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Wireless-powered mobile edge computing is a new network computing paradigm that combines with the advantages of wireless
power transfer and mobile edge computing. When the harvest-then-offload protocol is adopted in this network, the time of
wireless power transfer has a significant impact on system performance. If the time is too short, the user cannot harvest
enough energy. If it is too long, the user will not have enough time to complete the task offloading. Both result in many of
user tasks being discarded. To address this problem, DEWPT, a differential evolution-based optimization scheme for wireless
power transfer time, is proposed in this paper. DEWPT is designed with a hybrid mutation operator and a perturbation-based
binomial crossover operator. The hybrid mutation operator combines the benefits of two mutation operators with distinct
characteristics, so that DEWPT not only has a strong exploration ability but also can quickly converge. Meanwhile, the
perturbation-based binomial crossover operator improves DEWPT’s ability to exploit local space. These two improvements
effectively enhance DEWPT’s optimization performance, which is beneficial to find the optimal time for wireless power
transfer. Furthermore, to improve the optimization efficiency, micro-population is introduced into DEWPT. Finally, the
computation completion ratio maximization model is used to validate the performance of DEWPT in the wireless-powered
mobile edge computing network with multiple edge servers. Numerical results show that the computation offloading scheme
integrating with DEWPT can achieve a higher computation completion rate than three benchmark schemes, and is competitive
in complexity. This demonstrates that DEWPT is an effective time allocation scheme for wireless power transfer.

1. Introduction

In recent years, the rapid development of Internet of Things
(IoT) technology has spawned numerous new intelligent
applications [1], such as virtual and augmented reality [2],
unmanned driving [3], intelligent video analysis [4], and
intelligent industrial production lines [5]. These applications
are often computation-intensive and time-sensitive and have
a very high demand for the computation capacity of wireless
devices (WDs). However, WDs usually only have low
computation power due to volume and manufacturing cost
constraints [6]. In addition, the lifetime of WDs is very finite
because of the battery capacity limitation. Therefore, the sta-

ble and sustainable operation cannot be maintained. Under
the goal of service first, the two performance limitations
have become the bottleneck that must be broken through
to improve the quality of IoT services.

Mobile edge computing (MEC) [7, 8] and wireless power
transfer (WPT), as two promising technologies, have attracted
widespread concern in many fields. In the MEC architecture,
the computation-intensive tasks of WDs can be offloaded to
MEC servers deployed at the network edge for execution,
which can effectively expand the computing power of WDs.
Meanwhile, WPT can continuously charge the battery of
WDs. It provides a solution to prolong the lifetime of WDs.
Combining the advantages of MEC and WPT results in a
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new computing paradigm, wireless-powered MEC (WP-
MEC). WP-MEC has become a potential solution to solve
the above bottlenecks of IoT. Due to this significant advantage
of WP-MEC, the optimization design and application of WP-
MEC have got a lot of attention in recent years. However, the
majority of existing works only focus on the task offloading
decision-making.

The allocation of WPT time is a crucial factor affecting
the performance of WP-MEC when the harvest-then-
offload protocol is employed. How to achieve the optimal
allocation of WPT time is a problem worth of studying for
the WP-MEC. The existing works usually adopt traditional
optimization methods (such as bisection search) or mathe-
matical programming methods (such as Lagrangian duality)
to deal with the allocation of WPT time. However, these
methods are only suitable for the simple network scenarios.
In complex real network scenarios (such as the network with
massive connections), they are either difficult to implement
or achieve satisfactory optimization performance.

Based on the above shortcomings of the existing works,
we focus on the allocation of WPT time for WP-MEC in this
paper, aiming to achieve the optimal allocation of WPT
time. To this end, a differential evolution-based optimization
scheme for the WPT time allocation is proposed. The contri-
butions of this paper are summarized as follows.

