
Retraction
Retracted: Sustainable Technical Debt-Aware Computing
Model for Virtual Machine Migration (TD4VM) in IaaS Cloud

Wireless Communications and Mobile Computing

Received 12 December 2023; Accepted 12 December 2023; Published 13 December 2023

Copyright © 2023 Wireless Communications and Mobile Computing. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

This article has been retracted by Hindawi, as publisher, follow-
ing an investigation undertaken by the publisher [1]. This inves-
tigation has uncovered evidence of systematic manipulation of
the publication and peer-review process. We cannot, therefore,
vouch for the reliability or integrity of this article.

Please note that this notice is intended solely to alert
readers that the peer-review process of this article has been
compromised.

Wiley and Hindawi regret that the usual quality checks did
not identify these issues before publication and have since put
additional measures in place to safeguard research integrity.

We wish to credit our Research Integrity and Research
Publishing teams and anonymous and named external research-
ers and research integrity experts for contributing to this
investigation.

The corresponding author, as the representative of all
authors, has been given the opportunity to register their agree-
ment or disagreement to this retraction.Wehave kept a recordof
any response received.

References

[1] A. Vashistha, C. M. Sharma, R. P. Mahapatra, V. M. Chariar, and
N. Sharma, “Sustainable Technical Debt-Aware Computing
Model for Virtual Machine Migration (TD4VM) in IaaS Cloud,”
Wireless Communications and Mobile Computing, vol. 2022,
Article ID 6709797, 12 pages, 2022.

Hindawi
Wireless Communications and Mobile Computing
Volume 2023, Article ID 9783131, 1 page
https://doi.org/10.1155/2023/9783131

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9783131

RE
TR
AC
TE
DResearch Article

Sustainable Technical Debt-Aware Computing Model for Virtual
Machine Migration (TD4VM) in IaaS Cloud

Avneesh Vashistha,1 Chandra Mani Sharma ,2 Rajendra Prasad Mahapatra,1

Vijayaraghavan M. Chariar,2 and Navel Sharma 3

1Department of Computer Science & Engineering, SRM Institute of Science & Technology, Delhi-NCR Campus, Ghaziabad,
Uttar Pradesh, India
2CRDT, Indian Institute of Technology Delhi, New Delhi, India
3Department of Computer Engineering & Informatics, Academic City College, Accra, Ghana

Correspondence should be addressed to Chandra Mani Sharma; cmsharma.its@gmail.com
and Navel Sharma; drnavel.sharma@gmail.com

Received 17 March 2022; Revised 6 April 2022; Accepted 8 April 2022; Published 25 April 2022

Academic Editor: Aruna K K

Copyright © 2022 Avneesh Vashistha et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In the cloud, optimal CPU and memory utilization can lead to low energy consumption, which is an important aspect of green
computing. However, constantly changing workloads may contribute to resource over- or underutilization. The former violates
the service level agreement’s quality of service constraints. The latter indicates that as workload decreases, virtual machine
resource utilization decreases. They introduce difficult decision-making tasks when dynamically adapting (e.g., migrating) a
virtual machine in order to maximize its resource utilization over time. To address these challenges, we propose a newer
mathematical model called the technical debt-aware computing model for virtual machine migration (TD4VM). The model
promotes a holistic approach to dynamic virtual machine adaptation for cloud service providers and addresses existing issues
regarding logical aspects of virtual machine adaptation in a highly dynamic cloud environment, which includes a measurement
mechanism and estimation guidelines for estimating future debt and utility. Technical debt-aware models make decisions based
on VM operating costs, quality, minimizing SLA violations, and incurring technical debt. This approach connects decisions
about virtual machine migration that affect overall utility over time. Our method can determine whether a virtual machine
should be moved when it is over or underutilized based on its technical debt. The experimental results on a dataset obtained
from the Materna-trace-1 demonstrate that the proposed approach outperforms other state-of-the-art methods on a variety of
performance metrics. A numerical comparison shows that TD4VM outperforms the other approaches, with VM resource
economies of 171.84%, 91.33%, 97.85%, and 93.89% for TD4VM, LRMMT, IQRMC, and IQRMMT, respectively. Additionally,
we quantify the debt amassed using TD4VM and state-of-the-art techniques. When compared to LRMMT, IQRMC, and
IQRMMT, which cost (in $) 0.77, 0.73, and 0.76, respectively, TD4VM accumulates the minimum debt of 0.17.

1. Introduction

Virtualization is the backbone of cloud computing and facil-
itates the creation of a required number of VMs on a physical
machine for maximum resource utilization. The running of a
data center may be minimized by shutting down the idle
nodes or switching the state of idle nodes to low-power

modes that result in a reduction of electricity consumption
[1]. On-demand resource pooling enables the dynamic adap-
tation of resources (e.g., VMs) as per application require-
ments [2]. Moreover, virtual machine live migration may
dynamically consolidate the minimum number of physical
machines. The dynamic adaptation of the virtual machine
could be strategic decisions that need to satisfy the QoS

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 6709797, 12 pages
https://doi.org/10.1155/2022/6709797

https://orcid.org/0000-0001-6537-1927
https://orcid.org/0000-0003-0843-392X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6709797

RE
TR
AC
TE
D

constraints specified in the SLA and maximize the resource
utilization of the underlying virtual machine. However, cloud
dynamics lead to uncertainties; for example, the varying
workload could be the reason for either underutilization or
overutilization of a virtual machine [3]. Both cases are unde-
sirable in the cloud environment. To address these issues, we
propose an approach that leverages the technical debt-aware
computing model for virtual machine migration (hence called
TD4VM). This research paper is summarized as follows:

(1) This paper presents a technical debt-aware model for
VM migration that leverages the principal of the
technical debt (TD). In contrast, we explicitly map
the TD in the context of VMmigration, which allows
us to build the technical debt-aware model

(2) We tailored Holt-Winters’ multiplicative method,
which accelerates our model for estimating the
future debt of the VM

(3) We implemented the TD4VM model on the classical
cloud framework, namely, CloudSim 5.0 [4]. Fur-
ther, TD4VM decides whether to migrate a VM by
considering long-term benefits (e.g., maximized
VM utilization in the future)

(4) We compared our newly developed approach,
TD4VM, with existing approaches based on resource
utilization and accumulated debt over time

This paper has been structured as follows: Section 2
explores the related work. Section 3 showcases the problem
statement and motivates the introduction of a technical
debt-aware model for VM migration. In this section, we
emphasize how TD4VM may be introduced at the VM level
in IaaS cloud; elaborate Holt-Winters’multiplicative method
for workload prediction; formulate a VM debt model driven
by the technical debt metaphor; and present the VM utility
model, which takes the advantages of the debt computing
model for optimizing the VM migration decision and VM
utility model. Section 5 explores an extensive discussion on
the experimental evaluation and results. Section 6 explores
the conclusion and proposes future work.

