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This article studies a mobile edge computing (MEC) with one edge node (EN), where multiple unmanned aerial vehicles (UAVs)
act as users which have some heavy tasks. As the users generally have limitations in both calculating and power supply, the EN can
help calculate the tasks and meanwhile supply the power to the users through energy harvesting. We optimize the system by
proposing a joint strategy to unpacking and energy harvesting. Specifically, a deep reinforcement learning (DRL) algorithm is
implemented to provide a solution to the unpacking, while several analytical solutions are given to the power allocation of
energy harvesting among multiple users. In particular, criterion I is the equivalent power allocation, criterion II is designed
through equal data rate, while criterion III is based on the equivalent transmission delay. We finally give some results to verify
the joint strategy for the UAV-aided multiuser MEC system with energy harvesting.

1. Introduction

In recent years, wireless communication has been put into
many efforts from the researchers of both academy and
industry [1, 2], which inspires a lot of practical applications,
such as internet of things and video monitoring [3]. Among
these applications, a key feature is that massive calculating is
involved due to the massive number of accessing nodes [4].
To suppress the massive calculating, cloud computing has
been proposed which assisted the task calculating through
wireless transmission [5, 6]. A major limitation is that the
latency and power consumption (PoC) become prohibitively
high in a poor channel state, which limits the development
and application of cloud computing severely.

To resolve the above disadvantages of cloud computing,
mobile edge computing (MEC) has been proposed to install
the calculating resources at the edge node (ENs) of the network
[7–9]. In this way, the users can unpack the tasks to the nearby

EN through wireless transmission, which leads to a decreased
delay and PoC compared to the cloud computing. A key
design in the MEC system is the unpacking scale [10, 11],
which gives the number of scale of tasks to be calculated at
the EN. The fundamental principle of unpacking is to jointly
utilize the communication and calculating resources, through
achieving a fine trade-off between the calculating and wireless
transmission. Moreover, some advanced wireless techniques
have been proposed to decrease the delay and PoC in the cal-
culating and transmission [12, 13].

Another new technique to assist the calculating and
communication in IoT networks is the deployment of
unmanned aerial vehicles (UAVs), which are easy to be used
and provide flexible ability. Moreover, the price of UAV is
becoming cheaper and cheaper, which inspires a lot of appli-
cations in practice [14, 15]. For the MEC system, the UAVs
can rescue the data calculating with higher priority through
some intelligent path routing and scheduling, which exploits
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the incremental system resources due to the usage of UAVs.
The integration of UAVs into MEC systems has attracted
much attention from the researchers of academy and indus-
try, which becomes the motivation of this article.

Motivated by the above literature review, this article stud-
ies a MEC system with one EN, where multiple unmanned
aerial vehicles (UAVs) act as users which have some heavy
tasks. As the users generally have limitations in both calculat-
ing and power supply, the EN can help calculate the tasks and
meanwhile supply the power to the users through energy
harvesting. We optimize the system by proposing a joint
strategy to unpacking and energy harvesting. Specifically, a
deep reinforcement learning (DRL) algorithm is implemented
to provide a solution to the unpacking, while several analytical
solutions are given to the power allocation of energy harvest-
ing among multiple users. In particular, criterion I is the
equivalent power allocation, criterion II is designed through
equal data rate, while criterion III is based on the equivalent
transmission delay. We finally give some results to verify the
joint strategy for the UAV-aided multiuser MEC system with
energy harvesting.

2. System Model

In this paper, we consider an unloading system model in
Figure 1 which has an edge node (EN) (note that the notation
of “CAP” is used in some literature, while the notation “EN” is
used in other literature. Both stand for the same meaning, and
these two notations can be used interchangeably) surrounded
by N unmanned aerial vehicles (UAVs). Specifically, the EN
has an energy transmitter and a server which can provide cal-
culating. The EN is capable of providing charging services to
the UAVs, and each UAV is equipped with a limited battery
capable of wireless charging. Each UAV has a calculating task
ln. Due to the UAVs’ limited calculating power, each UAV
unloads the calculating task to the EN in order to reduce the
calculating time. The EN ensures that the UAV is always sup-
plied with electricity, so the UAVs in this system unload tasks
without considering power consumption. We will introduce
the local calculating model and unloading calculating model
in the next parts.

