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With the rapid development of the Internet of Things, sparse code multiple access (SCMA), which aims to promote spectrum
efficiency and support massive connectivity in the future beyond fifth- and sixth-generation massive machine-type
communication (mMTC) scenarios, has been widely investigated. To improve the bit error rate (BER) performance of the
SCMA system in the uplink Rayleigh fading channel, we propose a novel deep learning-based SCMA codec scheme. The
proposed scheme consists of an equalization network-aided decoder network and a denoising autoencoder- (DAE-) based
encoder network. At the decoder, an equalization network and a multiuser detection network constitute the decoder network.
The equalization network, composed of two deep neural network (DNN) units, compensates for the phase shift of the signal
through the fading channel, which improves the antifading capability of the system. At the encoder, a complete DAE is
constructed, which introduces an extra noise layer at the input of the encoder that yields a robust encoder output
representation, improving the antinoise capability of the system. We use an end-to-end training method to train the SCMA
codec and optimize the parameters and structural model of the neural network. Simulation results show that our proposed
scheme can reduce the detection time and improve the BER performance of the system in the uplink Rayleigh fading channel.

1. Introduction

With the widespread popularity of mobile intelligent devices
and the rapid development of Internet of Things technology,
there are new challenges to satisfying the customer quality of
service (QoS), such as those associated with the massive con-
nectivity of the number of terminal devices [1], communica-
tion network security [2], and complex channel
environments [3]. To improve the spectrum efficiency and
the number of connections under the massive machine-
type communication (mMTC) scenarios of beyond fifth-
generation/sixth-generation (B5G/6G) technologies, non-
orthogonal multiple access (NOMA) plays an indispensable
role in mobile communication systems.

NOMA was proposed for 5G wireless communications
[4]. Sparse code multiple access (SCMA) [5] is a code
domain multiplexing NOMA technology in NOMA
schemes. In SCMA, the information bits of coding are
directly mapped to the multidimensional complex grid

nodes, which are called codeword maps. Thanks to the
design of a multidimensional constellation and the combina-
tion of constellation rotation and the spread spectrum, code-
books for each user can be achieved. In addition, compared
with the traditional code division multiple access (CDMA)
[6] modulation and spread spectrum coding mode under
the same number of time and frequency resources, the
SCMA system transmits the user codewords in a nonortho-
gonal way on a time-frequency resource block. In this way,
the reuse rate of resource blocks is greatly improved; thus,
the system can be connected to multiple user devices.

An excellent SCMA communication system requires
effective multiuser detection algorithms and optimal code-
book design. The multiuser detection issue is also called
decoding in the SCMA system. Using the message passing
algorithm (MPA) [7] based on the Tanner graph is a general
method to solve the decoding problem of SCMA, with the
performance of the algorithm being close to that of maxi-
mum posterior probability decoding. However, the high
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complexity index in the MPA operation and multiplication
and the high hardware performance requirements render
practical application of MPA difficult to achieve. To apply
the SCMA system to practical engineering, it is necessary
to study how to reduce the decoding complexity of SCMA
[8–13], although some bit error rate (BER) performance is
sacrificed in these schemes. This problem was also investi-
gated in [14–17] to improve the BER performance of the sys-
tem in terms of the BER performance of the Rayleigh fading
channel. A suboptimal SCMA codebook design algorithm
for an uplink Rayleigh fading channel was proposed [15],
which reduces the multidimensional parent constellation
design to a nonconvex optimization problem and expands
two factors to achieve better coding gain. To further pro-
mote the application of SCMA systems in practical engineer-
ing, we study a whole codec scheme to address multiuser
detection and optimal codebook design issues under a Ray-
leigh fading channel.

Due to the universality of artificial intelligence in various
fields, recent studies have also begun to apply neural net-
works to communication systems [18–29]. For example,
some studies were based on deep learning technology to deal
with the signal detection problem of MIMO systems
[22–24], and there were also studies using artificial intelli-
gence (AI) technology in UAV networks [25–27]. In addi-
tion, new ways of thinking about communications as an
end-to-end joint optimization of the communication system,
which utilizes autoencoders to jointly learn transmitter and
receiver implementations as well as signal encodings without
any prior knowledge, were introduced in [30]. The applica-
tion of this method for the physical layer to the SCMA sys-
tem is realized in an SCMA scheme that proposes codeword
generation and signal detection based on deep learning [31]
and an intermediate density code division multiple access
(MDMA) based on deep learning [32], the algorithm of
which is represented by a new Tanner graph to achieve mul-
tiuser detection without iteration by adjusting the edge
weights in the neural network. In [33], according to a new
deep neural network (DNN) method for SCMA to reduce
the computational complexity and improve the BER perfor-
mance, the author proposes dense code multiple access
based on deep learning. The SCMA decoder is designed as
a classifier and detected by deep learning methods to reduce
the detection complexity in [34]. These algorithms can
achieve better BER performance than the traditional MPA
multiuser detection method in the Gaussian channel, but
the BER performance limitation problem in the uplink Ray-
leigh fading channel is still not solved.

