and behave a com-
mon clock skew w and clock offset θ. Thus, the local time
of the anchors with respect to (w.r.t.) a universal standard
time t is give by [31].

c tð Þ =wt + θ: ð1Þ

We assume the local time of the target is the universal
standard time, i.e., clock skew is 1 and clock offset is 0.

To implement a DDS/TDOA information-based local-
ization algorithm, it is necessary to transmit signals from

the target to anchors and/or vice versa. For simplicity, we
here assume that the target radiates a signal at a single time
instant and received by each anchor after a propagation
delay. Generally, some preprocessing steps including detec-
tion, synchronization, and Doppler scale estimation are
required for underwater acoustic communication systems
[24]. Several structures of the transmitted signal can be
employed for the preprocessing steps, such as linear-
frequency-modulated (LFM) signal, cyclic-prefixed (CP)
OFDM signal, and m-sequence [32]. In this paper, as origi-
nally suggested in [33], we adopt an LFM preamble and an
LFM postamble around each data frame to estimate the
DDS and TDOA. The main reason for choosing an LFM sig-
nal rather than other signals is its robustness against the
Doppler effect as well as its good cross-correlation perfor-
mance in environments corrupted by white Gaussian noise.

Consider a multipath underwater channel between the
target and the ith anchor that has the impulse response [6].

hi τ, tð Þ = 〠
M

p=1
Ai,p tð Þδ τ − τi,p tð Þ� �

, ð2Þ

whereM is the number of paths, Ai,pðtÞ is the corresponding
time-varying path attenuation, and τi,pðtÞ is the time-varying
path delay. Assuming that the duration of transmitted signal
is short enough, the relative movement between the target
and anchor is small. Thus, the time variation of the path
delay can be reasonably approximated by a Doppler scale
ai,p as

τi,p tð Þ = τi,p − ai,pt, ð3Þ

and the path attenuation are assumed constant Ai,pðtÞ = Ai,p.
Moreover, we assume all paths have a similar Doppler scale
ai, which has already been justified in [6]. Finally, the under-
water acoustic channel model is approximated as
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Figure 1: The underwater localization scenario.
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hi τ, tð Þ = 〠
M

p=1
Ai,pδ τ − τi,p + ait

� �
: ð4Þ

Let sðtÞ be the transmitted passband signal at the target
with duration T0, then the received passband signal at the
ith anchor is given by

yi tð Þ = s tð Þ ∗ hi τ, tð Þ = 〠
M

p=1
Ai,ps 1 + aið Þt − τi,p

� �
+ εi tð Þ, ð5Þ

where εiðtÞ is additive noise. Sampling yiðtÞ yields its discrete
time sequence which is used for extracting the DDS and
TDOA measurements. Due to the clock imperfection, the
actual sampling interval of the anchor is Ts′= Ts/w, where
Ts is the reference sampling interval. Thus, the received sig-
nal at the ith anchor is discretized as

yi n½ � = yi tð Þjt=nTs/w = 〠
M

p=1
Ai,ps

1 + ai
w

� �
n − τi,p

� �
+ εi n½ �, ð6Þ

where n = dwt/TseTs is the time index and d·e denotes the
upward rounding operator. From (6), we observe that the
joint effect of Doppler scaling and clock skew manifests itself
in scaling the signal duration from T0 to Ti,r =wT0/ð1 + ai,Þ.
The scaled signal duration can be estimated by cross-
correlating the received signal with the known LFM pream-
ble and postamble, denoted as T̂ i,r . Then, by knowing the
original signal duration T0, the Doppler scale measurement
of the ith anchor is estimated as âi = T0/T̂i,r − 1. Thus, the
Doppler scale measurement model can be defined as