2. Related Work

Inefficient usage of VM resources affects the running cost of
a cloud data center. When data is collected from several
servers for six months for the purpose of the experiment,
even though servers are rarely idle, utilization rarely reaches
100% [5]. Usually, the servers operate at 10–50% of their
maximum utilization level, which leads to extra expenses
on underutilization [1, 6]. Dynamic server migration and
consolidation algorithms reduced resource consumption by
50% when compared with static resource allocation, result-
ing in a 20% reduction in SLA violations [7]. Although a
framework for mapping between task and resource alloca-
tion can radically advance resource utilization, that results
in improving the profit of primary cloud providers [8]. If
resource allocation is done intelligently according to the

user’s requests, the global profit of providers can be maxi-
mized [9]. Based on the strategies used in VM placement,
server consolidation, and load balancing in virtual resource
management, a novel methodology takes robust decisions
and makes the process easier to choose a more appropriate
PM [10]. Agile, a lightweight, prediction-driven, and
resource-scaling system, significantly reduced service level
objectives (SLO) violations when compared to existing
resource scaling mechanisms [11]. Green computing is a
term that refers to reducing power consumption in a system
by optimizing resource utilization [12]. Efficient code design
and intelligent decision-making may aid in achieving the
green computing objectives [13]. RAM and CPU utilization
are inextricably linked to power consumption in a cloud
computing environment [14].

3. Problem Statement

Idle servers consuming 70% of their peak power may lead to
underprovisioned servers and affect the running cost of a
cloud data center [15]. Moreover, the migration of the entire
operating system between virtual machines with minimal
service downtime results in cluster administration and
allows separation of hardware and software considerations.
It also strengthens clustered management into a single artic-
ulated management domain [16]. Based on the existing
approaches for VM allocation, we have identified that the
workload on virtual machines changes dynamically. Consid-
ering this dynamism, virtual machines may be provisioned
according to the required number of running applications
[17]. Elasticity, interoperability, and scalability are impor-
tant characteristics that can be used to reduce the operating
costs of cloud resources [17]. These characteristics result in
VM dynamic allocation and/or releasing but may not pre-
vent VMs from being under or overutilized [17, 18]. An
underutilized VM incurs technical debt for the service pro-
vider. Overuse of VM results in resource scarcity for users
and SLA violations, which are frequently accompanied by a
financial penalty [17, 18]. A suboptimal virtual machine
always carries a technical debt, and the reasons could be
strategic, managerial, or even unintentional. To address
these issues, we introduce a technical debt-aware model into
the context of VM migration that also minimizes the VM
computing cost while keeping SLA and quality of service
(QoS) [1, 2]. In particular, this research paper presented a
technical debt-aware computing model for virtual machine
migration in the IaaS cloud.

3.1. Technical Debt. The most cited source of technical debt is
Ward Cunningham’s report “The WycashPortfolio Manage-
ment System,” released in the year 1992. In this paper, the
term “debt” was used for the first time and described how
debt is the result of a violation of good code and architecture
practices during software development [19]. However, even
before Ward Cunningham, the problem of software develop-
ment and maintenance was mentioned by Meir Lehman in
the 1980s. He emphasized the urgent need for disciplined
software engineering; otherwise, as software development
evolves, its complexities also increase unless work is done

2 Wireless Communications and Mobile Computing

RE
TR
AC
TE
D

to maintain or reduce them [20]. Earlier, the technical debt
metaphor has been introduced in various fields such as
software architecture [21–24], software code quality [25],
software design [26], documentation [27], rework [28], soft-
ware testing [29], refactoring [30–33], compliance debt [34],
social debt [35], and agile development process [36].

3.2. Motivation: Why Take on Technical Debt? VM optimiza-
tion may be improved if a VM is being migrated between
hosts which are either underutilized or overutilized. We
argued that VMmigration decisions may carry technical debt
and transformed from a liability to future values [17, 18, 21].
In this paper, we convince our peers that there is a need to
consider the technical debt metaphor as one of the essential
parameters for VM migration. A similar argument has
already been given as “a little level of debt is not always a
bad,” as it can help to decide for VMmigration [37]. We sight
this statement as a valid statement for VM migration [21].
Unlike previous work, we put forward the fact that VM
migration decisions should not only be QoS-aware but also
be long-term value and technical debt-aware. In our view, a
little debt is more acceptable than the decision of VM migra-
tion that could result in clearing technical debt. With this
perspective, this paper introduces a technical debt-aware
model for VM migration. In this model, we may lose short-
term gains by choosing less attractive options or by solving
problems in the short term. We considered two perspectives
when taking on the technical debt model for VM migration.

(1) The decision to migrate VMs must be made strategi-
cally and with a long-term perspective in mind
rather than a short-term one

(2) Future opportunities that VM migration decisions
create

Furthermore, we view the investment in the VM migra-
tion decision as a loan that may occur with interest over time
and signals a probable technical debt. This incurred techni-
cal debt needs to be identified, tracked, and managed as well
for value creation and maximum VM utilization [21].

3.3. Technical Debt in Virtual Machine Migration under IaaS
Cloud. In IaaS, technical debt is defined as the difference
between the ideal and actual revenue generated by a virtual
machine. We argue that a VM may be under- or overutilized
during execution. This leads to technical debt that has to be
monitored for prevention and must also be managed by pro-
active decisions to generate future value. Technical debt may
also be used for the identification of a futuristic workload,
which is just several requests that are being assigned to or
executed by a virtual machine for a given time interval
[18]. Based on the predicted workload, it may also be esti-
mated in advance how many VMs would be required to pro-
cess the predicted workload [17, 18].