(i) A novel differential evolution algorithm is devel-
oped to optimize the time allocation for WPT in a
WP-MEC with multiple edge servers, in which a
hybrid mutation operator and a perturbation based
binomial crossover operator are designed. The
hybrid mutation operator combines the advantages
of two mutation operators with distinct characteris-
tics. The perturbation-based binomial crossover
operator enhances search ability of the algorithm
in the local space through a random perturbation

(ii) To improve the efficiency of the algorithm, a micro-
population scheme is introduced into the algorithm.
The scheme selects an appropriate population size
based on trade-off between performance and effi-
ciency. Therefore, it can guarantee the efficiency of
finding a better WPT time without performance loss

(iii) A new task offloading scheme is constructed by
integrating the algorithm into the computation
completion rate maximization model. Extensive
experiments are conducted to evaluate the perfor-
mance of our proposed algorithm

The rest of this paper is organized as follows. The related
works are discussed in Section 2. Section 3 presents the
network model and problem formulation. The proposed
scheme is described in Section 4, and the simulation results
are given in Section 5. Finally, Section 6 concludes this work.

2. Related Works

Over the past few years, many existing works have studied
the optimal design of WP-MEC from various perspectives.

According to the optimization design objectives, these works
can be divided into the following four categories.

2.1. Maximization of Computation Rate. Bi and Zhang [6] con-
sidered a multiuser WP-MEC system, where the user task off-
loading mode is binary mode. The authors designed a joint
optimization scheme for WPT time, user computation mode,
local CPU frequency, computation time, and offloading
communication time, aiming to maximize computation rate.
Huang et al. [9] extended the work of [6]. Deep reinforcement
learning was introduced. It primarily addressed the issue of
real-time selection of user computing mode in wireless channel
time-varying scenarios. Zhou et al. [10] considered an
unmanned aerial vehicle- (UAV-) enabled WP-MEC system.
The computation rate maximization problem was investigated
for both partial and binary computation offloading modes in
this work. The two-stage algorithm and the three-stage alterna-
tive algorithm were designed for the two offloading modes,
respectively. Simulation results showed that the two algorithms
outperformed benchmark algorithms in terms of performance,
converge rate, and computation complexity. However, it was
assumed that users can simultaneously perform energy har-
vesting, local computing, and computation offloading.

For the WPT time, the bisection search algorithm was
used in [6, 9] to find the optimal time of WPT while the
work [10] directly assumes that the entire time frame is used
for the WPT.

2.2. Maximization of Computation Efficiency. Zhou and Hu
[11] studied the computation efficiency maximization problem
of wireless-powered MEC networks under both partial and
binary computation offloading modes. Different from other
existing works, this work designed solution schemes for time
division multiple access and nonorthogonal multiple access. Ji
and Guo [12] considered a WP-MEC system including two
users. It should be noted that this work only considered the
offloading computation of user tasks. Based on the consider-
ation of “doubly near-far” effect, the author devised a user
cooperation scheme of task offloading to maximize the energy
efficiency (the ratio of the user throughput to energy).

In these two works, the time allocation of WPT was opti-
mized by the mathematical programming methods, such as
Lagrangian method, Newton iteration method, and subgra-
dient algorithm. Clearly, these methods are only suitable
for the scenarios with a small user scale.

2.3. Minimization of Energy Consumption. The total energy
consumption minimization problem of the wireless access
point (WAP) was formulated in [13]. Subsequently, an opti-
mal resource allocation scheme was developed for a practical
scenario where latency-limited computation was required.
Similar to [12], Hu et al. [14] also studied a two user WP-
MEC system. However, the optimization objective was mini-
mization of the WAP total transmission energy. The author
first illustrated that the optimization is equivalent to a min-
max problem. Next, a two-phase optimization method was
devised to solve it. Wang et al. [15] investigated a multiple-
user WP-MEC system. In their work, apart from the special
scenarios where the channel state information and the task
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state information are completely known, the author further
studied the optimization scheme under the more practical
application scenarios and proposed a sliding-window based
online resource allocation scheme by integrating with the
sequential optimization.

Similarly, these works either used the mathematical pro-
gramming methods or assumed that the entire time frame is
used for WPT.

2.4. Maximization of Computation Completion Ratio. The
concept of computation completion ratio (CCR) [16] was
first introduced for the optimization design of WP-MEC.
CCR is a vital metric, which can effectively indicate the com-
puting performance of WP-MEC. Meanwhile, the WP-MEC
with multiple edge devices was considered in their work.
Under this network configuration, the author proposed the
CCR maximization scheduling scheme, which is termed as
CoCoRaM. CoCoRaM achieved a higher CCR through joint
optimizing the WPT time allocation and computation
scheduling.