âi =
1 + ai
w

− 1 + vi, i = 1,⋯,N , ð7Þ

where ai is modeled as the actual Doppler scale caused by the
target/anchor motion and is given by

ai =
u − sið ÞT _u − _sið Þ

croi
: ð8Þ

c is the acoustic propagation speed, and roi = ku − sik; vi is
the measurement noises, which are independent and identi-
cally distributed (i.i.d.) Gaussian random variables with
zero-mean and variance σ2a,i. Furthermore, based on the
LFM preamble that inserted in the transmitted signal, each
anchor is able to measure the arrival time of the first path
by using matched filtering [33]. Considering the clock model
defined in (1), the TOAmeasurement for the signal transmit-
ted from the target at the ith anchor

bτ i =w t0 + roi /cð Þ + θ + ni, i = 1,⋯,N , ð9Þ

where t0 is the unknown start transmission time of the target
and ni is TOA estimation error and modeled by i.i.d. Gauss-
ian random variables with zero-mean and variance σ2τ,i. Note
that the ocean ambient noise is very complicated; and it is
hard to model it accurately [34, 35]; we hence use the Gauss-
ian noise model for the convenience of derivation. Without
loss of generality, we choose i = 1 as the reference Doppler
scale and TOA measurement and form the DDS and TDOA
measurements, respectively, as

Δâi1 = âi − â1 =
1
w

ai − a1ð Þ + vi1, ð10aÞ

Δbτ i1 = bτ i − bτ1 = w
c

roi − ro1ð Þ + ni1, ð10bÞ

where vi1 = vi − v1, ni1 = ni − n1, and i = 2,⋯,N . It can be
seen from (10b) that the parameters t0 and θ are cancelled
out by the TDOA calculation while the clock skew w still
affects the TDOA measurements. So far, we have elaborated
the method for extracting the DDS and TDOA measure-
ments. For better understanding, this method is illustrated
in Figure 2 in which an underwater acoustic channel example
with 3 paths is used.

Stacking the DDS and TDOA measurements and fusing
them into a 2ðN − 1Þ × 1 vector, we obtain

m ≜ f T , τT
h iT

, ð11Þ

where

f = 1
w

a2 − a1,⋯, aN − a1½ �T + v21,⋯, vN1½ �T

= f o + Γv, andΓ = −1N−1, IN−1½ �,

v = v1,⋯, vN½ �T ,

τ = w
c

ro2 − ro1ð Þ,⋯, roN − ro1ð Þ½ �T + n21,⋯, nN1½ �T

= τo + Γn, and n = n1,⋯, nN½ �T :
ð12Þ
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Figure 2: An example of extracting the Doppler scale and TOA
measurements: T0 is the signal duration, w is the clock skew, ai is
the Doppler scale, and the underwater acoustic channel has 3
paths with delay τi,1, τi,2, and τi,3, respectively.
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The measurement error vector is Δm ≜ ½ðΓvÞT , ðΓnÞT �T ,
and its covariance matrix is Qm ≜ E½ΔmΔmT � = blkdiagðΓQv

ΓT , ΓQnΓ
TÞ, where Qv = diag ð½σ2

a,1,⋯, σ2a,N �TÞ and Qn =
diag ð½σ2

τ,1,⋯, σ2τ,N �TÞ. Note that the Doppler scale measure-
ment noises v are assumed to be independent of the TOA
measurement noises n. From (11), we can write the observed
DDS and TDOA equation in matrix form as

m =mo + Δm, ð13Þ

wheremo = ½ f oT , τoT �T . The goal of underwater localization is
estimating u, _u, andw, from the noisy measurement vectorm.
Under the mutually independent Gaussian noise condition,
the ML estimator of u, _u, and w can be formulated as [36]

ûT , b_uT , ŵ
h iT

=min
u, _u,w

m −moð ÞTQ−1
m m −moð Þ: ð14Þ

The ML problem is nonconvex, implying that there exist
multiple local minima, and the global minimum can hardly
be obtained. We shall develop an efficient estimator by con-
verting the nonconvex ML problem to a linear one.