3.4. Technical Debt Indicators

3.4.1. SLA Violation. Trust in the service provider could be
seen in the form of SLA and could be the reason for uninten-

tional debt on VM [17]. The penalty cost for each violation
would be counted as interest in this case [18, 21]. Penalty
to be imposed on the customer can be further classified as
[38] fixed penalty: whenever a virtual machine is overuti-
lized, a fixed penalty on resources per percentage of SLA vio-
lation has to be given by the service provider to the
customer; when the service provider is not able to provide
computing capacity for a certain amount of time, the
delayed penalty is calculated as the delayed capacity × the
amount of time. A proportional penalty is also calculated
as an extended form of a delay-dependent penalty. Further-
more, the penalty must be calculated in terms of the propor-
tion of each resource per percentage of the delay incurred in
returning the capacity.

3.4.2. Run-Time Decision. A VM may accumulate technical
debt because of poor or bad run-time decisions for VM
migration if the allocated VM may not be able to match cur-
rent requirements [17, 18, 21].

3.4.3. VM Utility. From a utility point of view, a suboptimal
VM is the result of under-/overutilization that accumulates
technical debt on the VM, which could be either good or
bad [17, 18].

4. Measuring Technical Debt in VM Migration

Because of the nature of the dataset, we apply Holt-Winters’
multiplicative method, a time series forecasting method.
This method has been used to predict the workload on a vir-
tual machine. Based on the predicted data, we then present a
VM debt computing model and a VM utility model in the
context of VM migration.

4.1. Workload Prediction on VM. Time series data is tempo-
ral and is used to predict future values based on previous
values. The time component is an important variable and
is involved in lots of prediction problems but is mostly lim-
ited to research labs rather than industrial applications [39].
As a result, we favor Holt-Winters’ multiplicative method
over other commonly used time series methods for workload
prediction on a virtual machine [17, 18]. We preprocess the
dataset for 10 days for training and the next 5 days of data
for testing the accuracy of monitoring every 5 minutes. To
predict the dataset values for the CPU, memory usage, and
total resource usage, we fit Holt-Winters’ multiplicative
method and evaluate the prediction accuracy using the com-
mon accuracy metrics for CPU usage and memory usage.
We have used MSE, MAE, and RMSE metrics, as shown in
Table 1, to estimate the accuracy of forecasted values using
the Holt-Winters method.

Table 1: Average operating cost of VM usage for all approaches
over 7200 minutes.

VM resources TD4VM LRMMT IQRMC IQRMMT

Operating cost 1.41 1.56 1.56 1.56

3Wireless Communications and Mobile Computing

RE
TR
AC
TE
D

4.2. VM Debt Computing Model. To estimate the technical
debt on a given virtual machine, we employed the notation
principal and interest defined in the technical debt metaphor
[17, 18, 21]. Furthermore, we systematically connect these
notations for building our VM debt computing model as
follows:

4.2.1. Principal. We are considering the principal as the
invested cost of searching and selecting the new VM for
performing VM migration operations. In particular, the
principal can be calculated using the following equation:

Principal = Ccpu ∗ T
À Á

, ð1Þ

where T indicates the time required for searching and
migration and Ccpu represents the CPU execution cost for
processing the VM migration operation.

4.2.2. Interest. The interest could be accumulated on the
VM execution over some time when VM execution exhibits
the underprovision or overprovision of its resource utiliza-
tion. For the VM, the interest could be accumulated up to
n future timestamps, which can be obtained from the differ-
ence between the actual VM resource provisioning and pre-
dicted resources. Moreover, the interest can be driven from
two different cases of VM resource utilization as the follow-
ing equation.

where R denotes the VM resources (CPU and RAM). Cexec
and Cp are the resource execution cost and penalty,
respectively.

Case 1. Interest for overprovision of VM resources. In this
case, the resources provisioning on the VM is higher than
the resource utilization [17, 18] (VMR

provision >VMR
utilization).

The interest would be calculated as the execution cost of
unused VM resources ðVMRÞ over n future timestamps,
which is derived from the difference between the provisioned
resources by the VM and the actual utilization of VM
resources as shown in the top formula in equation (2) [17, 18].

Case 2. Interest for underprovision of VM resources. Unlike
the previous case, e.g., overutilization of VM resources vio-
lates the SLA constraints due to more demand for VM
resources (e.g., specified in the SLA) than the actual provi-
sioned resources on the VM. The interest would be accumu-
lated as the penalty cost against SLA constraints violation
over n timestamps, as shown in the top formula in equation
(2). Finally, the overall technical debt on the VM resources
utilization can be estimated according to the principal and
accumulated interest as

DebtVM = Principal + Interest VMð Þ: ð3Þ

4.3. VM Utility Model. In this section, we present a VM util-
ity model for estimating the execution cost of VM resources.
In this work, we consider CPU and RAM as the VM
resources, and each resource has a different execution cost
denoted by CR

exec. We compute the VM resource execution
cost using the following equation.

C VMexecð Þ = 〠
m

R=1
VMR

provision ∗ CR
exec, ð4Þ

where R denotes the VM resources (CPU and RAM) and
VMprovision indicates the current provisioning of resources
to the VM. Further, there may be an environmental condi-
tion, in which VM-provisioned resources could not satisfy
the SLA constraints. Consequently, it causes the SLA vio-
lation, which is compensated by paying the penalty cost
to VM resource violation. We calculate the penalty cost by

C VMpenalty
À Á

= SLAconstraints − 〠
m

R=1
VMR

provision

 !

∗ Cp, ð5Þ

where SLAconstraints denotes the specified constraints in the
SLA and Cp is the penalty cost against the violation of
SLA constraints. Based on the above functions, we are in
the position to build the VM utility model, which is capa-
ble of quantifying the current (actual) utility of VM
resources in the cloud environment using

Uc
VM = C VMexecð Þ − C VMpenalty

À Á
: ð6Þ

4.3.1. Debt-Aware VM Utility. In the previous section, we
formulated the VM debt computing model that would
support the debt-aware VM utility model for making an
economic-driven decision for dynamic VM allocation. Fur-
thermore, optimizing the present value of the VM utility
in the cloud data center will depend on the future value
of the underlying VM utility [17, 18, 38]. In this regard,
we adopted a predictive learning approach (time series
forecasting method) for forecasting the VM resource

Interest VMð Þ =
〠
m

R=1
〠
n

t=1
VMR

provision−VMR
utilization

� �
∗CexecifVMR

provision>VMR
utilization

〠
n

t=1
SLAconstraints−〠

m

R=1
VMR

utilization

 !