In the CoCoRaM, the approximate optimal time alloca-
tion of WPT was obtained by constructing a set of candidate
times. The number of candidate times in the set is greater
than the number of users. That is, as the user scale increases,
the number of candidate times will grow.

Although the optimization design ofWP-MEC system has
been extensively studied in the previously mentioned works,
there are still some issues that require further investigation,
for example, the optimal time allocation of WPT. Despite
bisection search, methods based on mathematical derivation
and approximationmethod have been used to find the optimal
time allocation of WPT. However, these methods either
require analytical knowledge of model and complex computa-
tions or can only be applied to specific network scenarios.
Therefore, an effective optimization scheme for the time allo-
cation of WPT still deserved further research.

Some main notations used in this paper are summarized
in Table 1.

3. Network Model and Problem Formulation

This section will describe the network model, the local com-
puting model, and the offloading computing model, respec-
tively. A CCR maximization problem is then formulated.

3.1. WP-MEC Network with Multiple Edge Servers. As illus-
trated in Figure 1(a), a wireless-powered mobile edge comput-
ing network is investigated in this paper. It consists of a radio
frequency (RF) energy transmitter (ET) with a single-antenna,
N mobile wireless users, and Q wireless access points (WAP).
Each WAP integrated with an MEC server provides the com-
puting service to users. U = fu1,⋯, uNg represents the set of
users, and the set of edge servers is denoted by S = fs1,⋯,
sQg. The ET broadcasts RF energy through WPT for all users.
Each user can harvest the RF energy by a single-antenna
energy receiver to charge its rechargeable battery. The network
system employs the binary offloading rule. That is, by utilizing
the harvested energy, users can complete their computing task
at local or a chosen MEC server (i.e., offloading computing).

Certainly, if the energy harvested by a user is not enough to
complete its task locally or offload it to any MEC server, its
task will be discarded. For one time frame with duration T,
the harvest-then-offload protocol (HTOP) is used, and each
user has a task of size Di bits to accomplish. Therefore, local
computing of users and RF energy harvesting from ET can
be simultaneously executed while the energy harvesting and
task offloading cannot be performed concurrently. The time
division multiple access protocol is used to avoid the commu-
nication interference caused by multiple users offloading tasks
to the same MEC server. Figure 1(b) gives an example of the
time allocation between WPT and computing offloading of
users. Due to the powerful computation power of the edge
servers and the very small task results, the time of edge servers
computing and sending results back can be safely ignored like
in [6, 17, 18]. The amount of RF energy harvested by each user
can be calculated by a linear energy harvesting as formula (1)

Eh
i = μPgiτ0, ð1Þ

Table 1: Summary of some main notations.

Notation Definition

N Number of users

Q Number of MEC servers

U Set of users

S Set of MEC servers

Di Task size of the ith user

T Time frame duration

Eh Harvested RF energy

Eo Energy of task offloading

El Energy of local computing

ϕi CPU cycles of processing one bit data

CCR Computation completion ratio

fmax The upper of user CPU power

f •ð Þ Fitness function

x Decision matrix

tl Local computing time vector

f Local computing CPU frequency

t0 Offloading time vector

P Power of ET

pop Population of DE

NP Population size

F Scale factor

CR Crossover probability

pool Mutation operators pool

Λ1,Λ2 Control parameters

CBs Computation bits

F xð Þ Probability density function
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where τ0 is the time of WPT. The channel gain between ET
and user ui is denoted by gi which remains constant in one
time frame, and P is the energy transmission power of ET. μ
denotes the energy harvesting coefficient.

3.1.1. Local computing model. If the user ui performs its com-
putation task locally, the relationship between CPU frequency
and local computing time can be obtained by formula (2), and
the energy consumption can be calculated by formula (3).

f it
l
i =Diϕi, ð2Þ

El
i = ki f

3
i t

l
i, ð3Þ

where f i denotes the CPU frequency, which can be adjusted
between ð0, fmax� by dynamic voltage and frequency scaling
technique. tli is the local computing time of ui. ϕi represents
the needing CPU cycles that ui processes unit bit data. ki is
the computation energy efficiency coefficient of the proces-
sor’s chip. The power consumption of the processor is mod-
elled as ki f

3
i [6]. According to the constraint of energy, El

i

cannot exceed Eh
i , i.e., E

l
i ≤ Eh

i .