2.2. CRLB. As observed in (13), the DDS/TDOA measure-
ment vector m is Gaussian distributed as m ~N ðmo,QmÞ.
The CRLB is the lowest possible variance that an unbiased
estimator can achieve. For the unknown vector φ =
½u, _u,w�T , its CRLB is given by [36]

CRLB φð Þ = J φð Þ−1, ð15Þ

where JðφÞ is the Fisher information matrix (FIM). Using
the notation ∇a

b = ∂a/∂b, JðφÞ can be calculated as

J φð Þ = ∇mo

φ

� 	T
Q−1

m ∇mo

φ : ð16Þ

The partial derivative in (16) can be expressed as

∇mo

φ = ∇f o

u ∇f o

_u ∇f o

w

∇τo

u ∇τo

_u ∇τo

w

" #
, ð17Þ

where

∇f o

w i − 1ð Þ = −w−2 ai − a1ð Þ,

∇f o

u i − 1 :ð Þ =w−1 _u − _sið ÞT
croi

−
ai u − sið ÞT

roi
2 −

_u − _s1ð ÞT
cro1

+ a1 u − s1ð ÞT
ro1

2

!
,

 

∇f o

_u i − 1 :ð Þ = w−1

c
u − sið ÞT
roi

−
u − s1ð ÞT
ro1

 !
,

∇τo

w i − 1ð Þ = roi − ro1
c

, ∇τo

u i − 1 :ð Þ =w2∇f o

_u i − 1 :ð Þ,

∇τo

_u =O N−1ð Þ×3, i = 2,⋯,N:

ð18Þ

Based on the equations above, the FIM can be easily cal-
culated, and hence, the CRLB is obtained.

3. Proposed Methods

The proposed method has two stages. The first stage creates
a set of pseudolinear equations for the nonlinear DDS and
TDOA measurements by introducing nuisance variables.
Then, an initial solution is obtained through WLS optimiza-
tion. The second stage utilizes the relationship between the
nuisance variables and the interested parameters to refine
the first stage solution.

3.1. First Stage: Transforming the Nonlinear Measurement
Equation to a Pseudolinear One. To fuse the DDS and
TDOA measurements, we start from transforming (10a)
and (10b) as

_ri1 = _roi1 + _εi1 =
1
w

_roi − _ro1ð Þ + _εi1, ð19aÞ

ri1 = roi1 + εi1 =w roi − ro1ð Þ + εi1, ð19bÞ

where _ri1 = cΔâi1, ri1 = cΔbτ i1, _εi1 = cvi1, εi1 = cni1, and

_roi =
u − sið ÞT _u − _sið Þ

roi
: ð20Þ

Considering the noise free TDOA measurement in
(19b), which can be written as

roi1 =w roi − ro1ð Þ: ð21Þ

Upon rewriting (21) as roi1 +wro1 =wroi , squaring both
sides, and substituting roi = ku − sik for roi

2 and ro1
2, we have

a set of TDOA equations for i = 2,⋯,N .

roi1
2 + 2wroi1ro1 =w2 sTi si − sT1 s1 − 2 si − s1ð ÞTu

� 	
: ð22Þ

Taking the time derivative of (22) results in a set of DDS
equations for i = 2,⋯,N .

wroi1 _r
o
i1 +w2 _roi1r

o
1 + roi1 _r

o
1 =w sTi _si − sT1 _s1 − _si − _s1ð ÞTu − si − s1ð ÞT _u

� 	
:

ð23Þ

In terms of the noisy quantities by putting roi1 = ri1 − εi1
and _roi1 = _ri1 − _εi1 into (22) and (23) and ignoring the
second-order error terms, we arrive at

e1 = h1 − G1φ1, ð24Þ

where φ1 = ½u, η1, η2, _u, η3,w1�T is defined as the parameter
vector, in which η1 = ro1w