∗Cpotherwise

8
>>>><

>>>>:

9
>>>>=

>>>>;

, ð2Þ

4 Wireless Communications and Mobile Computing

RE
TR
AC
TE
D

demand in the cloud data center. After that, we combined
the forecasting method with our VM debt computing
model to predict future debt up to n future timestamps,
as shown in equation (3). Moreover, we calculate the
future VM resource execution cost over n time steps based
on the forecasted VM resources. Finally, we build the
debt-aware VM utility model, which is capable of estimat-
ing the debt-aware predictive utility of the underlying VM
as shown in the equation.

UD
VM = 〠

n

t=1
C VMexecð Þ −DebtVM: ð7Þ

4.4. Debt-Aware Decision for Dynamic VM Migration.
Based on Sections 4.2 and 4.3, we developed algorithms
for the technical debt-aware decision model for dynamic
VM migration, which are based on the utility algorithm,
VM migration algorithm, and migrate algorithm. The
working of these algorithms has been shown in Figure 1.

As discussed in Figure 1, our first algorithm, the utility
algorithm, generates the actual utility and predicted utility,

bypassing CPU usage, memory usage, CPU provisioning,
and memory provisioning parameters as inputs (from the
actual dataset and the predicted dataset) to the utility func-
tion. In this function, the penalty is double (the sum of
CPU and memory execution costs) and the principal are
the fixed costs. The amount of CPU and memory provi-
sioned depends on the current VM configuration. The fol-
lowing are the important steps:

(1) In line number 6, we calculate the VM’s current util-
ity, i.e., the VM running cost, which is just the sum
of CPU and memory cost as calculated in lines num-
bers 4 and 5

(2) From lines 7 to 8, we estimate the incurred debt on
CPU and memory

(3) From lines 9 to 14, we identify whether a VM is
overprovisioned or underprovisioned. Interest is cal-
culated if the VM is overprovisioned; otherwise, a
penalty is calculated

(4) In line number 15, we calculate the accumulated
technical debt

(5) Actual and predicted utilities are generated on lines
16 and 17

The output of the utility algorithm produces the actual
and predicted utilities that would be the input for our next
algorithm: VM Migration.

In the VM migration algorithm, we used two functions,
VM migration and migrate. VM migration function takes
two parameters cu set and pu set, which are the current util-
ity set and the predicted utility set. In this algorithm, the fol-
lowing are the important steps:

(1) From lines 3 to 8, we find the average of the current
utility denoted by cuavg for the three timestamps

(2) From lines 9 to 11, we find the average of the pre-
dicted utilities, denoted by T1, T2, and T3 for time-
stamps t1; an average of t1 and t2; and an average
of t1, t2, and t3, respectively

(3) From lines 12 to 17, we are considering two special
cases for the last two or one timestamp values, when
either the predicted utilities for two or one time-
stamps left in place of three timestamps

(4) In line number 19, we call the function “Migrate”
bypassing the values of timestamp current utility
average (cuavg), an average of predicted utilities T1,
T2, and T3 as parameters

(5) The function “Migrate” decides whether a VM is
migrated or not. If the VM migration decision has
been taken, then this function further decides at
which timestamp VM migration occurs. Line num-
bers 11 and 12 of this function help decide the time-
stamp for VM migration

Input for VM from actual data set
(CPU and memory usage)

1. Parameters CPU and memory usage
to utility algorithm that generates

actual and predicted utility data sets.

If VM migration takes place,
again VM migration
algorithm executed.

3. Migrate function decides for VM
migration. If VM migration then this

function further decides at which time-
stamp VM migration occurs.

2. Output of the utility algorithm is the
input for the VM migration algorithm

where we call migrate fuction of
migrate algorithm.

S.NO CPU (MHz) Memory
usage (MB)

1 156 1026

2 150 1070

- - -

- - -

n 112 234

Figure 1: Schematic diagram showing the VM migration strategy.

5Wireless Communications and Mobile Computing

RE
TR
AC
TE
D

Input: Cpu& Memory Usages Set (CpuUsage & MemoryUsage) //Actual And Predicted Datasets Cpu& Memory Provisioning Set
(Cpuprovisioning & Memory provisioning)
Constant Input: Cpu& Memory Executioncost (Cpuexecutioncost &Memory executioncost)
Fixed Penalty Cost
Principal // Principal is the Rework Cost of VM
Output: Actual Utility/Predicted Utility Of VM
Utility (CpuUsage , MemoryUsage, Cpuprovisioning, Memoryprovisioning)
1. Initialize: Interest =0
2. Penalty =0
3. For (Each Time Stamp)
4. Cpucost = Cpuusage * Cpuexecutioncost
5. Memorycost = Memoryusage* Memoryexecutioncost
6. Current Utility = Cpucost + Memorycost //Calculating VM Running Cost
7. Debtmemory = (Current Memoryprovisioning - Memoryusage) * Memoryexecutioncost
8. Debtcpu = (Current Cpuprovisioning - Cpuusage) * Cpuexecutioncost
9. If ((Cpuprovisioning + Memoryprovisioning) > (CpuUsage+ MemoryUsage)) // Over-Provisioning
10. Interest =Debtcpu + Debtmemory
11. Else // Under-Provisioning
12. % of Penalty =100 – ((CpuUsage / Cpuprovisioning) + (Memory Usage / Memory Provisioning))*50
13. Penalty = Fixed Penalty Cost * (% Of Penalty)
14. End If
15. Total Debt = Interest + Penalty + Principal // For Actual/Predicted Datasets
16. Actual Utility = Current Utility - Penalty // Generates Actual Utility
17. Predicted Utility = Current Utility - Technical Debt // Generates Predicted Utility
18. End For

Algorithm 1: Utility.