3.1.2. Offloading computing model. When uj offloads task to
MEC server sk for remote executing, the time of task upload-

ing tojk and the energy consumption Eo
jk can be obtained by

formulas (4) and (5)

tojk =
Dj

W log2 1 + Pjkhjk/σ2� �� � , ð4Þ

Eo
jk = Pjkt

o
jk, ð5Þ

where W is the transmission bandwidth. Pjk and hjk are the
transmission power and channel gain between uj and sk,
respectively. σ2 is the noise power. Likewise, Eo

jk must meet

the energy constraint, i.e., Eo
jk ≤ Eh

j .

3.2. CCR Maximization Problem. As described in related
work (Section 2), computation rate, computation efficiency,
energy consumption, and computation complete ratio
(CCR) are four common optimization objectives for the
WP-MEC. Computation efficiency and energy consumption
are only effective when all user tasks are guaranteed to be
completed. Furthermore, the computation rate and the
CCR are essentially equivalent when the user task informa-
tion is a priori. But, as the ratio of processed computation
data to the required computation data of all users, CCR
can more directly reflect the optimization performance of
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Figure 1: Network system. (a) WP-MEC network model. (b) Time allocation of HTOP.
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the scheme. Thus, maximization CCR is selected as the
optimization objective in this paper. According to the binary
offloading rule, each user has ð1 +QÞ options for task execu-
tion, i.e., local and QMEC servers. A variate xik (k ∈ ½0,Q�) is
used to indicate the choice of user task execution. If ui per-
forms its task at the kth option, xik = 1. Otherwise, xik = 0.
Note that k = 0 denotes local computing. So, the maximiza-
tion problem of CCR is as formula (6)

Max
τ0,x,t1 ,f,to

 CCR =
∑N

i=1xi0Di +∑Q
k=1∑

N
j=1xjkDj

∑N
i=1Di

,

s:t: :
C1 : τ0 ≤ T ,
C2 : f1 ∈ 0, f max½ �,∀i ∈ 1,N½ �,
C3 : 0 ≤ tli ≤ t,∀i ∈ 1,N½ �,
C4 : 0 ≤ tojk ≤ T − τ0,∀j ∈ 1,N½ �∀k ∈ 1,Q½ �,

C5 : 〠
N

j=1
t jk ≤ T − τ0,

C6 : El
i ≤ Eh

i , Eo
jk ≤ Eh

j , i, j ∈ 1,N½ �, k ∈ 1,Q½ �,
C7 : xik ∈ 0, 1f g,∀j ∈ 1,N½ �,∀k ∈ 0,Q½ �,

ð6Þ

where τ0 is a float variate. x = fxikji ∈ ½1,N�, k ∈ ½0, Q�g is an
integer matrix. t l = ftliji ∈ ½1,N�g, f = f f iji ∈ ½1,N�g, and to

= ftojkjj ∈ ½1,N�, k ∈ ½1,Q�g are three float vectors. Obviously,
the maximization problem is a mixed integer nonlinear pro-
gramming problem that is NP-hard and difficult to solve by
the traditional optimization methods.

4. The Proposed Scheme of WPT Time

This section will first analyze the nested optimization struc-
ture of the optimization problem, i.e., formula (6). Then, a
WPT time allocation algorithm based on the differential
evolution algorithm is proposed. In this algorithm, a hybrid
mutation operator and a perturbation-based binomial cross-
over operator are designed for achieving the optimal alloca-
tion of WPT time, and the micropopulation is introduced to
improve the optimization efficiency.

4.1. Analysis of Optimization Problem. According to the fea-
ture of the WP-MEC system, all energy consumed by users
comes from the RF energy harvested by them. In one time
frame, WPT time τ0 is the only factor that affects the
amount of energy harvested by the user when other factors
are fixed. Furthermore, the user offloading operation should
be completed within ðT − τ0Þ. Based on these, the following
conclusions can be drawn.

(i) The WPT time τ0 is a crucial decision factor. Too
short τ0, the users cannot harvest enough energy.