This paper is aimed at solving the problem of poor BER
performance of the SCMA system in the uplink Rayleigh
fading channel and further promoting the use of the SCMA
system in practical engineering. We propose an equalization
network-aided SCMA codec scheme based on deep learning.
By using multiple DNN units, we present the SCMA
encoder, equalizer, and multiuser detection module, opti-
mize both the encoding and decoding ends, and train in an
end-to-end manner. In the decoder network, which is com-
posed of equalization and multiuser detection subnets, the
equalization subnet is used to learn the parameters of the

Rayleigh fading channel and compensate for the signal
because it is affected by the fading channel. Moreover, the
SCMA encoder is constructed by several DNN units of the
denoising autoencoder (DAE) structure, which is a code-
word mapped to improve the robustness of the codebook
generated by introducing an extra noise layer at the input
end. We use an end-to-end approach to train and optimize
the parameters and structural model of the neural network
so that the neural network can converge quickly. Simulation
results show that our proposed SCMA codec scheme can
reduce the detection time of the receiver and improve the
BER performance of the system in the uplink Rayleigh fad-
ing channel. We now summarize our major contribution
as follows:

(1) Equalization network-aided SCMA decoder design:
To enhance the multiuser detection performance in
the Rayleigh fading channel, an equalization
network-aided SCMA decoder is designed. Com-
pared with the deep learning-aided SCMA (D-
SCMA) decoder [31], the decoder is composed of
three DNN units instead of a single DNN unit. An
equalization network composed of two DNN units
has also been added, and by learning the parameters
of the Rayleigh channel and compensating for the
signal, the BER performance and the training time
performance can be more effectively improved

(2) Denoising autoencoder structure-based SCMA
encoder design: To enhance the robustness of the
codebook, we introduce an extra noise layer at the
encoder input. In the training phase, adding an
appropriate amount of noise to the source data can
improve the antinoise performance of the neural
network. Simulation results verify that the proposed
encoder is superior to its counterparts

2. System Model

For the uplink SCMA system, we assume that the number of
users in the SCMA system is J and the number of resource
blocks is K . Due to the sparse structure of the system, the
sparse code allocation for each user is extended to K
resource blocks. The number of users J > K such that the
overload rate of the SCMA system is defined as λ = J/K .
For example, the factor diagram matrix of the SCMA system
is expressed as Equation (1). In light of the SCMA codebook
design, m = log2ðMÞ bit data are sent each time, and the sys-
tem encoder encodes them into a K-dimensional composite
codeword where the sparse codeword has only N nonzero
elements, with N < <K .

F =

1 0 1 0 1 0

0 1 1 0 0 1

1 0 0 1 0 1

0 1 0 1 1 0

2
666664

3
777775: ð1Þ
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The complex codewords of 6 users are superimposed
onto 4 resource blocks to realize the nonorthogonal super-
position and transmission of signals. Each connection line
between user j and resource block k can be seen as the cod-
ing mapping of each user on the resource block.

The codeword of user j can be written as xj =
½xj1, xj2,⋯, xjK �T, and the received signal y is expressed by
the following formula:

y = 〠
J

j=1
diag hj

� �
xj + n, ð2Þ

where hj = ½hj1, hj2,⋯, hjK �T is the channel gain between the
user and the resource block and, in the Rayleigh fading
channel, hj ∼ CNð0, 1Þ. diag ð·Þ represents the logarithmic

matrix, and the noise n = ðn1, n2,⋯, nKÞT is the additive
white Gaussian noise with a mean value of 0 and a variance
of σ2.

3. Proposed Scheme

In this section, we propose a codec scheme, namely, the
equalization network-aided SCMA DAE system, referred to
as EN-DAE-SCMA. The SCMA system structure of this
scheme is shown in Figure 1, where the number of users is
J = 6 and the number of time-frequency resource blocks is
K = 4. Multiple DAEs are used to construct the encoding
end of the system, with each DAE composed of DNN units.
The user codebook is modulated by the DAE-based DNN
units, where each DNN unit represents a codeword mapper,
and then, the user codebook is connected to the resource
block according to the original factor graph to obtain a com-
plete SCMA codebook. The decoding end of the system con-
sists of an equalization network and a multiuser detection
network to decode each user’s sent data.

The DNN contains many hidden layers that have stron-
ger learning and training capabilities and mapping capabili-
ties than single-layer neural networks. The calculation
formula of the i-th neuron in each hidden layer can be
expressed as follows:

zi = f 〠
T

t=1
Wt,i × vt + bi

 !
, ð3Þ

where zi is the output data, vt is the input data, Wt,i, bi, and
T are the weight, bias, and number of neurons, respectively,
and f ð·Þ represents the nonlinear activation function
formula.