2.1. Local Calculating Model. The local calculating delay of
the UAVn is [16]

Dn
local =

ln 1 − βn
ENð Þc

f n
, ð1Þ

where ln is the size of the task. β
n
EN is the unloading ratio from

UAVn to the EN. Moreover, c is the CPU cycles for executing
one bit, and f n is the local calculating ability. Because all UAVs
calculate their tasks in parallel, we use the maximum value of
local calculating as the local delay of the whole system. So, the
local calculating delay of the whole system is

Dlocal = max D1
local,D2

local,⋯,DN
local

� �
: ð2Þ

2.2. Unloading Calculating Model. In this paper,UAVn will be
charged by EN, and the charging process from EN toUAVn is

Hn = ηPn
charge h

n
ENj j2αnΓ, ð3Þ

where notations η denotes the charging factor, Pn
charge is the

charged power of EN, αn is the charging time, and Γ denotes
the span of each time slot.

From (3), the transmission power at the UAVn is

Pn
tran =

Hn

1 − αnð ÞΓ : ð4Þ

The transmission rate between the UAVn and the EN is

rntran =Wtotal log2 1 + Pn
tran h

n
ENj j2

σ2
EN

 !

, ð5Þ

where Wtotal is the total bandwidth of the system. hnEN ~C

N ð0, δENÞ is the channel parameter from UAVn to the EN.
σ2
EN is the variance of the additive white Gaussian noise at

the EN. The transmission delay of the UAVn is

Dn
tran =

lnβ
n
EN

rntran
: ð6Þ

The calculating delay at the UAVn is

Dn
com = lnβ

n
ENc

f EN
, ð7Þ

where f EN is the calculating ability at the EN. Further, the
transmission delay of all UAVs is

Dtran = max D1
tran,D2

tran,⋯,DN
tran

� �
: ð8Þ

The calculating delay of all UAVs is

Dcom = max D1
com,D2

com,⋯,DN
com

� �
: ð9Þ

EN

UAV
N

UAV1

UAV
n

Figure 1: System model of multiuser MEC system with energy
harvesting.
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From (8) and (9), the unloading calculating of the whole
system is

Dtotal = max Dtran,Dcomf g: ð10Þ

Therefore, the system target in this considered MEC net-
work is

min
βn ,Pnchargef g

Φ =Dtotal

s:t: C1 : β
n
EN ∈ 0, 1½ �

C2 : 〠
N

n=1
Pn
charge = Ptotal

charge,

ð11Þ
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Figure 2: The convergence of method 1.
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Figure 3: The convergence of method 2.
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where Ptotal
charge is the total charged power of EN. In the next

section, we will describe how we optimize the system target
in detail.

3. System Optimization

In this section, we demonstrate our optimization scheme for
the considered system target. Specifically, we first utilize deep
Q-network (DQN) algorithm to obtain the task unloading
strategy, and then, we proposed three methods to allocate the

charged power for UAVs in the considered system. The details
of our optimization scheme are expressed as follows.

3.1. Scheme on the Task Unloading. Due to the complexity of
wireless link in the system, it is hard to dynamically unload
the task of UAVs by traditional method. Therefore, we exploit
DQN algorithm to obtain the task unloading strategy. Differ-
ent from the Q-learning algorithm, DQN has an experience
pool and two neural networks that include the evaluation
network and the target network, to interact with the training
environment and break the training data correlation.

Method 3
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Figure 4: The convergence of method 3.
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Figure 5: System delay of method 1 when the value of Wtotal ranges from 30 to 70.
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Moreover, we use the Markov decision process (MDP) to
model the consider task unloading issue. In particular, MDP
generally consists of the state set S = ½s1, s2,⋯,sN �, the action
set A = ½a1, a2,⋯,a2N �, and reward function R = ½0,−1, 1�. The
training process can be represented as follows: the DQN agent
first initializes the system state set S, and then, it selects an
action command under the current state. After the DQN agent
executes the selected action command, the system state set will
be updated. Further, the DQN agent will obtain a feedback
according to the reward function R. Then, the DQN agent will

put the previous state, the updated state, the selected action
under the previous state, and the according feedback into the
experience pool. When the DQN agent finishes the above pro-
cess, it will obtain a state-action value QðS, A ; ωÞ that ω repre-
sents the network matrix of evaluation network. Then, the
evaluation network will be trained by the loss function, which is

