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Mobile edge computing (MEC) has become a more and more popular technology, which plays a very important role in various
fields. In view of the task of offloading of multiple users, most of the existing studies do not take into account data sharing and
cooperation among users, which can easily lead to less generalization of the model trained by a single user, and some data sharing
may also cause privacy leakage. (en, this paper uses the method of federated reinforcement learning to solve this problem in
order to insure privacy. Besides, considering the poor quality of local models, which leads to the poor versatility of the overall
parameters, this paper proposes a federated reinforcement learning method based on Attention mechanism to aggregate the
parameter weights, whichmakes the newmodel more generalized.(e experimental results show that the federated reinforcement
learning task offloading model with Attention mechanism can reduce the processing delay of the task.

1. Introduction

In recent decades, the development of the Internet and
wireless communication technology provides a very con-
venient channel for exchanging information in people’s daily
life. Internet of things has been used in smart homes, in-
telligent transportation, human health detection, disaster
management, and many other fields. In order to solve the
problem of big data computing, some researchers have
introduced mobile cloud computing (MCC) [1] service
based on the centralized cloud data center to cope with the
rapid increase in a number of mobile applications and the
long-term limitations of battery technology. However, the
offloading of MCC only reduces the energy consumption
burden of the mobile device, but at the same time, because
the data transmission is very complex, the delay for the
mobile device to obtain the processing result data is very
large. In 2014, the European Telecommunication Standards
Association (ETSI) explained the basic concepts and various
aspects of MEC (Mobile Edge Computing) [2], placing the
MEC server near the place where the data was generated,
enabling the server to process user requests at the edge of the

network, reducing transmission and location-aware delays,
reducing network load, and improving the user experience.

Offloading computing tasks to edge servers is usually
affected by many factors, such as software and hardware
environment, network bandwidth, wireless channel inter-
ference, connection quality of communication links, overall
performance of mobile devices, and so on. (erefore, off-
loading computing tasks in MEC is a key research issue, that
is, whether computing tasks are executed locally or offloaded
from edge nodes. In addition, many mobile applications in
real scenarios (e.g., face recognition, gesture recognition, and
augmented reality [3]) are composed of dependent tasks; that
is, there are storage dependencies and computational de-
pendencies between tasks. (erefore, it is unrealistic to off-
load some computing tasks to the edge server and ignore the
relationship between them. In addition, the existing models
based on heuristic or reinforcement learning offloading al-
gorithms lack generalization due to the lack of data sharing
among devices, and each device only trains the model locally.
At the same time, some methods require the device to send
the user’s personal data to the central server, which may lead
to serious user privacy and data security problems.
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In the case of dealing with the offloading problem of
dependent tasks, the computational offloading method
proposed in this paper uses federated reinforcement learning
(FRL) to solve the problem of weak generalization and
privacy leakage caused by the lack of data transmission
between users. At the same time, this paper considers that
the trained models are different due to the different com-
puting power and data quality of eachmobile device, and it is
unreasonable to simply aggregate each device model through
average, so this paper considers the weighted method (i.e.,
weighted federation aggregation) and proposes a federation
reinforcement learning task offloading model which inte-
grates Attention [4] mechanism.

(e rest of this paper is organized as follows. Section 2
introduces the related work of task computing offloading.
Section 3 gives the task model and computing model of
computing task offloading. Section 4 details the computa-
tional task offloading network model combined with rein-
forcement learning and proposes a federated reinforcement
learning computing task offloading algorithm with Atten-
tion mechanism. Section 5 verifies the effectiveness of the
proposed method through simulation analysis. Section 6
summarizes the full text.

2. Related Work

Recently, researchers have done a lot of research on solving
the problem of task offloading, which can be roughly divided
into the following two types of algorithms: one is the use of
traditional algorithms such as heuristic or approximation. In
the previous research, some research works considered
whether the task of the mobile device was offloaded to the
edge node, while others considered which edge computing
node to offload the computing task to. Also, some works
apply Reinforcement Learning (RL) method to make off-
loading decision. RL is an effective method for computing
offloading decision. Considering the reward feedback from
the environment in the future state, the RL agents can adjust
their strategies to achieve the best long-term goals, which
solves the problem of low efficiency of traditional methods
[5]. (erefore, RL is a very important solution in the dy-
namic MEC system.