Input: Current Utility set (cu)
Predicted Utility set (pu)

Output: Decision of VM migration, if migrate then at which time stamp.
// t is the timestamp and T is the time-period of 3 time-stamps (t1, t2, t3)
VM Migration (cu set, pu set) //function receiving current and predicted utility datasets as parameters
1. Initialize: time stamp t =0
2. while (t <= n-1) //n is the total no of time stamps
3. if (t = = 0)
4. cuavg= cut
5. else if (t = = 1)
6. cuavg= (cut + cut-1)/2
7. else
8. cuavg= (cut + cut-1 + cut-2)/3
9. T1 = put+1
10. T2 = (put+1+ put+2)/2
11. T3 = (put+1 + put+2 + put+3)/3
12. if (t = = n - 2)
13. T3 = - ∞
14. else if (t = = n-1)
15. T3 = - ∞
16. T2 = - ∞
17. end if
18. Migrate (t, cuavg, T1, T2, T3)//calling Migrate function
19. t = t+1
20. End while

Algorithm 2: VM migration.

6 Wireless Communications and Mobile Computing

RE
TR
AC
TE
D

5. Experimental Results

To evaluate the proposed approach, we have conducted a
quantitative experiment. The primary goal of this experi-
ment is to validate the effectiveness of our approach against
other existing approaches in the CloudSim simulator. Specif-
ically, we aim to develop a technical debt-aware decision
model for virtual machine migration. Besides, this model
provides a mechanism for managing technical debt for the
migration of virtual machines dynamically in the cloud data
center. To evaluate the technical debt-aware approach, we
aim to answer the following research questions:

RQ1: How accurately does the TD4VM approach predict
resource utilization?

RQ2: Can the TD4VM approach outperform the other
approaches based on resource utilization (e.g., CPU and
RAM) and infrastructure operating cost?

RQ3: Can the TD4VM approach accumulate less debt
than other existing approaches?

We have simulated our results on the CloudSim simulator,
as it is a modern and advanced cloud simulation framework
[18]. We used one data center, comprised of five hosts. Each
host contains several virtual machines having a configuration
according to the pricing scheme of GCP (n1-machine) [40].
Whenever a host is under- or overutilized, VMs from that host
are migrated to the other hosts based on the technical debt-
aware model. Our experiment was carried out on a machine
equipped with an Intel Core i5 (2.8GHz) Processor, 8GB of
RAM, and the Windows 10 operating system. In this experi-
ment, the current usage of CPU and memory every five 5-
minute time intervals (total 7200 minutes-5 day datasets) is
collected from Materna-trace-1 [17, 18, 41] and used as input
for TD4VM and other approaches.

5.1. Comparison with State-of-the-Art Approaches. We com-
pared our TD4VM approach with the other classical
approaches incorporated into the CloudSim framework,
namely: IQRMMT, IQRMC, and LRMMT [1, 17].

(i) IQRMMT. IQRMMT is an adaptive threshold algo-
rithm that selects the candidate VM with the mini-
mum migration time relative to other VMs [3].

(ii) IQRMC. IQRMC is an adaptive threshold algorithm
that selects the candidate VM with the maximum
correlation with the other VMs [3].

(iii) Local regression based on the Loess method is used
to fit a trend polynomial to the last observation of
CPU utilization [3].

5.2. Performance Metrics. We employ the following metrics
for evaluating our TD4VM approach against other existing
approaches:

(1) Prediction accuracy. To assess the prediction accu-
racy of resource utilization using the Holt-Winters
method, we used the MSE, MEA, and RMSE metrics

(2) Resource utilization. We examine resource utiliza-
tion for 120 hours (7200 minutes) using equation
(6). We plot the result of VM resource utilization
against the actual allocated resources. Furthermore,
we use the box plot to compare the resource utiliza-
tion yields of all approaches

(3) Operating cost. We measure the infrastructure oper-
ating cost for 120 hours (7200 minutes) using equa-
tion (4). We plot the result of the infrastructure
operating costs consumed by all approaches

(4) VM debt. We use equation (3) to figure out how
much debt the VM has accumulated over 120 hours
(7200 minutes). We plot the accumulated debt result
of TD4VM against other state-of-the-art approaches

5.3. Results Discussion for RQ1. To answer RQ1, we provide
the prediction accuracy of VM resource utilization using dif-
ferent metrics, as shown in Table 2. Furthermore, the

Input: Current timestamp
Average of Current Utility group (cuavg)
Average combination of Predicted Utilitygroup (T1, T2, T3)
Migrate (t, cuavg, T1, T2, T3)
1. Initialize: mig= n+1
2. if (cuavg≤ T3)
3. No need to migrate
4. else if (cuavg ≤ T2)
5. mig= t+3
6. else if (cuavg ≤ T1)
7. mig= t+2
8. else
9. mig= t+1
10. end if
11. if (mig ≤ n)
12. ‘migrate at timestamp’ mig
13. end if

Algorithm 3: Migrate.

7Wireless Communications and Mobile Computing

RE
TR
AC
TE
Dobtained results show that the MSE, MAE, and RMSE are in

fact comparatively low for both resources (CPU and RAM),
and thus the accuracy is acceptable [21]. For a more detailed
result, Figures 2 and 3 depict the CPU and RAM predic-
tions, respectively. As we can see in Figures 2 and 3, there
are some variations between the predicted and actual
resource utilization, but the prediction captures the general
patterns of the resource utilization, e.g., the spike between
500 and 1500 minutes.

For RQ1, we conclude that:
Answering RQ1: The VM resource prediction of the

Holt-Winter method in our TD4VM approach is acceptably
accurate. The variation between predicted and actual
resource utilization is small, and most of the patterns are
generally captured.

5.4. Results Discussion for RQ2. To answer RQ2, we plot the
result of resource utilization and infrastructure operating
cost yield by all approaches.

5.4.1. Resource Utilization-Based Assessment. Tomeasure the
resource utilization of all approaches, we conducted two sets of
experiments considering different VM resource parameters. In
the first experiment, we use only the CPU parameter, which is
generally used by all classical state-of-the-art approaches in
CloudSim [1]. Furthermore, to analyze the effectiveness of
our TD4VM approach, we included RAM as an additional
parameter in the second experiment. The obtained results
from both experiments are discussed as follows.