−1, η2 =w−2, η3 = _ro1w
−1, and w1 =
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wro1. The vector h1 and matrix G1 are defined as

h1 =

sT1 s1 − sT2 s2

⋮

sT1 s1 − sTNsN

2 r21 _r21 + sT1 _s1 − sT2 _s2
� �

⋮

2 rN1 _rN1 + sT1 _s1 − sTN _sN
� �

2666666666664

3777777777775
,

G1 i − 1, :ð Þ = −2 si − s1ð ÞT , ri1, 0:5r2i1, 01×5
h i

,

G1 i +N − 2, :ð Þ = −2 _si − _s1ð ÞT , 01×2, si − s1ð ÞT , ri1, _ri1
h i

,

i = 2,⋯,N ,
ð25Þ

and the noise vector e1 is defined as

e1 = B1
ε1

ε2

" #
, B1 =

O B

D C

" #
,

ε1 = _ε21,⋯,_εN1½ �T , ε2 = ε21,⋯,εN1½ �T ,
B = 2w−1 diag ro2,⋯, roN½ �ð Þ,
C = 2w−1 diag _ro2,⋯, _roN½ �ð Þ,
D = 2w diag ro2,⋯, roN½ �ð Þ:

ð26Þ

Thanks to the nuisance variables η1, η2, η3, and w1 intro-
duced in the parameter vector φ1, it makes (24) become a set
of linear equations with respect to φ1. As a result, φ1 can be
estimated by the WLS method, whose solution is given as
[36]

bφ1 = G1
TW1G1

� �−1
G1

TW1h1, ð27Þ

where W1 is the weighting matrix chosen as

W1 = E e1e1
T
 �−1 = B1QmB1

T� �−1, ð28Þ

where Qm = c2Qm. Note that the weighting matrix is depen-
dent on the true values of clock skew, source position, and

velocity through B1. To cope with this, W1 = ~Q−1
m is first

employed to calculate an initial estimate from (27), which
will be used back into (28) for an improved version of W1,
then leading to a better estimate of φ1. The estimation error
in bφ1 can be calculated as

Δφ1 = bφ1 −φ1 = G1
TW1G1

� �−1
G1

TW1e1: ð29Þ

The covariance matrix of bφ1 is, therefore, assuming small
measurement noise so that the noise in G1 can be ignored

[36].

cov bφ1ð Þ ≈ G1
TW1G1

� �−1
: ð30Þ

3.2. Second Stage: Refining the Estimate Obtained in the First
Stage. In this stage, we shall refine the estimate obtained in
the first stage by utilizing the relationship between the
parameters in φ1. In fact, they are related to each other
through the following equations:

η1w1 = ro1
2 = u − s1k k2, ð31aÞ

η1
2 = η2r

o
1
2 = η2 u − s1k k2, ð31bÞ

η1η3 = η2 _r
o
1r

o
1 = η2 u − s1ð ÞT _u − _s1ð Þ, ð31cÞ

η3w1 = _ro1r
o
1 = u − s1ð ÞT _u − _s1ð Þ: ð31dÞ

Note that there are only three independent equations
among the equations in (31a), (31b), (31c), and (31d), since
any one of the equations in (31a), (31b), (31c), and (31d) can
be interpreted from the others. Without loss of generality,
we use the relationships in (31a), (31b), and (31d) to per-
form the second stage estimation.

To start with, recall that the estimation error in bφ1 is
Δφ1. Expressing bφ1ð1 : 3Þ = u + Δφ1ð1 : 3Þ and subtracting
both sides by s1, we have

bφ1 1 : 3ð Þ − s1ð Þ ⊙ bφ1 1 : 3ð Þ − s1ð Þ ≈ u − s1ð Þ ⊙ u − s1ð Þ
+ 2 u − s1ð Þ ⊙ Δφ1 1 : 3ð Þ:

ð32Þ

where the second-order error terms are ignored. Similarly,
expressing bφ1ð6 : 8Þ = _u + Δφ1ð6 : 8Þ and combing with
the position estimates, we have

bφ1 1 : 3ð Þ − s1ð Þ ⊙ bφ1 6 : 8ð Þ − _s1ð Þ ≈ u − s1ð Þ ⊙ _u − _s1ð Þ
+ _u − _s1ð Þ ⊙ Δφ1 1 : 3ð Þ + u − s1ð Þ ⊙ Δφ1 6 : 8ð Þ:

ð33Þ

Substituting η1 = bφ1ð4Þ − Δφ1ð4Þ, η2 = bφ1ð5Þ − Δφ1ð5Þ,
η3 = bφ1ð9Þ − Δφ1ð9Þ, and w1 = bφ1ð10Þ − Δφ1ð10Þ into the
equations (31a), (31b), and (31d), we obtain

bφ1 10ð ÞΔφ1 4ð Þ + bφ1 4ð ÞΔφ1 10ð Þ ≈ bφ1 4ð Þbφ1 10ð Þ − u − s1k k2,
ð34aÞ

2bφ1 4ð ÞΔφ1 4ð Þ − ro1
2Δφ1 5ð Þ ≈ bφ1 4ð Þ2 − bφ1 5ð Þ u − s1k k2,

ð34bÞ

bφ1 10ð ÞΔφ1 9ð Þ + bφ1 9ð ÞΔφ1 10ð Þ ≈ bφ1 9ð Þbφ1 10ð Þ − u − s1ð ÞT _u − _s1ð Þ:
ð34cÞ

In order to provide an estimation of w in the second
stage, we incorporates an additional equation
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Δφ1 5ð Þ = bφ1 5ð Þ −w−2: ð35Þ

Staking (32)–(35), we arrive at

e2 = h2 −G2φ2, ð36Þ

where

h2 =

bφ1 1 : 3ð Þ − s1ð Þ ⊙ bφ1 1 : 3ð Þ − s1ð Þbφ1 1 : 3ð Þ − s1ð Þ ⊙ bφ1 6 : 8ð Þ − _s1ð Þbφ1 4ð Þbφ1 10ð Þbφ1 4ð Þ2bφ1 9ð Þbφ1 10ð Þbφ1 5ð Þ

2666666666664

3777777777775
,

G2 =

I3 O3×3 03×1
O3×3 I3 03×1
11×3 01×3 0bφ1 5ð Þ11×3 01×3 0
01×3 11×3 0
01×3 01×3 1

266666666664

377777777775
,

φ2 =
u − s1ð Þ ⨀ u − s1ð Þ
u − s1ð Þ ⨀ _u − _s1ð Þ

w−2

2664
3775:

ð37Þ

On the left side of (45), the noise vector e2 is defined as

e2 = B2Δφ1,

B2 =
2C1 O3×2 O3×3

D1 O3×2 C1

O4×3 ET
1 O4×3

O3×2

O3×2

ET
2

2664
3775,

C1 = diag u − s1ð Þ,D1 = diag _u − _s1ð Þ,

E1 =
wro1 2w−1ro1

0 −ro1
2

0 0
0 1

" #
,

E2 =
0 0

w−1ro1 0
wro1 0
w−1 _ro1 0

" #
:

ð38Þ

Equation (36) is a set of linear equations with respect to
φ2; its WLS solution is given by [36]

bφ2 = G2
TW2G2

� �−1
G2

TW2h2, ð39Þ

where W2 is the weighting matrix, which is given as

W2 = E e2e2
T
 �−1 = B2 cov bφ1ð ÞB2

T� �−1
: ð40Þ

To examine the covariance of the second-stage solutionbφ2, subtracting both sides of (39) by φ2 and using (36) gives

Δφ2 =φ2 − bφ2 = GT
2W2G2

� �−1
GT
2W2e2: ð41Þ

Hence, under small noise conditions, the covariance of
the second stage solution bφ2 is given by [36]

cov bφ2ð Þ ≈ G2
TW2G2

� �−1
: ð42Þ

Finally, the clock skew, source position, and velocity

The proposed estimator
Input: Anchor’s parameter, DDS/FDOA measurements, the measurement noise covariance.
First stage processing:

1: Initialization: W1 = ~Q−1
m .