X = Y −Q S, A ; ωð Þð Þ2, ð12Þ

where Y denotes the function of target network, which is
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Figure 6: System delay of method 2 when the value of Wtotal ranges from 30 to 70.
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Figure 7: System delay of method 3 when the value of Wtotal ranges from 30 to 70.
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Y = R + φ arg max
A−

Q S−, A− ; ω∗ð Þ, ð13Þ

where φ represents a discount element and ω∗ denotes the net-
work matrix of the target network. It is notable that the struc-
tures of evaluation network and the target network are the
same. However, different from the target network, the evalua-
tion network will be trained in every round, and its training
process can be denoted as

ω− = ω − ξ
∂X
∂ω

, ð14Þ

where ξ is the learning rate of the evaluation network.

3.2. Methods on the Charged Power Allocation. In this part,
we will describe three methods for allocating the charged
power from EN to UAVn. Specifically, we exploit equal-
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Figure 8: System delay versus the number of UAVs: method 1.
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Figure 9: System delay versus the number of UAVs: method 2.
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charge-power allocation method, equal-transmit-rate alloca-
tion method, and equal-charge-energy allocation.

(1) Equal-charge-power allocation method

Firstly, we allocate the charge power to UAVn in a tradi-
tional way, so that each UAVn can obtain the same charge
power. Moreover, we define this method as equal-charge-
power allocation method or method 1, and it can be denoted as

Pn
charge =

Ptotal
charge
N

, ð15Þ

where notation Pn
charge denotes the allocated charge power of

UAVn.

(2) Equal-transmission-rate allocation method

Secondly, we allocate the charge power to UAVn by a
method that ensure eachUAVn can obtain the same transmis-
sion rate according to (5). Moreover, we define this method as
equal-transmission-rate allocation method or method 2. This
method can be represented as

r1trans = r2trans =⋯ = rNtrans: ð16Þ

From (16) and (5), we can obtain

Wtotal log2 1 + P1
tran h1EN
�� ��2

σ2
EN

 !

=Wtotal log2 1 + P2
tran h2EN
�� ��2

σ2EN

 !

=⋯ =Wtotal log2 1 + PN
tran hNEN
�� ��2

σ2
EN

 !

:

ð17Þ

By removing the common item of Wtotal, we can have

log2 1 + P1
tran h1EN
�� ��2

σ2EN

 !

= log2 1 + P2
tran h2EN
�� ��2

σ2EN

 !

=⋯ = log2 1 + PN
tran hNEN
�� ��2

σ2
EN

 !

:

ð18Þ

From (4), we can obtain

log2 1 + H1/ 1 − α1ð ÞΓ h1EN
�� ��2

σ2
EN

 !

= log2 1 + H2/ 1 − α2ð ÞΓ h2EN
�� ��2

σ2EN

 !

=⋯ = log2 1 + HN / 1 − αNð ÞΓ hNEN
�� ��2

σ2EN

 !

,

ð19Þ

1 + H1/ 1 − α1ð ÞΓ h1EN
�� ��2

σ2EN
= 1 + H2/ 1 − α2ð ÞΓ h2EN

�� ��2

σ2EN

=⋯ = 1 + HN / 1 − αNð ÞΓ hNEN
�� ��2

σ2
EN

,

ð20Þ

H1/ 1 − α1ð ÞΓ h1EN
�� ��2

σ2EN
= H2/ 1 − α2ð ÞΓ h2EN

�� ��2

σ2
EN

=⋯ = HN / 1 − αNð ÞΓ hNEN
�� ��2

σ2EN
,

ð21Þ
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Figure 10: System delay versus the number of UAVs: method 3.
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H1
1 − α1ð ÞΓ h1EN

�� ��2 = H2
1 − α2ð ÞΓ h2EN

�� ��2 =⋯ = HN

1 − αNð ÞΓ hNEN
�� ��2:

ð22Þ

Moreover, from (3) and (22), we can obtain

ηP1
charge h

1
EN

�� ��2α1Γ
1 − α1ð ÞΓ h1EN

�� ��2 =
ηP2

charge h
2
EN

�� ��2α2Γ
1 − α2ð ÞΓ h2EN

�� ��2

=⋯ =
ηPN

charge h
N
EN

�� ��2αNΓ
1 − αNð ÞΓ hNEN

�� ��2:

ð23Þ

After removing the comment term of Γ, we can have

ηP1
charge h

1
EN

�� ��2α1
1 − α1ð Þ h1EN

�� ��2 =
ηP2

charge h
2
EN

�� ��2α2
1 − α2ð Þ h2EN

�� ��2

=⋯ =
ηPN

charge h
N
EN

�� ��2αN
1 − αNð Þ hNEN

�� ��2:

ð24Þ

Then, by further removing the comment term of η, we can
have

P1
charge h

1
EN

�� ��2α1
1 − α1ð Þ h1EN

�� ��2 =
P2
charge h

2
EN

�� ��2α2
1 − α2ð Þ h2EN

�� ��2

=⋯ =
PN
charge h

N
EN

�� ��2αN
1 − αNð Þ hNEN

�� ��2,
ð25Þ

P1
charge h

1
EN

�� ��2α1
1 − α1ð Þ =

P2
charge h

2
EN

�� ��2α2
1 − α2ð Þ =⋯ =

PN
charge h

N
EN

�� ��2αN
1 − αNð Þ :

ð26Þ

For simplicity, we assume the charging time of each UAV
is the same, which can be written as

α1 = α2 =⋯ = αN ,
1 − α1ð Þ = 1 − α2ð Þ =⋯ = 1 − αNð Þ:

ð27Þ

Therefore, from (26), we can obtain

P1
charge h

1
EN

�� ��2

1 − α1ð Þ =
P2
charge h

2
EN

�� ��2

1 − α2ð Þ =⋯ =
PN
charge h

N
EN

�� ��2

1 − αNð Þ : ð28Þ

By removing the common item of ð1 − αnÞ for n ∈ ½1,N�,
we can have

P1
charge h

1
EN

�� ��2 = P2
charge h

2
EN

�� ��2 =⋯ = PN
charge h

N
EN

�� ��2: ð29Þ

From this equation, we have

P1
charge : P

2
charge : ⋯ : PN

charge = h1EN
�� ��2 : h2EN

�� ��2 : ⋯

: hNEN
�� ��2: ð30Þ

Then, we can further obtain

Pn
charge

P1
charge + P2

charge+⋯+PN
charge

= hnENj j2
h1EN
�� ��2 + h2EN

�� ��2+⋯+ hNEN
�� ��2

:

ð31Þ

By using the relationship of P1
charge + P2

charge +⋯ + PN
charge

= Ptotal
charge, we can have

Pn
charge

Ptotal
charge

= hnENj j2
h1EN
�� ��2 + h2EN

�� ��2+⋯+ hNEN
�� ��2

: ð32Þ

From this equation, we can have the power charge alloca-
tion result of method 2 as

Pn
charge =

hnENj j2

h1EN
�� ��2 + h2EN

�� ��2+⋯+ hNEN
�� ��2

Ptotal
charge: ð33Þ

(3) Equal-charge-energy allocation method

Thirdly, we allocate the charge power to UAVn by a
method that ensure each UAVn can be charged same energy
according to (3). Moreover, we define this method as equal-
charge-energy allocation method or method 3, which can be
represented as

H1 =H2 =⋯ =HN : ð34Þ

From (3), we can obtain

ηP1
charge h

1
EN

�� ��2α1Γ = ηP2
charge h

2
EN

�� ��2α2Γ =⋯ = ηPN
charge h

N
EN

�� ��2αNΓ:

ð35Þ

By removing the common item of η, we can have

P1
charge h

1
EN

�� ��2α1Γ = P2
charge h

2
EN

�� ��2α2Γ =⋯ = PN
charge h

N
EN

�� ��2αNΓ:

ð36Þ

Then, by removing the common item of Γ, we can have

P1
charge h

1
EN

�� ��2α1 = P2
charge h

2
EN

�� ��2α2 =⋯ = PN
charge h

N
EN

�� ��2αN :

ð37Þ

Since we assume that the charging time of each UAV is
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the same, we can further obtain

P1
charge h

1
EN

�� ��2 = P2
charge h

2
EN

�� ��2 =⋯ = PN
charge h

N
EN

�� ��2,

P1
charge : P

2
charge : ⋯ : PN

charge = h1EN
�� ��2 : h2EN

�� ��2 : ⋯ : hNEN
�� ��2,

ð38Þ

Then, we can further obtain

Pn
charge

P1
charge + P2

charge+⋯+PN
charge

= hnENj j2
h1EN
�� ��2 + h2EN

�� ��2+⋯+ hNEN
�� ��2

:

ð39Þ

By using the relationship of P1
charge + P2

charge +⋯ +
PN
charge = Ptotal

charge, we can have

Pn
charge

Ptotal
charge

= hnENj j2
h1EN
�� ��2 + h2EN

�� ��2+⋯+ hNEN
�� ��2

: ð40Þ

From this equation, we can have the power charge result
of method 3 as

Pn
charge =

hnENj j2
h1EN
�� ��2 + h2EN

�� ��2+⋯+ hNEN
�� ��2

Ptotal
charge: ð41Þ

In the next section, we will perform some simulations to
demonstrate the effectiveness of our proposed scheme on
task offloading and charged power allocation.

4. Simulation

In this section, we perform some simulations to demonstrate
our proposed scheme on task offloading and charged power
allocation. Specifically, the channel in the considered MEC
network adopts the Gaussian channel, and the average chan-
nel gain of the wireless link from UAVs to EN is set to 1. The
variance of AWGN at the EN is set 0.1. Moreover, the num-
ber of UAVs is set to 2, and the task size of UAVs is set to
50MB. We set the calculating ability of UAVs to 1:3 × 102
cycle/s, while the calculating ability of EN is set to 1 × 107
cycle/s. The total wireless bandwidth of EN is set to
50MHz, and the total charged power of EN is set to 20W,
while the charging time of UAV is set 0.5.

Figure 2 shows the convergence of the proposed strategy
with method 1. We can find that the system delay declines
rapidly and converges after 15 epochs. For example, the sys-
tem delay of method 1 decreases from 35 to less than 5. Sim-
ilarly, Figures 3 and 4 show the convergence of the proposed
strategy with methods 2 and 3, respectively. We can find that
the system delay converges after 15 epochs and the value of
delay eventually stabilised below five. These results demon-
strate that the proposed DRL optimization strategy can
effectively reduce the system delay and find the minimum
value of the system delay.

Figure 5 shows the performance of the proposed strategy
with method 1, where the value of Wtotal ranges from 30 to
70. When the task size of each UAV is 100M or 50M, the
system delay decreases as Wtotal increases. This is because
the increase in total bandwidth speeds up the transmission
from the UAV to the EN and reduces system delay effec-
tively. For example, the system delay at Wtotal = 70 is lower
than the delay at Wtotal = 30. Similarly, Figures 6 and 7 show
the performance of the proposed strategy with methods 2
and 3 when Wtotal ranges from 30 to 70, respectively. We
can find that system delay decreases when the total band-
width is increasing. These results demonstrate the effective-
ness of proposed optimization strategy.

Figure 8 shows the performance of the proposed strategy
with method 1, where the number of UAV ranges from 1 to
5. When the task size of each UAV is 100M or 50M, system
delay increases as the number of UAVs increases. This i
because the increase in the number of UAVs increases sys-
tem burden and calculating delay. For example, the system
delay when n = 2 is lower than the delay when n = 5. Simi-
larly, Figures 9 and 10 show the performance of the pro-
posed strategy with methods 2 and 3 when the number of
UAVs ranges from 1 to 5, respectively. We can find that sys-
tem delay increases when the number of UAVs is increasing.
These results demonstrate that the proposed strategy can
find the lowest system delay when the number of UAV
ranges from 1 to 5.

5. Conclusions

This article studied a MEC system with one EN, where mul-
tiple unmanned aerial vehicles (UAVs) acted as users which
had some heavy tasks. As the users generally had limitations
in both calculating and power supply, the EN could help
calculate the tasks and meanwhile supply the power to the
users through energy harvesting. We optimized the system
by proposing a joint strategy to unpacking and energy
harvesting. Specifically, a deep reinforcement learning algo-
rithm was implemented to provide a solution to the unpack-
ing, while several analytical solutions were given to the
power allocation of energy harvesting among multiple users.
In particular, criterion I was the equivalent power alloca-
tion, criterion II was designed through equal data rate, while
criterion III was based on the equivalent transmission delay.
We finally gave some results to verify the joint strategy for the
UAV-aided multiuser MEC system with energy harvesting.

Data Availability

The data can be obtained through email to the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

9Wireless Communications and Mobile Computing



Acknowledgments

This work was supported by the Key-Area Research and
Development Program of Guangdong Province (No.
2018B010124001).