(1) Measuring VM CPU Utilization. We assess the CPU uti-
lization produced by TD4VM and other state-of-the-art
approaches for executing the VM over 7200 minutes.

In Figure 4, the CPU utilization obtained from the
TD4VM approach is higher than the CPU utilization yield
achieved by other approaches. To conduct a more detailed
review, we plot the CPU utilization measured at each time-
stamp for a period of 7200 minutes. In particular, we exam-
ined the variation of CPU usage in all approaches. The
CPU utilization reported by the TD4VM approach is consis-
tently better than other approaches. Furthermore, Table 3
provides an overview of the average CPU utilization of all
approaches for 7200 minutes. Numerically, TD4VM
achieved the highest average value of CPU utilization com-
pared to other approaches. Finally, these experiments dem-
onstrated that the TD4VM approach is more capable of
making a long-term economic-driven decision for VM
migration and outperforms other approaches. We also
applied the Kruskal-Wallis test at a significant level of 5%
and obtained results showing that the p-value is less than

0.05, which explains the significant difference in CPU utiliza-
tion yield by all approaches.

(2) Measuring VM Resource Utilization (CPU and RAM).
We analyze the overall VM resource utilization which
includes the CPU and RAM over 7200 minutes.

Figure 5 illustrates the VM resource utilization (CPU
and RAM) for 7200 minutes. We can see that the TD4VM
approach achieves higher utilization of VM resources than
other state-of-the-art approaches. Furthermore, we conduct
a more comprehensive review by examining the VM
resource utilization at each timestamp of 7200 minutes.
The TD4VM approach consistently better utilizes the VM
resources than other approaches. In addition, we looked at
how much VM resources each approach used for 7200
minutes, as shown in Table 4. A numerical comparison
was conducted, in which the IQRMC approach has better
VM resource utilization than other existing approaches
(such as LRMMT and IQRMMT), but when comparing
IQRMC with our approach TD4VM, we see that the
TD4VM outperforms all other state-of-the-art approaches.
We also applied the Kruskal-Wallis test at a significant level
of 5% [12], and the obtained results show that the p-value is
less than 0.05, which informs the significant difference in
CPU utilization yield by all approaches.

5.4.2. Operating Cost-Based Evaluation. We examine the
operating cost consumed by all approaches for executing a
VM over 7200 minutes in the cloud data center. The VM
operating cost could be optimized (e.g., in terms of minimal
invested cost) by making a strategic decision for VM migra-
tion; otherwise, it impacts the VM resource utilization.
Table 1 provides an overview of the average operating cost
yield by all approaches over 7200 minutes. Notably, our
TD4VM approach provides an economic-driven decision
for dynamic VM migration. Consequently, TD4VM con-
sumes fewer operating costs than other state-of-the-art
approaches [17, 18].

For RQ2, we conclude that:
Answering RQ 2 From the above discussion, we conclude

that the TD4VM approach has better VM resource utiliza-
tion than other approaches. Moreover, TD4VM approach
provides long-term based economic-driven decision for
dynamic VM allocation that maximizes the overall resource
utilization and minimize the VM execution cost.

5.5. Results Discussion for RQ3. We measure the debt accu-
mulated by our TD4VM approach and other state-of-the-
art approaches for executing a VM over 7200 minutes in
the cloud data center.

The cost of unused VM resources or the penalty cost for
SLA violation during VM execution are two potential
sources of debt. From Figure 6, we observe that the increased
value of debt negatively impacts the VM resource utilization,
as shown in Figure 5. As a result, the approach that accumu-
lates less debt could be more efficient for maximizing the
VM’s resource utilization. To conduct a more detailed
review, we plot the accumulated debt on the VM execution

Table 2: VM resource prediction accuracy.

Resources MSE MAE RMSE

CPU 0.01 0.55 0.10

RAM 0.01 0.08 0.11

8 Wireless Communications and Mobile Computing

RE
TR
AC
TE
D

for each timestamp of 7200 minutes. In particular, we exam-
ine the pattern of accumulated debt using all approaches.
Figure 6 shows that the TD4VM approach incurs less debt
than other existing approaches. Furthermore, we compute
the average debt accumulated by all approaches for execut-
ing a VM over 7200 minutes, as shown in Table 5. In terms
of numbers, TD4VM has the lowest minimum value (cost in
dollars) of accumulated debt compared to other approaches.
Finally, we conclude that the TD4VM outperforms other
approaches. We also applied the Kruskal-Wallis test at a sig-
nificant level of 5% and obtained results that show that the p
-value is less than 0.05, which explains the significant differ-
ence in accumulated debt yield by all approaches.

For RQ3, we conclude that:
Answering RQ3: From the above discussion, we observed

that the TD4VM approach accumulates less debt, which is a
good sign for maximizing the VM resource utilization. The

CP
U

 u
sa

ge

220

200

180

160

140

120
0 1000 2000 3000 4000

Time (minutes)
5000 6000 7000

Actual CPU usage
Predicted CPU usage

Figure 2: CPU usage prediction.

RA
M

 u
sa

ge

1600

1500

1400

1300

1200

1100

1000

900

800

700
0 1000 2000 3000 4000

Time (minutes)
5000 6000 7000

Actual RAM usage
Predicted RAM usage

Figure 3: RAM usage prediction.

100

80

60

CU
P

ut
ili

za
tio

n
(M

H
z)

40

20

0
TD4VM IQRMC IQRMMT LRMMT

Figure 4: CPU utilization yield by all approaches.

9Wireless Communications and Mobile Computing

RE
TR
AC
TE
D

comparative discussion shows that the TD4VM accumulates
less debt than other state-of the-art approaches.

5.6. Summary of Analysis. The uncertainty in a cloud envi-
ronment may introduce resource contention among others.
The data centers’ first and foremost motive is to reduce the
running cost as much as possible. Reducing running costs
results in maximizing revenue. The running cost of a data
center may be controlled and minimized if resource usage
can be predicted in advance. Scalability and elasticity moti-
vate the adoption of a cloud computing IaaS model that
enables different benefits from the economies of scale in
the cloud. Moreover, since it is impossible to achieve a per-
fect mapping between resource consumption and resource
provisioning, existing mechanisms are usually unaware of
incurring technical debt.

