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With the continuous expansion of the consumer interest rate market today, the risks brought by interest rate fluctuations have had
a huge and far-reaching impact on the financial markets of many countries and it is becoming more and more important to
simulate the pricing of financial options. In the traditional pricing model of financial options, the pricing standard of the
pricing model is generally set as a financial product with random disturbance characteristics and the market price of its
transaction does not follow the arbitrage principle of financial product pricing. It is easy to generate errors and cause risks, and
the accuracy of traditional financial option pricing models is not high, and the simulation time is long, which greatly reduces
the rate of financial transactions. To improve the accuracy of option pricing models, this paper uses computer simulation
technology to simulate the pricing of correlated financial options under stochastic interest rates. From the four aspects of error,
risk parameters, success rate, and simulation time, it is tested to observe the influence of computer simulation technology on
the financial option pricing model. The final results show that by using computer simulation technology, the error of the
correlation financial option pricing model under the random interest rate is reduced, the success rate is improved, the risk
parameter is reduced by 3.03%, and the simulation time is reduced by 0.605 seconds.

1. Introduction

Option price is very important in option terms, and it will
change as the contract terms change. Its speed of change
directly affects the profit and loss of both buyers and sellers.
Simulation of option pricing is an important issue in option
trading. Uncertainty about the cost-effectiveness of options
is a big problem for investors in the process of creating
and developing global stock markets. The cost-effectiveness
of options is one of the most important variables in the
financial market, and its changes will have a great impact
on the entire financial market and even the entire economic
system. Using computer simulation technology to analyze
the stochastic interest rate of the option pricing model can
timely understand the change of the financial option price
and carry out a reasonable price, which can avoid the occur-
rence of financial risks and promote the development of the
financial industry.

Option pricing models are widely used in financial trans-
actions, and more and more scholars are devoted to the

study of option pricing models. Tomovski et al. evaluated
the empirical performance of a calendar option pricing
model with latent variables. The model uses the stochastic
volatility formula, and through experiments, it is found that
the values of the relative risk aversion coefficient and the
intertemporal elasticity of substitution gradually decrease
[1]. Tunaru and Zheng embed the Black-Scholes option
pricing model in a quantum physical environment, resulting
in a function. This function helps determine the existence of
a “financial” state function. It has been experimentally dem-
onstrated that the Black-Scholes model can be captured in a
quantum physical environment, incorporating arbitrage in
other arbitrage-free models in a natural way [2]. Gong and
Zhuang investigated a method for pricing options in the
context of a CEV model using Lie algebra techniques when
model parameters are time dependent. The method can be
easily extended to other alternative-valued models with clear
algebraic systems. Further results can be generated using
various functional forms of the rate and index text structures
[3]. Dubinsky et al. proposed a fuzzy pricing model for the
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volatility (fuzzy volatility) in the binary tree option pricing
model. By using the binomial pricing option model, more
stocks can be obtained, thereby improving the accuracy of
option pricing simulated in financial markets. Accurate
option pricing can allow investors to avoid financial risks
[4]. Orbay et al. researched and developed an option pricing
model that incorporates randomly distributed option
returns, which is used to simulate market option prices to
assess the need for financial market risk. Experiments were
conducted to evaluate the performance of the new model
with experimental numerical simulations, and the final
experimental results proved that the model performed better
than other models [5]. Mollapourasl et al. proposed a
coupled nonlinear volatility and option pricing model,
which produces a leverage effect, that is, stock volatility is
(negatively) correlated with stock returns, which can be seen
as a coupled nonlinear wave alternative pricing model for
Black-Scholes options [6]. Parker proposed a European
option pricing model using an advanced model (MOR)
approach. The European option pricing model based on
the Black-Scholes equation is implemented using the FDM
method, and the MOR model is at least 2 times faster than
the original FDM model in terms of computational cost with
negligible compromise in accuracy [7]. The above studies
have shown the advantages of option pricing models, but
with the emergence of new technologies, options pricing
models also have new problems.