The main purpose of the EN-DAE-SCMA system is to
reconstruct user data s = ½s1, s2, s3, s4, s5, s6�T through the
designed encoding end and decoding end. After the user
data are encoded, the received user signal is detected by
the decoder through the fading channel and noise pollution,
with the reconstructed user data being ŝ = ½̂s1, ŝ2, ŝ3, ŝ4, ŝ5, ŝ6�T
, where s ≠ ŝ. By optimization of the network to minimize the

mean squared error between the reconstructed data and the
original data, it can be expressed by the following formula:

min
θ

s − ŝk k ; θð Þ, ð4Þ

where θ represents the set of weights and biases of the neural
network of the entire system.

3.1. SCMA Encoder. To construct the encoding end of the
EN-DAE-SCMA system, we make changes on the basis of
the D-SCMA [20] encoder and introduce an extra noise
layer at the input end. According to the factor graph, we
use a DAE-based DNN unit to learn the mapping process
for each edge connecting the user and the resource block
to obtain the corresponding codeword. The DNN unit based
on the DAE is called the SCMA codeword mapper. The
structure of the codeword mapper is shown in Figure 2.

Since the input data transmitted by each user to the
encoding end of the EN-DAE-SCMA system are expressed
as r, r is the binary bit data, and there are m possible types
of information, where m = 2b, with b representing the num-
ber of bits per transmission, where b = 2. Binary input data
are randomly generated and encoded into a one-hot vector,
which is anM-dimensional vector s, where only one element
is 1 and all the other elements are 0. The encoded one-hot
vector is used as the input data of the encoding end. To
make the codeword sparse, the user binary vector Sj =
ðS1,⋯, S2KÞT represents the SCMA mapping matrix corre-
sponding to user j. The connection mode between the user
and the resource block is determined by the SCMA factor
matrix, which can be randomly generated according to the
overload rate of the SCMA system.

Each DAE-based DNN unit autonomously learns the
mapping process from a certain user to a certain resource
block after receiving the user data and outputs a two-
dimensional codeword that represents the real parts R and
imaginary parts I of the complex codeword. Let f kjðsj ; θf Þ
be the two-dimensional codeword mapped from resource k
to user j, where sj represents the original input data vector
sent by user j to the neural network and θf represents the
weight and bias of the EN-DAE-SCMA system encoder.
The encoding end is based on a denoising autoencoder; that
is, a noise layer is added after the input layer of each DNN
unit. A certain proportion of noise is added to the input data
to pollute the original user data s with noise. The data after
passing through the noise layer can be expressed as follows:

ŝ = s + ε, ε ∼N 0, σ2I
� �

: ð5Þ

After the data are polluted with noise, the two-
dimensional codeword mapped from user j to resource k
can be expressed as f kjðsj ; ε ; θf Þ. The number of hidden
layers of the codeword mapper of the encoder network is
set to 3, i.e., L = 3, and each hidden layer contains 32 hid-
den nodes.
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The ReLU activation function is used in the hidden layer
of the encoder network, and it can be expressed as follows:

f Relu xð Þ =max 0, xð Þ: ð6Þ

All the codewords sent on the same resource block are
superimposed together and then transmitted by adding
Gaussian white noise. Therefore, the data received on the
resource block k are expressed as follows:

yk = 〠
J

j=1
hkj f kj sj ; ε ; θf

� �
+ nk, ð7Þ

where hkj is the channel gain, each transmission is static, and
nk is the additive white Gaussian noise over the resource
block k.

3.2. SCMA Decoder. The receiver decoder of the system con-
sists of an equalization network and a multiuser detection
network, in which the network architecture of the equaliza-
tion network is inspired by the spatial transform network
used in the field of computer vision (maintaining the spatial
invariance of the input data). As shown in Figure 3, the
equalization network function plays a similar role to the

channel equalizer at the receiving end of the traditional
SCMA transmission system. It is composed of two subnet-
works, namely, the parameter estimation network gφð·Þ
and the signal compensation network gωð·Þ. First, the phase
offset φ generated by the fading channel is estimated
through the parameter estimation network. Then, the
received signal y and the estimated phase offset parameter
φ are subjected to reversed-phase rotation processing
through the signal compensation network to compensate
for the signal. In this way, the output of the channel can be
equalized, and the fading distortion of the signal can be
overcome.