6. Conclusion and Future Work

We introduced the technical debt-aware approach
(TD4VM), which reduces virtual machine operating costs,
SLA violations, and technical debt. Technical debt can be
defined as the difference between optimal and suboptimal
VMmigration decisions. Our approach connects VMmigra-
tion decisions and accrues technical debt over time, reducing
overall utility. Our model is capable of estimating the accu-
mulated technical debt carried by a virtual machine well in
advance and also assisting in VM migration decisions to
address the issue of virtual machine under-/overutilization.
We intend to extend this model in additional ways, such as

(1) To extend the technical debt-aware model by
introducing additional mechanisms such as self-
adaptivity. A self-adaptive system can analyze its
own behavior and adjust the current system in order
to achieve its objectives and manage its operations
autonomously in the face of uncertainty. We currently
consider CPU and memory utilization as parameters
for VM migration in our current approach. Apart
from fault tolerance, delay, security, and virtual
machine recomposition, there are additional uncer-
tainties that could be addressed in future research.

(2) Our technical debt-aware approach adapts VMs
based on future values but ignores past values. We
can extend this approach by taking into account his-
torical values. We can deduce possible ways to
improve the feasibility of our current system based
on the pattern observed for previous values.

Data Availability

Data is available with authors and can be provided on
request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Table 3: Average CPU utilization of all approaches over 7200
minutes.

VM resource TD4VM LRMMT IQRMC IQRMMT

CPU (MHz) 44.56 35.93 38.90 37.04

V
M

 re
so

ur
ce

 u
til

iz
at

io
n

400

350

300

250

200

150

100

50

TD4VM IQRMCIQRMMTLRMMT

Figure 5: VM resource utilization yield by all approaches.

Table 4: Average VM resource utilization of all approaches over
7200 minutes.

Resource TD4VM LRMMT IQRMC IQRMMT

VM resources 171.84 91.33 97.85 93.89

Ac
cu

m
ul

at
ed

 d
eb

t (
$)

1.0

0.8

0.6

0.4

0.2

0

TD4VM IQRMC IQRMMT LRMMT

Figure 6: Operating cost consumed by all approaches.

Table 5: Average debt accumulated by all approaches over 7200
minutes.

VM resource debt TD4VM LRMMT IQRMC IQRMMT

Accumulated debt ($) 0.17 0.77 0.73 0.76

10 Wireless Communications and Mobile Computing

RE
TR
AC
TE
D

References

[1] Z. Zhou, M. Shojafar, M. Alazab, J. Abawajy, and F. Li, “AFED-
EF: an energy-efficient VM allocation algorithm for IoT appli-
cations in a cloud data center,” IEEE Transactions on Green
Communications and Networking, vol. 5, no. 2, pp. 658–669,
2021.

[2] M. Aslam, S. Bouget, and S. Raza, “Security and trust pre-
serving inter- and intra-cloud VM migrations,” Interna-
tional Journal of Network Management, vol. 31, no. 2,
article e2103, 2021.

[3] A. Beloglazov and R. Buyya, “Optimal online deterministic
algorithms and adaptive heuristics for energy and perfor-
mance efficient dynamic consolidation of virtual machines in
cloud data centers,” Concurrency and Computation: Practice
and Experience, vol. 24, no. 13, pp. 1397–1420, 2012.

[4] P. Mell and T. Grance, “The NIST definition of cloud comput-
ing,” 2011, https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-145.pdf.

[5] A. Beloglazov and R. Buyya, “Energy efficient resource man-
agement in virtualized cloud data centers,” in 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing, pp. 826–831, IEEE, Melbourne, VIC, Austra-
lia, 2010.

[6] L. A. Barroso and U. Hölzle, “The case for energy-proportional
computing,” Computer, vol. 40, no. 12, pp. 33–37, 2007.

[7] X. Fan, W. D. Weber, and L. A. Barroso, “Power provisioning
for a warehouse-sized computer,” ACM SIGARCH Computer
Architecture News, vol. 35, no. 2, pp. 13–23, 2007.

[8] H. Jin, L. Deng, S. Wu, X. Shi, H. Chen, and X. Pan, “MECOM:
live migration of virtual machines by adaptively compressing
memory pages,” Future Generation Computer Systems,
vol. 38, pp. 23–35, 2014.

[9] C. Chatfield, “The Holt-Winters forecasting procedure,” Jour-
nal of the Royal Statistical Society: Series C (Applied Statistics),
vol. 27, no. 3, pp. 264–279, 1978.

[10] P. V. Avneesh Vashistha, “Economic driven model for virtual
machine allocation in cloud data center,” International Journal
on Emerging Technologies (IJET), vol. 11, no. 4, pp. 269–273,
2020.

[11] S. Kumar, R. Bahsoon, T. Chen, and R. Buyya, “Identifying and
estimating technical debt for service composition in SaaS
cloud,” in 2019 IEEE International Conference onWeb Services
(ICWS), pp. 121–125, IEEE, Milan, Italy, 2019.

[12] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “An
energy-efficient VM prediction and migration framework for
overcommitted clouds,” IEEE Transactions on Cloud Comput-
ing, vol. 6, no. 4, pp. 955–966, 2018.

[13] B. Wang, F. Liu, and W. Lin, “Energy-efficient VM scheduling
based on deep reinforcement learning,” Future Generation
Computer Systems, vol. 125, pp. 616–628, 2021.

[14] Y. Liang, Z. Hu, and K. Li, “Power consumption model based
on feature selection and deep learning in cloud computing sce-
narios,” IET Communications, vol. 14, no. 10, 2020.

[15] C. Li, Y. Hu, L. Liu et al., “Towards sustainable in-situ server
systems in the big data era,” ACM Sigarch Computer Architec-
ture News, vol. 43, no. 3S, pp. 14–26, 2015.

[16] S. S. Gill, P. Garraghan, V. Stankovski et al., “Holistic resource
management for sustainable and reliable cloud computing: an
innovative solution to global challenge,” Journal of Systems
and Software, vol. 155, pp. 104–129, 2019.

[17] N. Rodrigo, R. Rajiv, R. César, and B. Rajkumar, “Cloudsim: a
novel framework for modeling and simulation of cloud com-
puting infrastructures and services,” pp. 1–9, 2009, http://
arxiv.org/abs/0903.2525.