References

[1] J. Xia, F. Zhou, X. Lai et al., “Cache aided decode-and-forward
relaying networks: from the spatial view,” Wireless Communi-
cations and Mobile Computing, vol. 2018, 9 pages, 2018.

[2] B. Wang, F. Gao, S. Jin, H. Lin, and G. Y. Li, “Spatial- and
frequency-wideband effects in millimeter-wave massive
MIMO systems,” IEEE Transactions on Signal Processing,
vol. 66, no. 13, pp. 3393–3406, 2018.

[3] X. Hu, C. Zhong, Y. Zhang, X. Chen, and Z. Zhang, “Location
information aided multiple intelligent reflecting surface sys-
tems,” IEEE Transactions on Communications, vol. 68,
no. 12, pp. 7948–7962, 2020.

[4] H. Yan, L. Hu, X. Xiang, Z. Liu, and X. Yuan, “PPCL: Privacy-
preserving collaborative learning for mitigating indirect infor-
mation leakage,” Information Sciences, vol. 548, pp. 423–437,
2021.

[5] Z. Su, F. Biennier, Z. Lv, Y. Peng, H. Song, and J. Miao,
“Toward architectural and protocol-level foundation for end-
to-end trustworthiness in cloud/fog computing,” IEEE Trans-
actions on Big Data, vol. 8, no. 1, pp. 35–47, 2022.

[6] M. T. Islam, S. Karunasekera, and R. Buyya, “Performance and
cost-efficient spark job scheduling based on deep reinforce-
ment learning in cloud computing environments,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33,
no. 7, pp. 1695–1710, 2022.

[7] X. Lai, L. Fan, X. Lei, Y. Deng, G. K. Karagiannidis, and
A. Nallanathan, “Secure mobile edge computing networks in
the presence of multiple eavesdroppers,” IEEE Transactions
on Communications, vol. 70, no. 1, pp. 500–513, 2022.

[8] J. Zhao, X. Sun, Q. Li, and X. Ma, “Edge caching and compu-
tation management for real-time internet of vehicles: an online
and distributed approach,” IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 4, pp. 2183–2197, 2021.

[9] L. Chen, R. Zhao, K. He, Z. Zhao, and L. Fan, “Intelligent ubiq-
uitous computing for future UAV-enabled MEC network sys-
tems,” Cluster Computing, vol. 2021, no. 1, pp. 1–11, 2021.

[10] F. Zhou and R. Q. Hu, “Computation efficiency maximization
in wireless-powered mobile edge computing networks,” IEEE
Transactions on Wireless Communications, vol. 19, no. 5,
pp. 3170–3184, 2020.

[11] F. Wang, H. Xing, and J. Xu, “Real-time resource allocation for
wireless powered multiuser mobile edge computing with
energy and task causality,” IEEE Transactions on Communica-
tions, vol. 68, no. 11, pp. 7140–7155, 2020.

[12] W. Zhou, D. Deng, J. Xia, and Z. Shao, “The precoder design
with covariance feedback for simultaneous information and
energy transmission systems,” Wireless Communications and
Mobile Computing, vol. 2018, 17 pages, 2018.

[13] Q. Tao, J. Wang, and C. Zhong, “Performance analysis of intel-
ligent reflecting surface aided communication systems,” IEEE
Communications Letters, vol. 24, no. 11, pp. 2464–2468, 2020.

[14] S. Arzykulov, A. Celik, G. Nauryzbayev, and A. M. Eltawil,
“UAV-assisted cooperative & cognitive NOMA: deployment,
clustering, and resource allocation,” IEEE Transactions on
Cognitive Communications and Networking, vol. 8, no. 1,
pp. 263–281, 2022.

[15] R. Akbar, S. Prager, A. R. Silva, M. Moghaddam, and
D. Entekhabi, “Wireless sensor network informed UAV path
planning for soil moisture mapping,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022.

[16] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offload-
ing and resource allocation for cloud assisted mobile edge
computing in vehicular networks,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 8, pp. 7944–7956, 2019.

10 Wireless Communications and Mobile Computing


	UAV-Aided Multiuser Mobile Edge Computing Networks with Energy Harvesting
	1. Introduction
	2. System Model
	2.1. Local Calculating Model
	2.2. Unloading Calculating Model

	3. System Optimization
	3.1. Scheme on the Task Unloading
	3.2. Methods on the Charged Power Allocation

	4. Simulation
	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