2.1. Traditional Algorithms Such as Heuristics. (e mobile
cloud computing system with multiple users and multiple
tasks is considered in [6]. On the premise of minimizing the
total cost, an effective approximate solution MUMTO uses a
separable semistereotyped relaxation method to solve the
binary offloading decision. In [7], the total network revenue
is considered as the optimization objective, and the off-
loading problem is transformed into a convex problem, and
an optimization algorithm based on multiplier alternating
direction method is proposed to solve the problem of task
offloading and content caching. From the point of view of
prolonging the life of mobile devices, a dynamic offloading
algorithm based on Lyapunov optimization is proposed in
[8], which achieves the goal of energy saving on the premise
of meeting the execution time requirements of a given

application. (e above calculation offloading method does
not take into account that the offloaded tasks may include
computational dependencies, which may result in the extra
communication cost between the tasks, while the algorithm
proposed in this paper takes into account the offloading of
dependent tasks and modeling.

A new algorithm is proposed in [9]. Starting from a
minimum-delay scheduling scheme, tasks are migrated
between the local core and the cloud, and dynamic voltage
and frequency scaling techniques are applied to achieve
energy saving. Aiming at the problem of task migration, a
linear time rescheduling algorithm is proposed. In [10], the
authors model the application as a directed acyclic graph
(DAG). (e UE side of the user equipment decides which
subtask should be offloaded to which compute node (AP). In
their work, the problem is described as a scheduling
problem. In order to solve the NP-hard problem, the author
proposes a heuristic algorithm based on the list scheduling
algorithm. (e algorithm takes into account of the trans-
mission time between AP and the offloading time from UE
to AP. Reference [11] proposes a minimum cost offload
partition (MCOP) algorithm, which aims to find the optimal
partition scheme under different cost models and mobile
environments (i.e., to determine which parts of the appli-
cation must run on mobile devices and which parts run on
cloud or edge servers). In [12], the authors propose a
heuristic mobility-aware offloading algorithm (HMAOA) to
obtain the approximate optimal offloading scheme. (e
original global optimization problem is converted into
multiple local optimization problems. Each local optimi-
zation problem is then decomposed into two subproblems.

References [9–12] are all based on heuristic or ap-
proximate algorithms to solve the problem of task offloading
in DAG diagrams. When the external environment of the
MEC system changes, the model may not be suitable for the
changing environment, so it is necessary to update the
mathematical model accordingly. (erefore, these algo-
rithms are difficult to fully adapt to the dynamic changing
MEC environment. (e algorithm proposed in this paper
effectively solves the problem that it is difficult to adapt to
the changing environment based on heuristic or approxi-
mate algorithms by using reinforcement learning.

2.2. Offloading Algorithm Based on Reinforcement Learning.
In recent years, deep reinforcement learning has been widely
concerned by academia. In Reinforcement Learning [13], the
agent does not need to know part of the information of the
network in advance and achieves the optimization goal of
maximizing the long-term benefits of energy consumption
and delay by adjusting strategies. Researchers have recently
begun to use deep reinforcement learning algorithms to
solve this problem [14].

In [15], an optimization framework based on deep Q
network (DQN) is proposed to solve the problem of joint
task offload and resource allocation in wireless MEC when
minimizing energy consumption and delay. Reference [16]
considers that in a super-dense network, each task can select
and offloadmultiple base stations, and the DQN algorithm is
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used to obtain the optimal offloading strategy. Considering
the load of edge nodes in [17], and the arrival deadlines of
some tasks may not be processed and discarded, the authors
propose a model-free distributed reinforcement learning
algorithm. (e model trained by the offloading algorithm
based on reinforcement learning lack generalization due to
the lack of data exchange between devices, and each device
trains the model locally.

In addition, some methods require users to send data
from this device to a central server, which may cause
serious user privacy disclosure and sensitive data security
problems, even the transmission of anonymous data will
still put user privacy at risk, because attackers can recover
by comparing anonymous information with other data
[18]. Federated Learning is a concept proposed by Google
in 2016 to solve privacy issues on mobile devices. Fed-
erated Reinforcement Learning (FRL) [19] is based on the
sharing of experiences among agents so that more samples
can be collected in a short period of time. On the other
hand, the global model of federated reinforcement
learning training is to aggregate the user model with
weighted average, which leads to the problem of rigid
average contribution of user model to global training
parameters. In this paper, an FRL task offloading model
with Attention mechanism is proposed from the point of
view of protecting users’ privacy.