[18] M. Tomczak and E. Tomczak, “The need to report effect size
estimates revisited. An overview of some recommended mea-
sures of effect size,” Trends in Sport Sciences, vol. 1, no. 21,
pp. 19–25, 2014.

[19] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of
virtual machines for managing sla violations,” in 2007 10th
IFIP/IEEE International Symposium on Integrated Network
Management, pp. 119–128, IEEE, Munich, Germany, 2007.

[20] B. Song, M. M. Hassan, and E. N. Huh, “A novel heuristic-
based task selection and allocation framework in dynamic col-
laborative cloud service platform,” in 2010 IEEE second inter-
national conference on cloud computing technology and
science, pp. 360–367, IEEE, Indianapolis, IN, USA, 2010.

[21] Z. Zhu, J. Bi, H. Yuan, and Y. Chen, “SLA based dynamic vir-
tualized resources provisioning for shared cloud data centers,”
in 2011 IEEE 4th International Conference on Cloud Comput-
ing, pp. 630–637, IEEE, Washington, DC, USA, 2011.

[22] M. Mishra and A. Sahoo, “On theory of vm placement: anom-
alies in existing methodologies and their mitigation using a
novel vector based approach,” in 2011 IEEE 4th International
Conference on Cloud Computing, pp. 275–282, IEEE, Wash-
ington, DC, USA, 2011.

[23] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes,
“{AGILE}: elastic distributed resource scaling for {infrastruc-
ture-as-a-service},” in 10th International Conference on Auto-
nomic Computing (ICAC 13), pp. 69–82, San Jose, CA, 2013.

[24] A. Strunk and W. Dargie, “Does live migration of virtual
machines cost energy?,” in 2013 IEEE 27th International Con-
ference on Advanced Information Networking and Applications
(AINA), pp. 514–521, IEEE, Barcelona, Spain, 2013.

[25] L. Chen and H. Shen, “Consolidating complementary VMs
with spatial/temporal-awareness in cloud datacenters,” in
IEEE INFOCOM 2014-IEEE Conference on Computer Commu-
nications, pp. 1033–1041, IEEE, Toronto, ON, Canada, 2014.

[26] A. Mosa and N. W. Paton, “Optimizing virtual machine place-
ment for energy and SLA in clouds using utility functions,”
Journal of Cloud Computing, vol. 5, no. 1, pp. 1–17, 2016.

[27] C. M. Sharma and H. Kumar, “Architectural framework for
implementing visual surveillance as a service,” in 2014 Interna-
tional Conference on Computing for Sustainable Global Devel-
opment (INDIACom), pp. 296–301, IEEE, New Delhi, India,
2014.

[28] M. M. Lehman, “Programs, life cycles, and laws of software
evolution,” Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–
1076, 1980.

[29] N. Brown, Y. Cai, Y. Guo et al., “Managing technical debt in
software-reliant systems,” in In Proceedings of the FSE/SDP
workshop on Future of software engineering research, pp. 47–
52, New York, 2010.

[30] Z. Li, P. Liang, and P. Avgeriou, “Architectural debt manage-
ment in value-oriented architecting,” in Economics-Driven
Software Architecture, pp. 183–204, Morgan Kaufmann, 2014.

[31] H. Liu, F. Zhong, B. Ouyang, and J. Wu, “An approach for
QoS-aware web service composition based on improved
genetic algorithm,” in 2010 International conference on web
information systems and mining, vol. 1, pp. 123–128, IEEE,
Sanya, China, 2010.

11Wireless Communications and Mobile Computing

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://arxiv.org/abs/0903.2525
http://arxiv.org/abs/0903.2525

RE
TR
AC
TE
D

[32] M. Younas, D. N. Jawawi, I. Ghani, T. Fries, and R. Kazmi,
“Agile development in the cloud computing environment: a
systematic review,” Information and Software Technology,
vol. 103, pp. 142–158, 2018.

[33] K. Krishnaiyer, F. F. Chen, and H. Bouzary, “Cloud Kanban
framework for service operations management,” Procedia
Manufacturing, vol. 17, pp. 531–538, 2018.

[34] F. Shull, “Perfectionists in a world of finite resources,” IEEE
Software, vol. 28, no. 2, pp. 4–6, 2011.

[35] R. L. Nord, I. Ozkaya, P. Kruchten, andM. Gonzalez-Rojas, “In
search of a metric for managing architectural technical debt,”
in 2012 Joint Working IEEE/IFIP Conference on Software
Architecture and European Conference on Software Architec-
ture, pp. 91–100, IEEE, Helsinki, Finland, 2012.

[36] R. Haas, R. Niedermayr, and E. Juergens, “Teamscale: tackle
technical debt and control the quality of your software,” in
In2019 IEEE/ACM International Conference on Technical Debt
(TechDebt), pp. 55-56, IEEE, Montreal, QC, Canada, 2019.

[37] E. Moreira, F. F. Correia, and J. Bispo, “Overviewing the live-
ness of refactoring for energy efficiency,” in Conference Com-
panion of the 4th International Conference on Art, Science,
and Engineering of Programming, pp. 211-212, New York,
2020.

[38] A. Fox, R. Griffith, A. Joseph et al., Above the clouds: A berkeley
view of cloud computing, vol. 28, Dept. Electrical Eng. and
Comput. Sciences, University of California, Berkeley, Rep.
UCB/EECS, 2009.

[39] J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner, “From
monolith to microservices: a classification of refactoring
approaches,” in International Workshop on Software Engineer-
ing Aspects of Continuous Development and New Paradigms of
Software Production and Deployment, pp. 128–141, Springer,
Cham, 2018.

[40] R. Kazman, Y. Cai, R. Mo et al., “A case study in locating the
architectural roots of technical debt,” in 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering,
pp. 179–188, IEEE, Florence, Italy, 2015.

[41] B. Ojameruaye and R. Bahsoon, “Systematic elaboration of
compliance requirements using compliance debt and portfolio
theory,” in International Working Conference on Requirements
Engineering: Foundation for Software Quality, pp. 152–167,
Springer, Cham, 2014.

12 Wireless Communications and Mobile Computing