Computer simulation technology is one of the new tech-
nologies applied in most modern operating systems. Many
scholars have done research on computer simulation tech-
nology. Atkinson et al. believed that computer simulation
technology has become an important tool for structural
analysis and design. Under the action of disaster loads such
as explosion, penetration, collapse, or typhoon, the test
method is difficult to analyze and the advantages of com-
puter simulation method such as safety, high efficiency,
and low cost are more obvious in these problems [8]. Straka
et al. developed a new type of electromagnetic wave induc-
tion heating equipment XAEMH-1, using a computer simu-
lation system to dynamically predict and evaluate the
efficiency of this electromagnetic heating process. The effec-
tiveness of the new technology is verified through experi-
ments, and satisfactory results have been achieved [9].
Based on the existing research results and simulation cases,
Niek et al. introduced the application and progress of com-
puter simulation technology in structural seismic design,
seismic evaluation of existing structures, structural response
analysis under extreme external forces, seismic planning or
evaluation of urban large-area systems, etc. [10]. In order
to explore and evaluate the application of computer simula-
tion technology combined with multimedia teaching in CPR
training, Niek et al. conducted the CPR theory and skill tests
on 62 emergency physicians. It was found that computer
simulation technology combined with multimedia teaching
has important application value in cardiopulmonary resusci-
tation training, which can significantly improve team work
ability [11]. Wang et al. has found computer simulations to
be an effective way to pretest proposed systems, programs,
or policies before developing expensive prototypes, field test-

ing, or actual implementation. In a simulation analysis, the
computer tracks the implications and consequences of a pro-
posed system or course of action in detail. Simulations are
more realistic, easier to understand, and more conclusive
than other forms of analysis [12]. In order to shorten the
development cycle of new vehicles and reduce the
manufacturing cost of prototype vehicles, Mrozek and Burc-
zynski proposed a new simulation method to predict the use
of various parts of the car body through computer simula-
tion, which can search for the acceleration and dynamic
response of a specific area and the corresponding energy
density [13]. Song discussed the application and function
of computer simulation technology in medical physics
teaching and analyzed the necessity of computer simulation
technology in medical physics teaching. According to the
characteristics of the relevant teaching content, he
expounded and explained the role and advantages of com-
puter simulation technology through appropriate teaching
examples [14]. Appeal research shows that computer simu-
lation techniques have applications in various industries.

Computer simulation technology is a very active
research field developed in recent years. Computer simula-
tion technology has strong adaptability to solve all kinds
of complex optimization problems. Using computer simu-
lation technology to calculate the pricing of correlated
financial options under random interest rates can avoid
errors to the greatest extent and reduce risks. This paper
applies the computational simulation technology to the
financial option pricing model to increase the accuracy
of option pricing and promote the development of the
financial market.

2. Computer Simulation on the Financial
Option Pricing Model

2.1. Financial Option Pricing Model. Computer simulation
technology can be a flexible tool for financial market partic-
ipants to avoid risk. If the right pricing model can be
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Figure 1: Financial option pricing models.
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combined with computer simulation technology, on the one
hand, the advantages of stock options can be exerted, and on
the other hand, the unstable changes of direct assets and the
risks of market currency transactions can be avoided, allow-
ing participants to complete transactions more smoothly.
Due to the nonstorable characteristics of financial items,
the system dispatch center must strictly control the transac-
tion plan and repeatedly verify the security of the financial
option pricing model system [15–17]. This requires a large
amount of information exchange between the participants
and the option pricing model, which increases the accuracy
of option pricing to a certain extent and avoids risks [18].
Figure 1 presents a typical financial market including option
pricing, which provides a reference for the design of the
financial option market. Participating members can judge
the future trend of financial option pricing based on the
information obtained by computer simulation technology.

The scale of the market has multiple meanings, one
refers to the size of the spot market, and the other refers to
the size of the option market. The system includes a series
of financial derivatives such as futures, options, and forward
contracts, which involve not only financial transactions but
also a large number of speculators and arbitrageurs using
the leverage of options to gain profits in the market, greatly
enhancing the liquidity and activity of the financial market.