Too long τ0, the users have less time for task
offloading

(ii) Given a τ0, different decision matrices x will signifi-
cantly affect the offloading performance. Thus, it is
only makes sense to evaluate whether the τ0 is
optimal based on the optimal decision matrix x∗

and resource allocation. Meanwhile, the resource
allocations (i.e., tl, f, to) are closely related to the
decision matrix x

According to these analyses, optimization problem (6) is
essentially a nested optimization problem that can be
divided into two layers, i.e., the inner layer and outer layer
(see Figure 2). The inner layer determines the optimal deci-
sion matrix x for a given WPT time, as well as the corre-
sponding resource allocation. The outer layer optimizes the
WPT time. The solution of the inner layer serves as the basis
for evaluating the solution of the outer layer. The work of
[16] modelled optimization problem of the inner layer as a
generalized assignment problem (GAP) and designed the
generalized assignment problem-based computation sched-
uling (GAP-CS) algorithm for finding the optimal decision
matrix x∗ and the corresponding resource allocation under
the given WPT time.

In this work, the outer optimization problem is focused.
To design an optimization scheme for WPT time, we must
understand the relationship between WPT time and CCR
which is the optimization objective of this work. Since the
required computation data of all users is a priori, here, we
simplify CCR to computation bits (CBs), the molecular part
of formula (6), and observe their relationship through a
sampling experiment. Assume that the CBs are a function
of WPT time τ0 as formula (7). The sampling experiment
adopts an iterative search method to obtain the optimal
decision matrix x∗ and the corresponding resource alloca-
tion. The observation results are given in Figure 3.

CBs = f τ0ð Þ, τ0 ∈ 0, T½ �: ð7Þ

From the results of Figure 3, it can be seen that the func-
tion curve obviously has multiple extreme points (see green
oval mark). This shows that CBs are a nonmonotonic multi-
modal function of WPT time. Equivalently, CCR is a non-
monotonic multimodal function of WPT time. Therefore,
the optimization of WPT is difficult to solve by the tradi-
tional search methods directly, such as bisection search.

4.2. The Allocation of WPT Time Based on DE. Differential
evolution (DE), which is a heuristic evolution algorithm,
was proposed by Store and Price [19]. A population pop
with NP individuals is maintained, and each individual of
pop denotes a solution to the optimization problem. The
pop is initialled by a random way, and then, mutation (8),
crossover (9), and selection operators are performed to
update the pop generation by generation [20]. The widely
used mutation and crossover operators [21] are as formulas
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(8) and (9)

Vg
i = Xg

r1 + F ⋅ Xg
r2 − Xg

r3
� �

, ð8Þ

Ug
i,j =

Vg
i,j, if rand ≤ CR or j = J ,

Xg
i,j, otherwise,

(
ð9Þ

where i ∈ ½1,NP� is the index of individual. r1, r2, r3ðr1 ≠ r
2 ≠ r3 ≠ iÞ are generated in ½1,NP� by a random manner. g
is the index of generation. V ,U represent the mutation indi-
vidual and trial individual, respectively. j = 1, 2,⋯,D, and D
is the number of gene in an individual. F and CR are scale
factor and crossover probability, respectively. J ∈ ½1,D� is a
uniformly distributed random number. f ð⋅Þ is the fitness
function.

Due to the powerful optimization performance, DE has
been successfully applied in many of fields [22–24]. Inspired
by these successful applications, a novel DE algorithm is
designed for optimization the allocation of WPT time in this
work. Next, the detailed designs of this algorithmwill be given.

4.2.1. Hybrid mutation operator. In the DE algorithm com-
munity, there are many of mutation operators [21]. Some
of them have outstanding global searching capability, which
is conducive to find the global optimal solution, say, DE/

rand/1, as formula (8). Others of them have excellent local
searching capability and can speed up the convergence of
the algorithm, say, DE/best/1, as formula (10)

Vg
i = Xg

best + F ⋅ Xg
r1 − Xg

r2
� �

, ð10Þ

where best is the index of the optimal individual in the gth
generation. The other parameters are same as formula (8).

For a given real-world optimization problem, it is not
easy to choose the best one among different mutation oper-
ators. On the other hand, in order to improve quality of WP-
MEC service, finding the optimal WPT time should not only
meet the requirement of high precision but also enhance the
real-time performance as much as possible.

Based on the above analysis, a new hybrid mutation
operator is designed. The main idea of the hybrid mutation
operator includes three key points.