2: Forl = 1toNiter (Niter is the number of iterations)
3: computing bφ1 from (27);
4: substituting bφ1 into (28) to update W1;
5: end For
Second stage processing:
6: Computing covðbφ1Þ using (30).
7: Using bφ1 to calculate B2 and obtaining W2 using (40).
8: Forl = 1toNiter
9: computing bφ2 from (39);
10: applying (43a), (43b), and (43c) to generate the estimates;
11: substituting the estimates from (43a), (43b), and (43c) in B2 and updating W2 using (40) accordingly;
12: end For
Output: the target position and velocity, and the clock skew estimates.

Algorithm 1
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Figure 3: RMSE performance versus σ under scenario 1: (a) clock skew; (b) target position; (c) target velocity.
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Figure 4: RMSE performance versus σ under scenario 2: (a) clock skew; (b) target position; (c) target velocity.
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estimates can be deduced from the definition of φ2.

û =Π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibφ2 1 : 3ð Þ

q
+ s1, ð43aÞ

b_u = bφ2 4 : 6ð Þ:
u − s1ð Þ + _s1

, ð43bÞ

ŵ = 1ffiffiffiffiffiffiffiffiffiffiffiffibφ2 7ð Þ
p , ð43cÞ

where Π = diag ðsign ðbφ1ð1 : 3Þ − s1ÞÞ is used to avoid the
sign ambiguity caused by the square root operation.

Similar to W1, the weighting matrix W2 is also depen-
dent on the true values of clock skew, source position, and
velocity through B2. In practice, these true values can be
substituted by the solution in bφ1 and then updated by the
values in (43a), (43b),and (43c). We find that iterating one
or two times leads to a good solution that meets the CRLB
performance.

We summarize the prototype of our proposed estimator
in Algorithm 1.

4. Performance Analysis

In this section, we shall analyze the theoretical covariance
matrix of the proposed solution and compare it with the
CRLB. By taking the differential of φ2 defined below (45),
we can relate the estimation error of (43a), (43b), and

(43c) with that of bφ2 as

Δφ = Δu, Δ _u, Δw½ �T = B−1
3 Δφ2,

B3 =
2 diag u − s1ð Þ O3×3 03×1
diag _u − _s1ð Þ diag u − s1ð Þ 03×1

01×3 01×3 −2w−3

2664
3775: ð44Þ

The bias of the final solution is given by taking expecta-
tion of Δφ. Obviously, it can be seen that Δφ is linearly
related to ½ε1, ε2�T through the definitions of e1, Δφ1, e2,
and Δφ2. Since ½ε1, ε2�T is zero mean (when the noise is
small), Δφ is also zero mean, which implies that the solution
estimate is unbiased over a small noise region. Multiplying
(44) by its transpose and taking expectation yields

cov bφð Þ = B−1
3 cov bφ2ð ÞB−T

3 : ð45Þ

After substituting the corresponding covariance matrices
in (30) and (42), (45) becomes

cov bφð Þ = GT
3Q

−1
m G3

� �−1, ð46Þ

where

G3 = c−1B−1
1 G1B

−1
2 G2B3: ð47Þ

Note that (46) has the same form as the CRLB given in
(15) and (16). We shall compare cov ðbφÞ with the CRLB
under the case of far-field target. It has been shown that
comparing cov ðbφÞ with the CRLB for near-field target is
not easy due to the tedious form of cov ðbφÞ; however, the
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Figure 5: RMSE performance versus σ under scenario 2: (a) clock skew; (b) target position; (c) target velocity.
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theoretical result drawn from the case of far-field target is
also valid for near-field target in most cases [20]. For far-
field target, we have the following two conditions

ið Þ ro1 ≈ ro2 ≈⋯≈ roN ,
iið Þ _roi /roi ≈ 0, i = 1,⋯,N:

ð48Þ

The first condition indicates that the distances of the tar-
get to different receivers are approximately the same since
the target is very far away from the anchors. The second
condition implies that the velocities of underwater nodes
are ignorable compared to the distances. This is valid due
to two reasons: (1) the distances are large for far-field target;
(2) underwater objects usually move slowly (several meters
per second).