3. System Model

In this paper, we consider an environment consisting of a
set of local mobile devices C � 1, 2, . . . M{ }, a base station
(BS), and an MEC server connected to the BS, as shown in
Figure 1. At the same time, considering that an application
can be decomposed into multiple interdependent tasks in
real life, this paper considers multidependent tasks where
the optimization goal is to achieve the least time to
complete all tasks in a task-dependent graph. For each
mobile device, there is a task graph G containing dependent
tasks that needs to be processed. When the task arrives
randomly, the task graph is calculated and processed in the
fashion of First Input First Output (FIFO). In this paper, a
task graph is represented as G(T, E), where T represents the
set of task vertices, E represents a set of edges, and e �

(ti, tj) represents a directed edge from ti to tj, indicating
that there is data transferring from ti to tj, where ti is the
parent node of tj, which can only be executed after the
completion of ti execution, emphasizing that the order in
which the tasks are executed cannot be changed. (e op-
timization goal of computing the offloading problem is to
make an offloading decision for each task in the DAG
diagram, that is, whether the task is executed locally or
whether the task as a whole is offloaded to theMEC through
channel transmission. For a DAG diagram of any user, all
task offloading decisions are represented as
A1:n � a1, a2, . . . , an􏼈 􏼉, where ai represents the offloading
decision of the user’s ti task, which is executed locally on the
device when ai � 0 and offloaded to MEC when ai � 1.
Tasks are processed sequentially on order of FIFO and can
be processed only when the task arrives.

(e local execution time TL
i and theMEC execution time

Tc
i can be calculated by the following formulae individually:

T
L
i �

datai

f
L

, (1)

T
c
i �

datai

f
, (2)

where datai is the amount of data in task ti, fL is the local
CPU cycles of the device, and f is the CPU cycles of the
MEC. If a task needs to be offloaded to the edge node, it will
result in uplink transmission delay Tul

i as formula (3). If a
task needs to transmit results locally from the edge node, it
will generate a delayTdl

i in the downlink as shown in formula
(4):

T
ul
i �

datas
i

R
ul

, (3)

T
dl
i �

datar
i

R
dl

, (4)

where Rul is the uplink transfer rate between the mobile
device and the MEC and Rdl is the downlink transfer rate
between theMEC and the mobile device. datas

i is the amount
of data that a task sends from the device to the MEC, and
datar

i is the amount of data of the task results downloaded
from the edge server for the device.

In the process of local computing, computing at edge
nodes, and uplink and downlink transmission, there may be
some cases in which resources are occupied, so the start
execution time of a task is not only affected by the task
dependency graph, but also affected by the longer waiting
time caused by the occupation of resources. (e local start
execution time of the task ti is RTL

i , and the start execution
time of the task ti at MEC is RTc

i , as shown in formulae (5)
and (6). (e computation of start times for uploading and
downloading task data RTul

i and RTdl
i is shown in formulae

(7) and (8):

Mobile Device

Task DAG

Locally calculated task

Task of edge computing

Server

Base Station

Data transmission

Figure 1: System model.
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where FL
i � max FL

i−1, FTL
i−1􏼈 􏼉 is the start time of locally

available resources, Fc
i � max Fc

i−1, FTc
i−1􏼈 􏼉 is the start time of

the resources available on the MEC, Ful
i � max Ful

i−1, FTul
i−1􏽮 􏽯

is the start time of the available resources in the uplink of the
channel, and Fdl

i � max Fdl
i−1, FTdl

i−1􏽮 􏽯 is the start time of the
available resources in the downlink of the channel. (e local
execution end time FTL

i , the end time of MEC FTc
i , the end

time of uplink transmission FTul
i , and the end time of

downlink transmission FTdl
i are expressed as shown in the

following formulae:
FT

L
i � RT

L
i + T

L
i , (9)

FT
c
i � RT

c
i + T

c
i , (10)

FT
ul
i � RT

ul
i + T

ul
i , (11)

FT
dl
i � RT

dl
i + T

dl
i . (12)

In this paper, we define the optimization goal as min-
imizing the execution delay TA1:n

. Because it calculates the
delay of the tasks in the DAG graph, it needs to be executed
by all nodes, that is, to minimize the execution time of the
end node, as shown in the following formula:

TA1:n
� max

k∈K
FT

L
k, FT

dl
k􏼐 􏼑, (13)

where K is the node with a degree of 0 in the task graph (i.e.,
the exited task), which stipulates that the start and end of the
task graph need to be executed locally.