(i) A pool of mutation operators pool is constructed,
which consists of a mutation operator with out-
standing global search performance (DE/rand/1)
and a mutation operator with a fast convergence rate
(DE/best/1)

(ii) A random number q is generated in each iteration
according to a uniform distribution u. The probabil-
ity density function FðxÞ of u is formula (11), where
a is the lower bound, and b is the upper bound,
respectively

F xð Þ =
1

b − a
, a ≤ x ≤ b,

0, otherwise

8<
: ð11Þ

(iii) A fixed threshold θ is set in the algorithm’s initial
stage. In each generation, if q is greater than θ, the
algorithm selects DE/rand/1 from pool to perform
mutation. Otherwise, the DE/best/1 is selected from
pool for mutation operation

The hybrid mutation operator can effectively improve
the global search ability and accelerate the convergence rate
of DE when solving the WPT time allocation problem. The
detailed pseudocode of the hybrid mutation is given in
Algorithm 1.

4.2.2. Perturbation-based binomial crossover. The crossover
operator plays a crucial role in DE algorithm. Its major con-
tribution is to improve the DE’s exploitation performance.
The binomial crossover operator, formula (9), has the char-
acteristics of simple structure and easy implementation.
However, there is still room for performance improvement,
particularly when it comes to real-world applications. To
further improve the exploitation performance of DE and
enhance the efficiency of searching optimal WPT time in
WP-MEC system, a perturbation-based binomial crossover

Outer layer
optimizing WPT time

Inner layer
optimizing offloading

decision

Figure 2: Nested optimization.
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as formula (12) is designed.

Ug
i,j =

Vg
i,j +Λ∗

1 −1ð ÞIrnd , if rand < CR,

Xg
i,j +Λ∗

2 −1ð ÞIrnd , otherwise,

8<
: ð12Þ

where Λ1 and Λ2 are two fixed control parameters and the
Irnd is a random integer. The other notations are same as for-
mula (9).

The main idea behind the perturbation-based binomial
crossover is to improve the exploitation of the space around
the target and mutant individuals through a random pertur-
bation. In the actual implementation process, the perturba-
tion range can be controlled by adjusting the sizes of Λ1
and Λ2. The values of Λ1 and Λ2 can be same or different
according to the actual needs.

4.2.3. Micro-population for DE. The population size has a
significant effect on the overall performance of DE algorithm
[25]. When the population size is large, DE requires high
computation cost and occupies a large amount of memory
[26]. This makes DE difficult to apply to some application
scenarios with small memory and high real-time require-
ments. Therefore, micro-population (no more than 10 indi-

viduals)-based DE algorithms have received high attention
in recent years [27–29]. Furthermore, micro-population
can meet the two goals of high efficiency and low computa-
tion cost of WP-MEC network optimization.

In view of the above analysis, we design a micro-
population scheme for the DE algorithm to solve the WPT
time allocation problem in this work. In order to obtain
the optimal population size, we used several groups of pop-
ulation size less than 10 for pre-experiment (to save space,
the pre-experiment process is omitted). Through verification
and analysis, we found that DE has a higher probability of
obtaining a better WPT time allocation when the population
size is set to 6. Therefore, we set the population size of the
proposed DE algorithm to 6.

Integrating the three aspects of design, we construct the
solving framework for optimization problem (6), which is
termed as DEWPT. In DEWPT, GAP-CS is used to solve
the inner optimization problem. The pseudocode structure
of DEWPT is described as Algorithm 2.

5. Simulation Results

In this section, we provide extensive simulations to evaluate
the performance of our proposed scheme. The Reyleigh

Input:pool, θ and the target individual
Output: mutation individual
1: generate a random number q by the uniform distribution u with the probability density function FðxÞ
2: ifq < θthen
3: select DE/rand/1 from pool, perform mutation to produce the mutation individual
4: else
5: select DE/best/1 from pool, perform mutation to produce the mutation individual
6: return mutation individual

Algorithm 1: Hybrid mutation operator.