2.2. Option Transaction Process. Financial market partici-
pants are mainly e-commerce sellers and e-commerce
buyers, traders (risk), and arbitrageurs (buying multiple
options at once to lock in risk opportunities) [19–21]. First,
market participants send trade orders to the option pricing
model system and instruct managing brokers in financial
transactions to trade for them. Managing brokers submit
trade orders to the authority for product prices, final prices,
types of buy and sell contracts, and strike prices and receive
comments on price order information. When participants
receive all the information from the managing broker, all

orders are bought and sold through the electronic trading
system in accordance with the principle of “money and time
first.” An independent system administrator is responsible
for accounting for system security data, and they need to
ensure that the system is secure and stable [22, 23]. After
the transaction is completed, the electronic trading system
determines the price and volume of the transaction and
feeds back the notification of the transaction option to the
managing broker, which then sends it to the corresponding
client, as shown in Figure 2.

2.3. Computer Simulation System Structure. The option pric-
ing model is studied using a computer simulation system.
The computer simulator must have the following functions:
the system controls the computer to set the program and
transfer data to the infrared driver, collect information in
frames from a special table, and send it to the crawler. The
directional infrared tracker data and location information
are then sent through the panel management applicant’s
job capture card. Frame information is returned to the
desired information memory. It is then sent through the
local channel to the product control computer for storage
display and setting changes. Option information is stored
and transmitted to a computer simulator. A computer simu-
lator is a combination of a control panel and a special panel
[24]. The main function of the control computer is to com-
plete functions such as human-computer interaction, data
storage, and scheduling, including device drivers, human-
computer interaction interfaces, and storage devices, as
shown in Figure 3.

Option pricing models require a computer simulation
program to complete the application and software design.
According to its structural characteristics, the design is
divided into three parts. The first part mainly involves the
design of option pricing and the drafting of device drivers.
The bus of the model is a bus that is not connected to a spe-
cific processor; it can maintain high performance at high
clock frequencies and support plug-and-play and any com-
patible card access system work. The second part is the
design of the compatible card. One end of the compatible
card is connected to the infrared controller through half-
side serial communication, and the other end communicates
with the company’s control computer through the channel
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and control. The computer communicates with the infrared
image via the researcher information bus. Compatible cards
have good electrical insulation properties, thereby improving
the anti-interference and security of the motherboard sys-
tem. The third part realizes human-computer interaction
through the human-computer interaction view processing
the human-computer interaction interface design of the
pop-up simulation program, exploring function definitions,
state information provided by the main control, etc., so as
to realize human-computer interaction [25].

2.4. Recommendation Algorithm

2.4.1. B-S Option Pricing Model. The model uses stochastic
differential equations to describe the market fluctuation
law of derivatives. According to this law, the current value
of the derivative product is determined, which is the differ-
ential equation that the price of any derivative product with-
out dividends paying the underlying asset must satisfy. By
solving this equation, the B-S option pricing model finally
obtains the pricing formulas for European call options and
put options [26].

The value of the underlying asset is similar to the “Brow-
nian motion,” that is, the value of the underlying asset ran-
domly follows the rate of change during the transfer.
Therefore, regardless of the time period, the distribution of
the value of the underlying assets is normal [27]. The vari-
ance of the underlying performance return does not change,
and the background value of the underlying price S follows
the following stochastic process:

dS = μSdt + σSdq: ð1Þ

Among them, μ is the expected return of the underlying
asset and σ is the volatility of the underlying asset price, both
of which are constants. q is a variable of the Wiener process,
that is, dq = ε

ffiffiffiffiffi
dt

p
obeys a standard normal distribution (that

is, a normal distribution with a mean of 0 and a standard
deviation of 1.0).

Let f be the price of the derivative security priced at S;
then, f is some function of S and t. According to equation
(1), we have the following:

df = ∂f
∂S

μS + ∂f
∂t

+ 1
2
∂2 f
∂S2

σ2S2
 !

dt + ∂f
∂t

σSdq: ð2Þ

Discrete equations (1) and (2), respectively, to get the
following:

ΔS = μSΔt + μSΔq, ð3Þ

Δf = ∂f
∂S

μS + ∂f
∂t

+ 1
2
∂2 f
∂S2

σ2S2
 !