4. Network Model

4.1. Reinforcement Learning Offloading Model. Because the
deep reinforcement learning algorithm is learned from the
interaction with the environment and does not need a priori
knowledge of the system, it has been widely used in com-
munication and network [20].

4.1.1. Task Modeling MDP Process. In this paper, each task is
modeled as a Markov decision process (MDP). (e MDP
process is formally expressed as P � (S, A, R), S represents
the state of the agent during the interaction between the
agent and the environment, A represents the action selected
by the agent in a certain state of the environment, R

represents the reward obtained by the agent after performing
the action, and the state, action, and reward work together to
form the environment of agent interaction. (e definitions
of state, action, and reward are as follows:

(1) (e offloading of each task is related to the amount of
data of each task in the DAG task graph where the
task node is located, the required CPU cycles, and the
shape of the DAG graph. (e offloading of task ti is
related to the offloading of task t1 to task ti in DAG
because the offloading of task t1 to task ti may affect
the start execution time of task ti. In this paper, the
state is defined as follows:

state : DATA, TCPU, G(T, E), A1: i􏼈 􏼉, (14)

where DATA is the amount of data of each task, Tcpu

is the number of CPU cycles required for each task to
process, and G(T, E) is the embedding of the graph
(for each task, including the index of the current task,
the index of its direct parent task, and the index of
direct child tasks), and A1:i is the offloading decision
from task t1 to task ti.

(2) (ere are two kinds of action choices for each task:
one is to execute locally; the other is to offload it to
the MEC to execute. In this paper, the action is
defined as follows:

action: 0, 1{ }. (15)

(3) (e purpose of this paper is to minimize the total
task execution delay TA1:n

. Define the reward as
shown in formula (16). Because the optimization
goal of this paper is to minimize the total task ex-
ecution delay, the total execution delay is composed
of the processing delay of each task, and the agent is
given a reward after each task interacts with the
environment, so reward is defined as the processing
time of each task. (e smaller the delay is, the larger
the reward value is, and vice versa.

reward: TA1:i−1
− TA1:i

􏽮 􏽯. (16)

4.1.2. seq2seq Structure. Because of the interdependent re-
lationship between tasks, this paper uses the seq2seq [21]
structure as the component model of reinforcement
learning. (e seq2seq model includes the Encoder and the
Decoder, where both the Encoder and Decoder are com-
posed of the LSTM model, as shown in Figure 2.

(e input of Encoder is DATA, TCPU, G(T, E)􏼈 􏼉 in state
(i.e., the embedded vector [t1, t2, . . . , tn] of a task graph,
where n represents the number of tasks contained in each
graph). Decoder outputs the offloading decision of a task
graph, and the action is expressed as [a1, a2, . . . , an]. In
order to convert the DAG task graph into embedded vectors
and input into the model, the tasks are sorted and indexed
according to the ascending order of the critical paths, and
the formula is as follows:
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where To
i � min(TL

i , Tc
i + Tul

i + Tdl
i ) indicates the delay of

completing the task, and K is the end node of the task.
(e functions of Encoder and Decoder are set to genc and

gdec, and the output ei of Encoder is represented as shown in
formula (18). (e aggregate intermediate vector c of the
Encoder encoded output ei and the dj in Decoder can be
expressed as shown in formulae (19) and (20):

ei � genc ti, ei−1( 􏼁, (18)

c �
1
n

􏽘

n

i�0
ei, (19)

dj � gde c c, aj−1, dj−1􏼐 􏼑, (20)

where dj is connected to two fully connected layers that
approximately represent the v(sj) and π(aj|sj) of task tj,
where v(sj) and π(aj|sj) represent value functions and
policy functions, respectively. During training, the action aj

is generated by strategy π(aj|sj) sampling, where
aj � max π(aj|sj) represents the execution action of task tj.

4.2.AnOffloadingModel ofFederatedReinforcementLearning
Based on Attention Mechanism. In federated learning,
multiple device nodes participate in the training and
aggregate the model weights shared by the service BS
nodes. In order to make better use of the parameter in-
formation provided by each equipment node, the service
BS node needs to allocate different weight coefficients
according to their contribution. Considering the differ-
ence between equipment models, the Attention mecha-
nism can be applied to achieve the demand. In this paper,
an FRL task offloading model based on Attention
mechanism is proposed, and the training process is as
follows:

(i) Associate the mobile device with the serving BS and
report the local mobile device status to the BS. After
receiving the information, BS sends the previous
round of global model parameters to the local device
to perform the steps of model release.