Input: the set of users U, the set of MEC servers S. The set of WP-MEC parameters para. The algorithm parameters: NP, F, CR,
maxIter,Λ1 =Λ2 = 0:1.
Output: the optimal CCR∗
1: generate the initial population pop in a random way.
2: execute GAP-CS with para and each individual of pop to produce the decision
matrix x.
3: iter = 1
4: whileiter ≤maxIterdo
5: fori = 1 to NP
6: select r1, r2, r3 from ½1,NP�/i in random way
7: execute the hybrid mutation operator to produce vi via Algorithm 1
8: execute the perturbation-based binomial crossover to produce ui by formula (12)
9: execute GAP-CS with ui and para to produce decision matrix x and resource allocation t l , f , to
10: calculate CCR by formula (6)
11: execute selection operator, and update the optimal CCR∗
12: return the optimal CCR∗

Algorithm 2: DEWPT.

7Wireless Communications and Mobile Computing



fading channel model is used in all simulations. Moreover,
Table 2 gives the configuration of other parameters. Noted
that each plotted point in all figures represents the average
results of 20 group of user tasks.

Furthermore, the following three schemes are used as
benchmark schemes for comparison.

(i) CoCoRaM: CoCoRaM is an approximation algo-
rithm proposed in [16], which optimizes the WPT
time by constructing a candidate set of WPT times,
and the optimal offloading decision is got by GAP-
CS

(ii) LCO: the WPT time is set to the time frame T . All
users either perform their tasks locally or discard
them and cannot offload them

(iii) COO: all users cannot perform tasks locally and
either offload them to a selected edge device or drop
them. The optimal WPT time and the optimal off-
loading decision are got by CoCoRaM and GAP-
CS, respectively

5.1. The Impact of WP-MEC Size. In this group of simula-
tions, we will investigate and compare the impact of network
size on the optimization performance of four schemes by
varying the number of users and MEC servers.

First, we validate the impact of changes in the number of
users. Therefore, in this simulation, the number of users is
increased from 10 to 90 with the step size of 10, and the
number of edge servers is fixed to 5. Figure 4 gives the results
of this simulation.

Figure 4(a) shows the comparison of CCR achieved by
DEWPT, CoCoRaM, COO, and LCO. From the experimen-
tal results, it can be found that the CCR obtained by each
scheme decreases with the increase of the number of users.

The CCR achieved by DEWPT is the highest among the four
schemes compared. Figure 4(b) gives the gains of DEWPT to
CoCoRaM. It shows that the CCR gains of DEWPT to
CoCoRaM grow with increasing in the number of users.
The maximal gain is achieved when the number of users is
70, which is near 3.5%. When the number of users exceeds
70, the CCR gain decreases, but still achieves a gain of at
least 2%. The computation capacity of WP-MEC is limited
because the number of MEC server is fixed. When the num-
ber of users reaches 70, the computation load of offloading
users approaches the maximum computation capacity of
WP-MEC, and so, the CCR can no longer grow. Therefore,
the CCR decreases when the number of users exceeds 70.
However, DEWPT outperforms its main competitor,
CoCoRaM, in all cases. This shows that DEWPT can find
the better WPT time because the same method is used for
the inner layer optimization. In addition, Figures 4(c) and
4(d) show the CCR gains of DEWPT to CCO and LCO,
respectively. Clearly, DEWPT achieved significant gains to
CCO and LCO, with maximum gains approaching 35%
and 28%, respectively.

Next, we validate the impact of changes in the number of
MEC servers. Hence, in this simulation, the number of edge
servers is increased from 4 to 9 with the step size of 1, and
the number of users is fixed to 50. Figure 5 gives the results
of this simulation.

Figure 5(a) shows that the CCR achieved by DEWPT,
CoCoRaM, and COO keep growing with increasing in the
number of edge servers. Among them, DEWPT outperforms
CoCoRaM and COO. The CCR achieved by LCO does not
change. This is expected, as LCO performance is not affected
by changing the number of edge servers. Figures 5(b)–5(d)
show the gains of DEWPT to the other three competitors,
respectively. Clearly, DEWPT has significant positive gains
for all three competitors. Likewise, DEWPT is superior to
the major competitor CoCoRaM in all cases. It shows that
DEWPT can find the better WPT time.

Table 2: Parameter setting.