We now evaluate the matrix G3. Substituting the relevant
matrices into G3, after some straightforward algebraic
manipulation and appropriately using the conditions in
(48), we can show that the elements of G3 can be approxi-
mated as

G3 i − 1, 1 : 3ð Þ ≈w−1 _s1 − _si
croi

−
_roi s1 − sið Þ

croi
2

� �
,

G3 i − 1, 4 : 6ð Þ ≈ w−1

c
s1 − sið Þ
roi

,

G3 i − 1, 7ð Þ ≈ −
w−1

c
ro1 _ri1
roi

,

G3 N + i − 2, 1 : 3ð Þ ≈ w
c

s1 − sið Þ
roi

,

G3 N + i − 2, 4 : 6ð Þ ≈ 01×3,

G3 N + i − 2, 7ð Þ ≈ w−1

c
ro1ri1
roi

,

ð49Þ

where i = 2,⋯,N . Then, using the variable relationships that
_roi = cai, w_roi1 = _roi − _ro1, and roi1 =wðroi − ro1Þ and the approxi-
mations that _ri1 ≈ _roi1, ri1 ≈ roi1 and roi ≈ ro1, i ≠ 1, we arrive at

G3 ≈ ∇mo

φ : ð50Þ

This completes the proof that the proposed solution in
Section 3 can attain the CRLB accuracy for small Gaussian
noise and far-field target. Due to the tedious form of cov ðbφÞ, so far, we are not able to study the performance of the
proposed solution under the case of near-field target. How-
ever, the simulation results in the next section show that
the proposed solution can reach the CRLB for near-field tar-
get as well.

5. Numerical Examples

In this section, Matlab simulations are carried out to verify
the effectiveness of the proposed localization algorithm
(denoted by “proposed method-case 1”) by comparing with
the CRLB, the WLS method assuming perfect clock [19],

and the proposed method considering the combination
model of clock skew-free DDS model and clock skew-
involved TDOA model (denoted by “proposed method-
case 2”) (Note that the case of only considering the clock
skew in DDS measurements is not included for comparison.
This is because that the DDS measurement is much less than
the TDOAmeasurement (about two orders of magnitude) so
that the clock skew marginally affects the DDS measurement
or even be overwhelmed by the noise. Thus, the estimates
under this case is of poor accuracy as we observed in the
simulations. As a result, the estimation performance of this
case is not included.). The algorithm derivation of the pro-
posed method, case 2, is similar to the procedure given in
Section 3, and we would not repeat the derivation for sim-
plicity. The performance criterion is the average root mean
square error (RMSE), which can be expressed asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1/Nexp∑
Nexp
j=1 kbξ ðjÞ − ξk

2
r

, where bξ ðjÞ is the estimate of ξ ∈
fu, _u,wg obtained in the jth trial. Each simulation result is
averaged over Nexp = 2000Monte Carlo trials. Two scenarios
are considered in our simulation with the target being a
near-field one and a far-field one. In scenario 1, 10 anchors
and 1 target are randomly placed in a 1000 × 1000 × 1000
cube centered at ½500, 500, 500�T , the velocities of the nodes
are randomly drawn from ½−3, 3�m/s, and the clock skew is
randomly drawn from ½0:995, 1:005�. The sound propaga-
tion speed is set as 1500m/s. The errors fεi1g and f_εi1g are
zero-mean white Gaussian processes with identical variances
of σ2 and 0:01σ2, respectively. In scenario 2, the target is
placed in ½−300,−300,−300�T while the other settings are
the same as scenario 1. Scenario 1 is a near-field target case
while the scenario 2 is a far-field target case. Both scenarios
are used to test the RMSE performance of the considered
localization methods.