Δt + ∂f
∂t

σSΔq: ð4Þ

The portfolio is now constructed as follows: −1 corre-
sponds to derivative securities and +ð∂f /∂SÞ is the underly-
ing asset.

That is, the number of derivative securities sold is 1
and the number of underlying assets purchased is +ð∂f /∂
SÞ. Definition I represents the value of a portfolio of
securities; then,

I = −f + ∂f
∂S

S: ð5Þ

After time Δt, the value of the portfolio changes to ΔI
as follows:

ΔI = −Δf + ∂f
∂S

ΔS: ð6Þ

Substituting equations (3) and (4) into (6) yields the
following:

ΔI = −
∂f
∂t

−
1
2
∂2

S2
σ2S2

 !
Δt: ð7Þ

This process does not include uncertainty Δz, so port-
folio I is obtained from Δt and does not create risk. The
immediate rate of return on this portfolio is the short-
term risk-free rate w. In any case,

ΔI =wIΔt: ð8Þ

Combining equations (5) and (7) yields the following:

∂f
∂t

+ 1
2
∂2 f
∂S2

 !
σ2S2Δt =w f −

∂f
∂S

S
� �

Δt, ð9Þ

which is simplified to the following:

∂f
∂t

+wS
∂f
∂S

+ 1
2σ

2S2
∂2 f
∂S2

=wf : ð10Þ

Equation (10) is the well-known B-S differential equa-
tion [28]. This differential equation applies to the pricing
of all derivative securities whose price depends on the
price of the underlying security S. This equation has differ-
ent solutions for different derivative securities. Different
derivative securities use different boundary conditions
when solving this equation. For European call/put options,
the basic boundary conditions are as follows:

f =max S − X, 0ð Þ, t = T ,
f =max X − S, 0ð Þ, t = T:

ð11Þ

Combining equation (8) with (11), the pricing formu-
las of financial market options and import options can
be obtained:

c = SN d1ð Þ − Xe−w T−tð ÞN d2ð Þ: ð12Þ
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Among them,

d1 =
ln S/Xð Þ + w + σ2/2

� �
T − tð Þ

σ T − tð Þ1/2 ,

d2 − d1 − σ T − tð Þ1/2:
ð13Þ

NðxÞ is the cumulative function of the standard vari-
able. By invoking the parity formulas p = c − S + Xe−wðT−tÞ

and NðxÞ +Nð−xÞ = 1, the value p of the incremental value
t is as follows:

p = −SN −d1ð Þ + Xe−w T−tð ÞN −d2ð Þ: ð14Þ

In formula B-S, the value of an option is based on five
variables: the value of the underlying asset, exercise rate,
risk-free rate, time to maturity, and underlying volatility.
Of these five variables, interest rates and volatility are
unknown and the volatility of interest rates and options
must be predicted.

When calculating the B-S equation, it is necessary to
know whether the derivative security I is safe and whether
there is a risk. +ð∂f /∂SÞ changes as S and t change when it
is confirmed that there is no risk. Therefore, the relative pro-
portions of derivative securities and assets should be con-
stantly adjusted to avoid risks.

2.4.2. Basic Particle Swarm Optimization Algorithm. When
the p particle is in the D-dimensional position, it forms
a population ðx1, x2,⋯, xpÞ flying at a certain speed. Each
particle has the ability to adjust the flight speed and posi-

tion according to its own flight experience [29]. Among
them, the position of each particle can be expressed as xi
= ðxi1, xi1,⋯, xiDÞ and the respective velocity of each par-
ticle is expressed as vi = ðvi1, vi1,⋯, viDÞ, 1 ≤ i ≤ p, 1 ≤ d ≤D
. For the ith particle, the best position that the particle has
flown is expressed as qi = ðqi1, qi1,⋯, qiDÞ and the best
position that the local particle has experienced qg = ðqg1,
qg1,⋯, qgDÞ.

vk+1iD = vkiD + c1ξ qkiD − xkiD
� �

+ c2η qkgD − xkiD
� �

,

xk+1iD = xkiD + vk+1iD :

ð15Þ

Among them, c1 and c2 are called accelerometers and
c2 is called accelerometers. r1 and r1 are usually random
numbers between [0,1]. The speed of the particles is con-
trolled in the range of ½−Vmax, Vmax�.