Parameters Notations Value

The duration of time frame T 0.3 s

Transmission bandwidth W 1.45MHz

The ET power of broadcasting RF energy P 3w

The energy harvesting coefficient μ 0.51

The upper of user CPU power fmax 0.5GHz

The computation energy efficiency coefficient ki 10-28

The CPU cycles of user processing one bit data (in cycles/bit) ϕi 800

The transmission power of user offloading pik 0.12w

The scope of user task size (in kb) Di [50,150]

The scale factor of DE F 0.5

The crossover probability of DE CR 0.5

Population size of DE NP 6

8 Wireless Communications and Mobile Computing



Based on these simulation results and analysis, it can be
concluded that DEWPT has a better optimization perfor-
mance than CoCoRaM, COO, and LCO.

5.2. Complexity Comparison. In this simulation, we will com-
pare the computation complexity of DEWPT and its major
competitor, CoCoRaM. For this purpose, we conduct the sim-
ulation under three user configurations (70 users, 80 users, and
90 users) and 5 edge servers. Figure 6 gives the results. The
orange, purple, and green curves show the changes in CCR
obtained by DEWPT with evolution iterations. The corre-
sponding rectangle represents the CCR obtained by CoCoRaM.

As can be seen from Figure 6, the CCR achieved by
CoCoRaM under three user configurations are 84.63%,
83.01%, and 82.64%, respectively. According to the analysis
of [16], the size of candidate WPT times set of CoCoRaM
is N + Logð1+βÞðT/ΔtÞ + 3. Therefore, the numbers of the
candidate WPT time are higher than 70, 80, and 90 under
three user configurations. That is, the numbers of WPT time
evaluations are greater than 70, 80, and 90, respectively.
However, under three user configurations, the CCR obtained
by DEWPT exceeds that of CoCoRaM at the 4th, 5th, and
5th iteration, respectively. Because the population size of
DEWPT is set to 6, the number of WPT time evaluations
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is the product of the population size and the number of iter-
ations, i.e., 24, 30 and 30, respectively. Obviously, DEWPT is
much lower than CoCoRaM in terms of the number of WPT
time evaluations, only about 1/3.

Thus, it can be concluded that DEWPT outperforms
CoCoRaM in terms of the complexity.

5.3. Comparison with Other DE Algorithm. In this simulation,
we will compare the DEWPT with the two DE algorithms
which are termed as DE1 and DE2. The population size of
three algorithms is all set to the same small population, i.e.,
NP = 6. In addition, the number of edge servers is set to 5,
and the number of users increases from 20 to 80 with the step
size of 10. DE1 only uses the mutation operator DE/rand/1
while DE2 only uses the mutation DE/best/1. At the same
time, the traditional binomial crossover operator is used in
them. Figure 7 gives the results of this simulation.

From Figure 7, it can be seen that DEWPT achieved a
better CCR than DE1 and DE2 under different user num-
bers. The maximal gain is about 1% under different user
numbers, because the optimal decision matrix can theoreti-
cally be obtained through the GAP-CS based on dynamic
programming. Therefore, although the gain is small, it has
shown that DEWPT can find a better WPT time than the
other two DE algorithms. Hence, this proves that the hybrid
mutation operator and the perturbation-based binomial
crossover improve the optimization performance of
DEWPT, and DEWPT is a better optimization algorithm
for WPT time.

6. Conclusions

In this work, we studied the time allocation problem for
WPT in WP-MEC network. A novel differential evolution-
based optimization algorithm for WPT is developed, in
which the hybrid mutation operator, perturbation-based
binomial crossover operator, and the micro-population were
designed to improve the algorithm’s optimization perfor-
mance. Then, the overall solving framework DEWPT for
the maximization problem of computation completion ratio
was constructed by integrating the algorithm. Finally, exten-
sive numerical simulations showed that DEWPT can achieve
a higher computation completion ratio than the other three
benchmark schemes. This proved that the proposed algo-
rithm can find the better WPT time, and it is an effective
optimization scheme of WPT time for WP-MEC network.

A promising future research work is to design a priority-
based user offloading order and jointly optimize WPT time
allocation and offloading decision. Moreover, extending the
work of this paper to more complex scenarios, such as intel-
ligent reflecting surface-aided WP-MEC and nonorthogonal
multiple access-assisted WP-MEC systems, is also a work
worth studying.

Data Availability

The result data used to support the findings of this work are
included within the article.
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