(ii) When the local mobile device learns that it can
participate in the training, it receives the global
model parameters obtained from the BS.

(iii) Each mobile device begins to train its local model
parameters based on global model parameters and
local data. After the local training, each mobile
device collects its training evaluation indicators
(e.g., average reward, average loss, etc.) during the
training phase and sends them and local model
parameters to BS. (en, BS calculates the aggre-
gation weight of each equipment according to the
training evaluation index. In this paper, attention
mechanism is used to provide aggregation weights
for different mobile devices. (e update process for
weighted federation aggregation is shown in
Figure 3.

In this model, the indexes of m mobile devices are input
into the Encoder of the model, and Query is the optimal goal
in Decoder. By comparing the similarity between the indexes
of each mobile device model and the optimal goal, the
contribution weight of each device model to the optimal goal
is calculated. In this paper, the average loss, average reward
and the computing power of mobile devices are used to
calculate the attention weight of the contribution of the
global model.

(i) Average loss: the quality of the model is related to
the size of the loss, the greater the loss means that
the model cannot well deal with the problems to be
solved. On the contrary, the smaller the loss, the
better the performance of the model, so we can
consider using it. So, the loss can be evaluated on a
model. (e average loss (Lavg) is the average cal-
culation of the loss function of a certain period of
time by a device.

DAG
Task Graph 

Encoder
C

dnd2d1

ene2e1

tnt2t1

Decoder

a1 an-1

Offloading
Decision

Offloading
Tasks

Local
Execution

Mobile
Device 

Server

v (s1) π (a1|s1)

Figure 2: Task offloading architecture.
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(ii) Average reward: contrary to the average loss, the
average reward can also evaluate the quality of the
model. When the reward is larger, the effect of the
model is better, and when the reward is smaller, the
model may have some deviation from the problem
solved. (erefore, the average reward can also
evaluate the model. Average reward (Ravg) is the
average reward for the mobile device over a certain
period of time.

(iii) Computing power of mobile devices: the computing
power of mobile devices can affect whether tasks
need to be offloaded. When the computing power of
mobile devices is large, the delay caused by local
processing tasks is usually far less than the delay
caused by transmitting task data, so the device will
get a better user experience effect when the tasks are
processed locally. On the contrary, if the processing
power of the mobile device is too small, the pro-
cessing delay will be very long, so it is better to
offload the task to the edge server. (erefore, the
computing power of the mobile device (comu) also
has a certain impact on the model parameters.

In this paper, we use the above index
K � [Lavg, Ravg, comu] to evaluate the attention mechanism.
(e goal of the training model is to get more rewards and
achieve the minimum loss. (erefore, the optimization goal
set in this paper is shown in formula (21). Q consists of
minimizing the loss function, maximizing the reward, and
maximizing the computing power.

Q � min Lavg􏼐 􏼑, max Ravg􏼐 􏼑, max comu( 􏼁􏽨 􏽩. (21)

(en, the weight of the contribution of the device is
calculated by using the Attention mechanism. In this paper,
we use the method of dot product to calculate the similarity
between Q and K to get the corresponding weight, and then
use the softmax function to normalize the weight, and in-
troduce the weight factor wu to calculate the contribution of

the local model to the global model. (e specific calculation
is shown as follows:

wu � Attention(Q, K) � softmax
QK

T

��
dk

􏽰􏼠 􏼡, (22)

where
��
dk

􏽰
represents the dimension of K, from which the

contribution of each mobile device model is calculated by
using the Attention mechanism, and the weight of the model
is weighted to calculate the parameters of the global model.
After aggregation, this parameter is sent to each local model.
(e optimized global parameter aggregation formula is
shown in the following formula. (e specific algorithm is
shown in Algorithm 1.

F θt( 􏼁 � 􏽘
u∈U

wuF θu
t( 􏼁. (23)

5. Experiment

5.1. Experimental Setup

5.1.1. Setting Model Parameters

System Model Parameters. Considering 20 users and one
edge server node, the task arrival rate is 0.3, the user CPU
clock rate is 2.5GHz, the clock rate of the server is 41.8GHz,
and the uplink and downlink transmission rate is 14Mbps.
In this paper, a synthetic DAG generator is implemented
with [22].

Network Model Parameters. (e Encoder and Decoder of
seq2seq neural network are set to two layers of LSTM, with
256 hidden units in each layer. (e learning rate is set to
0.001 and the optimizer adopts RMSprop algorithm.