2.4.3. Principle of the Differential Evolution Algorithm. Xi,G
ði = 1, 2,⋯,MPÞ = Xi,G = ½x1,G, x2,i,G,⋯, xn,i,G� = DEuses the
parameter vector of the variableMas the population for each
generation, and rand(0,1) represents a single ID number cre-
ated within [0,1] [30].

In the DE algorithm, the creation of the first population
is generally obtained from all random obey uniform proba-
bility, which is as follows:

xj,i,0 = rand 0, 1½ � uj − l j
� �

+ l j,  i = 1, 2,⋯,MP ; j = 1, 2,⋯,mð Þ:
ð16Þ

The mutation evolution algorithm is to create a new
population by changing the individual mutation of the cur-
rent population. Randomly select 3 different individuals
from the current G generation for transformation, mutate,
and generate mutant individual Vi,G+1, namely,

Vi,G+1 = Xrl,G +D Xr2,G − Xr3,Gð Þ, r1 ≠ r2 ≠ r3 ≠ i: ð17Þ

Among them, r1, r2, and r3 are randomly selected vector
serial numbers, which are different from each other and dif-
ferent from the serial number i of a single vector target. F is
the differentiation factor. The mutation process is shown in
Figure 4.

Target variable

Figure 4: Schematic diagram of the mutation process.

Figure 5: Schematic diagram of the crossover process.

Table 1: Experimental data.

Industry Time to market Option net price

1 Winemaking 20 6.88

2 New energy industry 21 4.79

3 Car industry 25 5.64

4 Electrical industry 22 2.79
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Using crossover operations to increase the richness of
data, the operation process is as follows:

Ui,G+1 = uj,i,G+1 =
vj,i,G+1, if rand jð Þ ≤ CR or j = rnd ið Þ,
xj,i,G, otherwise:

(

ð18Þ

When using the differential evolution algorithm, four
running parameters need to be set in advance: (1) The pop-
ulation size is N . For general problems, take 20–50. The
larger the N , the stronger the diversity of the population
and the greater the probability of obtaining the optimal solu-
tion, but the longer the calculation time is. (2) The maxi-
mum number of iterations is G. The setting of G depends
on the specific problem. The larger the G, the more accurate
the optimal solution and the longer the calculation time. (3)
The variation factor F is between 0 and 2, usually 0.7. (4)
Crossover probability CR, between 0 and 1, usually takes 0.4.

RandðjÞ is a uniformly distributed random number
between [0, 1], CR is called the crossover probability, and
rndðiÞ is a random number between f1, 2,⋯, ng. The cross-
over process is shown in Figure 5.

According to equation (18), each test vector Ui,G+1 is
compared with each individual vector Xi,G corresponding
to the current population and the individual with the best
fitting value is selected to enter the next-generation popula-
tion [31].

3. Option Pricing Model Experimental Design

3.1. Experimental Process. A financial market is selected as
the research object, and four options are simulated and sim-
ulated, which are tested from the four aspects of error, risk
parameters, success rate, and simulation time. After the tra-
ditional financial option pricing model is simulated, the
computer simulation technology is used to simulate the
research again. Then, compare with the actual option pricing
results to observe the changes of applying computer
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simulation technology to the option pricing model com-
pared with the traditional financial option pricing model.

3.2. Experimental Data. Five different industries were ran-
domly selected as the experimental objects, and the specific
data of the five experimental objects are shown in Table 1.

3.3. The Purpose of the Experiment. Changes were observed
in the application of computer simulation techniques to
option pricing models compared to traditional financial
option pricing models. Whether it is possible to improve
the accuracy and reduce the error is the key to avoid risks.

4. Option Pricing Model Experimental
Design Results

4.1. Error Test. In order to ensure the accuracy of the exper-
iment, the simulation experiment of option pricing error is
carried out on 4 industries and the 100-day option pricing
changes are tested to observe which model has a smaller
error between the traditional financial option pricing model
and the option pricing model using computer simulation
technology. Figure 6 shows the 100-day option pricing fluc-
tuations of four companies, and Figure 7 shows the error
comparison chart, where A is the error value of the option
pricing model using computer simulation technology and
B is the error value of the traditional financial option pricing
model.