Figure 3 plots the RMSE of the considered localization
algorithms versus σ ∈ ½1, 5�ms under scenario 1. It should
be noted that perfect clock is assumed to be available in [19].
Therefore, only the clock skew estimation of our proposed
method is presented in Figure 3(a). It is seen that the accuracy
of the proposed method-case 1 approaches the CRLB in the
whole noise range while the one that is using a mismatched
DDS model (i.e., “proposed method-case 2”) is optimal only
when σ ≤ 3ms. This corroborates the theoretical analysis in
Section 4. As expected, the WLS method assuming a perfect
clock yields the worst performance in the whole noise range.
The performance gap between the WLS method assuming
perfect clock and the proposed method-case 1 increases as
the measurement noise increases. This demonstrates the sig-
nificance of taking the clock imperfection into account.
Regarding implementation complexity, the average computa-
tion times per trial for the proposed method-case 1, proposed
method-case 2, and the WLS method assuming perfect clock
[19] are measured as 8:9 × 10−4 s, 10 × 10−4 s, and 7:8 × 10−4
s, respectively. This indicates the computational attractiveness
of the proposed method.

Figure 4 plots the RMSE of the considered localization
algorithms versus σ ∈ ½1, 5�ms under scenario 2. We again
see the superiority of our proposed method over the WLS
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method without considering the clock imperfection. How-
ever, the location accuracy is generally worse for a far-field
target than a near-field target as shown in Figures 4(a) and
4(b). To be specific, the proposed method reaches the CRLB
only when σ ≤ 2ms. Despite the optimality, the RMSE of the
target position and the velocity are larger than the one under
scenario 1 by around 10 times as illustrated in Figures 4(b)
and 4(c). This is because that the far-field target case implies
a bad localization geometry, which leads to a significant
decrease in target location accuracy. What is more, as shown
in Figure 4(b), the position RMSEs of the proposed method-
case 1 and proposed method-case 2 almost overlap. This
indicates that the contribution of explicitly considering the
clock skew in DDS model to the position estimation is mar-
ginal for a far-field target. To conclude the effect of the target
position on the considered localization methods, a good
localization geometry is very significant for all the methods.
Although the RMSE performance of our proposed method is
heavily deteriorated under a far-field target case, it still out-
performs the localization method ignoring the clock
imperfection.

Figure 5 plots the RMSE of the considered localization
algorithms versus clock skew ∈½0:96,1:04� under scenario 1.
The noise standard deviation σ is set to be 3ms. In this sim-
ulation, we aim to study the impact of the value of clock
skew on the considered algorithms. Note that the range of
clock skew adopted here is based on the clock synchroniza-
tion performance of widely used underwater acoustic
modem (S2CR series) [37]. As it can be seen from
Figure 5, along with the increase of the clock skew (both in
positive or negative direction), the localization performance
of the WLS method which have no regard for the clock skew
gets worse. However, it has almost no effect on our proposed
methods. This validates that the proposed localization algo-
rithm is robust to the clock skew variation.

6. Conclusion

A new model for DDS/TDOA-based underwater localization
with considering the clock imperfection has been proposed.
Based on such a model, two WLS estimators are devised for
underwater target parameters (position and velocity) and the
clock skew estimation. The first one introduces nuisance
variables to eliminate the coupling relationships between
parameters; as a result, we obtain a pseudolinear estimation
model for calculating a coarse estimate. The second WLS
estimator refines the estimate by exploiting the coupling
relationships between the target parameter, clock skew, and
nuisance variables. The RMSE performances of the proposed
estimator are compared with other competitive estimators
by computer simulations. The performance of the proposed
method is shown in theory and by simulations to reach the
CRLB accuracy under sufficiently small noise conditions.
As a future direction, we shall validate the performance of
the proposed method using real underwater DDS/TDOA
measurements.

With regard to the scalability issue, we notice that the
proposed algorithm is designed to localize a single target
node by using multiple anchor nodes. However, when there

presents multiple target nodes, the localization scheme pro-
posed in this work may turn to be inapplicable. In the future
work, we aim to develop a multistage underwater node local-
ization scheme to achieve large-scale underwater network
positioning. The key idea of multistage scheme lies in that
the localized target nodes can be used as anchor nodes to
localize other unlocated nodes. As performing iteratively,
the localization range is gradually increasing.
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