5.1.2. Hardware Parameters. (e hardware setting in the
experiment can be seen in Table 1.

Encoder

w1 w3w2 wn

Decoder Query

F (θt)=ΣuεwuF (θt
u)

θt
u

Figure 3: Federated Reinforcement Learning model of Attention mechanism.
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5.2. Results and Analysis. According to [22], a synthetic
DAG generator is implemented for simulation. 22 task
graphs are used as training sets for training, and the other
three task graphs are tested, and each task graph is com-
posed of 20 tasks. (e training is carried out on 22 training
sets, and the experimental results are shown in Figure 4,
which shows the change of the average reward with the
increase of the number of iterations. It can be seen that after
1000 iterations, the average reward as a whole tends to be
stabilized and shows an upward trend during the training
process.

Learning rate plays a very important role in deep
learning and training. Figure 5 shows that on the premise
that the number of subtasks in each task graph is 10; the
learning rate is set to 0.1, 0.01, and 0.0001, respectively. (e
experimental comparison of the proposed algorithms shows
that the model with a learning rate of 0.001 has the highest
delay. (e performance of the model with learning rate of
0.01 and 0.0001 is similar, but the effect is the best at 0.001.
(erefore, this paper uses 0.001 as the learning rate of model
training.

Considering 20 users, the task graph of each user is
composed of 10 subtasks. (e Federated Reinforcement
Learning Offloading Computation algorithm with Attention
(FRLOC-Attention) is compared with DQN algorithm,
Greedy algorithm, and Actor-Critic based offloading algo-
rithm (AC). (e experimental results are shown in Figure 6.
(e results show that after 500 episodes, FRLOC-Attention
shows better performance and minimum delay, while AC
and DQN offloading algorithms are not as effective as
FRLOC-Attention, while greedy algorithm (Greedy) pro-
duces a larger delay, about 590ms, and has a larger delay

than DQN algorithm and AC algorithm. Generally speaking,
FRLOC-Attention has the lowest latency and the best
performance.

In order to show that the proposed algorithm has a
certain generality, this paper chooses to experiment on the
number of different devices. Figure 7 shows that the number
of devices is 10, 20, and 30, and the DAG task graph of each
device includes 20 subtasks. From the experimental results,
we can see that no matter the number of devices, the task
processing delay of FRLOC-Attention is obviously lower
than that of DQN algorithm and Greedy algorithm. (e
performance of AC algorithm is similar to that of FRLOC-

(1) for each equipment in parallel do
(2) for local step j � 1, . . . , n do
(3) for each step do
(4) Sample action a ∼ πθ(s), reward and s′
(5) Input s and s′ to get Qw(s′, a′) and Qw(s, a)

(6) δ � r + cQw(s′, a′) − Qw(s, a)

(7) θ � θ + α∇θlog πθ(s, a)Qw(s, a)\
(8) w←w + βδ
(9) a←a′, s←s′
(10) end for
(11) K � [Lavg, Ravg, comu]

(12) end for
(13) Q � [min(Lavg), max(Ravg), max(comu)]

(14) wu � Attention(Q, K)

(15) F(θt) � 􏽐u∈UwuF(θu
t )

(16) end for

ALGORITHM 1: A Federated Reinforcement Learning task offloading model integrated with Attention mechanism.
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Figure 4: Average reward of training set.

Table 1: Hardware parameter.

Configuration Parameter
CPU Intel® Xeon® CPU E5645 2.40GHz
Memory 8GB
Operating system Windows 10
Development tools PyCharm
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Attention; this is because AC algorithm is included in the
process of FRLOC-Attention training model, but because
this algorithm proposed uses federated reinforcement

learning combined with Attention to make the model more
generalized, when there are multiple devices, the perfor-
mance of task offload is better.
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Figure 5: (e average delay of the algorithm under different learning rates.
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Figure 6: (e number of tasks is 10, the average delay on different algorithms.
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6. Conclusion

Considering the lack ofmodel generalization caused by the lack
of data sharing among multiple users and the privacy data
leakage caused by data sharing, this paper proposes a federated
reinforcement learning task offloading algorithm based on
Attention mechanism to solve the relevance problem of
multiplemobile device trainingmodels. Experiments show that
the proposed FRLOC-Attention algorithm saves more time
than DQN algorithm, AC algorithm, and Greedy algorithm.
On the basis of this algorithm, we can further consider the
optimization of energy consumption caused by data trans-
mission during task offloading in the future.
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