It can be seen that the option pricing model of the com-
puter simulation technology is closer to the actual financial
option pricing, with an average error of less than 6.5%, while
the average error of the traditional financial option pricing
model is less than 10.3%. It can be seen that the computer
simulation technology can more fully analyze the option
pricing situation and the simulated data is closer to the
actual value. The accuracy rate of the option pricing model
using computer simulation technology is higher than that

of the traditional financial option pricing model, and the
error is smaller.

4.2. Risk Parameter Test. Carry out risk simulation tests on 4
enterprises, among which A is the risk parameter of the
option pricing model using computer simulation technology
and B is the risk parameter of the traditional financial option
pricing model. The results are shown in Figure 8.

It can be that the risk parameter of the computer simu-
lation technology option pricing model is slightly lower than
that of the traditional financial option pricing model. The
average risk parameter of the computer simulation technol-
ogy option pricing model of the four companies is 4.125, the
risk parameter of the traditional financial option pricing
model is 4.25, and the risk parameter is reduced by 3.03%.
It can be seen that the application of computer simulation
technology to the financial option pricing model can reduce
the risk parameters and ensure the stability of the financial
market.

4.3. Success Rate Test. The traditional financial option pric-
ing model and the option pricing model using computer
simulation technology are tested for the success rate, and
the actual pricing of options in 4 industries is tested. The
simulation results are compared with the actual results to
see which model has a higher success rate. Among them, A
is the success rate of the option pricing model using com-
puter simulation technology and B is the success rate of
the traditional financial option pricing model. The results
are shown in Figure 9.

It can be seen that the success rate of the option pricing
model of computer simulation technology is much higher
than that of the traditional financial option pricing model.
The success rate of the traditional financial option pricing
model fluctuates at around 95%, and the success rate of the
computer simulation technology option pricing model fluc-
tuates at around 98%. The success rate of the traditional
financial option pricing model has a large fluctuation area,
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and the computer simulation technology option pricing
model has a small fluctuation area of the success rate. The
success rate of the computer simulation technology option
pricing model is more stable than that of the traditional
financial option pricing model.

4.4. Simulation Time Test. The simulation time of the option
pricing model and the traditional financial option pricing
model using computer simulation technology was recorded
separately to observe the difference in time between the
two, and 10 simulation tests were conducted on 4 industries.
The results are shown in Figure 10.

It can be seen that the simulation time of the computer
simulation technology option pricing model is lower than
that of the traditional financial option pricing model. The
average simulation time of the option pricing model of the
computer simulation technology is 1.877 seconds, and the
average simulation time of the traditional financial option
pricing model is 2.482. The computer simulation technology
increases the simulation time by 0.605 seconds. It can be
seen that the algorithm process of computer simulation
technology is simpler and the simulation speed is faster.

5. Discussion

The research on people’s understanding of finance begins by
challenging the traditional financial market hypothesis and
expected utility theory and analyzing and understanding tra-
ditional financial science from the perspective of psychology.
It not only provides new research methods for financial mar-
ket research but also brings new research perspectives to
financial science research. In this paper, a computer simula-
tion study is carried out from the correlation finance under
the stochastic interest rate and an option pricing model is
established, which uses the basic particle swarm optimiza-
tion algorithm and differential evolution algorithm to estab-
lish the option pricing model. Although many achievements
have been made in the pricing of financial options, due to
the influence of external factors, the experimental results will
have certain errors, which will not affect the final results,
which can greatly reduce the risks existing in the financial
market and promote the development of financial
enterprises.

6. Conclusion

As an advanced simulation technology, computer simulation
technology can bring the simulation results close to the
actual results to the greatest extent. In this paper, the B-S
option pricing model is used to apply computer simulation
technology to the option pricing model and the basic particle
swarm optimization algorithm and differential evolution
algorithm are used to simulate the relevant financial option
pricing under stochastic interest rates. The performance,
success rate, risk parameters, and simulation time are supe-
rior to traditional option pricing models.
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