The parameter estimation network gφð·Þ z is a fully con-
nected DNN whose input is the complex signal y =
½y1, y2,⋯, yK �T after passing through the channel, which is
used to predict and process the Rayleigh fading channel
parameter information and generate the output scalar ~φ.
The network consists of two hidden layers and an output
layer, and the number of neurons in the hidden layer is 2K
. The parameter estimation scalar obtained by the neural
network is expressed as follows:

~φ = gφ Re yð Þ, Im yð Þ ; θ1ð Þ
=W0 tanh W2 tanh W1 Re yð Þ, Im yð Þð Þ + b1ð Þð Þb2ð Þ + b0,

ð8Þ

where θ1 represents the training parameters of the parame-
ter estimation network, W1, W2 represent the weight matrix
of the first layer and the second layer in the parameter esti-
mation network, b1, b2 represent the bias vector of the first
layer and the second layer in the parameter estimation net-
work, andW0, b0 are the weight and bias of the output layer,
respectively. The activation function in the hidden layer is
the tanh activation function, which can be expressed as fol-
lows:

tanh Wlyl−1 + blð Þ = sinh Wlyl−1 + blð Þ
cosh Wlyl−1 + blð Þ =

eWlyl−1+bl − e−Wlyl−1+bl

eWlyl−1+bl + e−Wlyl−1+bl
,

ð9Þ
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Figure 1: Equalization network-aided SCMA denoising autoencoder structure.
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Figure 2: SCMA encoder structure.
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where Wl and bl represent the weight and bias of the l-th
hidden layer, respectively, and yl−1 is the previous layer
output.

The original received signal y and the output scalar ~φ of
the parameter estimation network gφð·Þ are sent to the input
end of the signal compensation network gωð·Þ. A reversed-
phase rotation operation is performed on the signal super-
imposed on each physical resource block and the output of
the parameter estimation network; that is, the received signal
is multiplied by the inverse transformation of the channel
impulse response. The transformed signal μ is expressed as
follows:

μ =
cos ~φð Þ Re yð Þ + sin ~φð Þ Im yð Þ
cos ~φð Þ Im yð Þ − sin ~φð Þ Re yð Þ

" #
= e−j~φy: ð10Þ

The transformed signal μ is further optimized through a
DNN, and the output of the entire signal compensation net-
work is the signal ŷ = ½ŷ1, ŷ2,⋯, ŷK �T superimposed on each
resource block to simplify the task of the multiuser detection
network. The output ŷ obtained after optimization by the
signal compensation network gωð·Þ is expressed as follows:

ŷ = gω μ ; θ2ð Þ =Q0Tanh QL ⋯Tanh Q1 μð Þ + a1ð Þ⋯ð Þ + aLð Þ + a0,

ð11Þ

where θ2 is the weight and bias of the network, Ql represents
the weight matrix of the l-th layer in the signal compensa-
tion network, and al represents the bias vector of the l-th
layer and the second layer in the signal compensation net-
work. The activation function used in the hidden layer of
the network is the tanh activation function, the number of
hidden layers for the network is set to 3, and each hidden
layer has 64 hidden nodes. Therefore, the channel output
is equalized by an equalizing network to reduce the fading
distortion problem in the fading channel.

Finally, we use a multiuser detection network instead of
the MPA based on factor graphs in traditional algorithms to
detect user information. The multiuser detection network
gdðŷ ; θ3Þ decodes the received output signal ŷ =
½ŷ1, ŷ2,⋯, ŷK �T of the signal compensation network gϖðμ ;
θ2Þ and distinguishes the user data loaded in K resource
blocks. θ3 is the weight and bias of the network. The number
of hidden layers of the network is set to 4, and the number of
nodes in each hidden layer is 256. As shown in Figure 4, the
rectified linear unit (ReLU) and tanh are the activation func-
tion of the hidden layer and the activation function of the
output layer, respectively. Therefore, it is more appropriate
to combine the mean squared error function since the value
range of the tanh activation function is ½−1, 1�.

The decoded data of the multiuser network can be
expressed as follows:

ŝ = ŝ1, ŝ2,⋯, ŝ6½ �T = gd ŷ ; θ3ð Þ = 〠
K

k=1
gd ŷk ; θ

k
3

� �
: ð12Þ

3.3. Neural Network Training. The EN-DAE-SCMA system
uses an end-to-end training method to update the weights
and biases of all neural networks in the system and to estab-
lish an end-to-end mean squared error loss function:

L s, ŝ ; θf , θ1, θ2, θ3 ; ε
� �

= L s, g Hf s ; θf ; ε
� �

+ n ; θ1, θ2, θ3
� �� �

=
1
N
〠
N

i=1
s ið Þ − g Hf s ið Þ ; θf ; ε

� �
+ n ; θ1, θ2, θ3

� �� �2
:

ð13Þ

The mean squared error loss function averages the sum
of the squared errors of the target value and the estimated
value to reduce the sensitivity of sample data that deviate
greatly. Here, H =∑K

k=1∑
J
j=1hkj is the channel vector, and n

is the channel noise vector.
Based on the characteristics of the EN-DAE-SCMA sys-

tem, we use the adaptive moment estimation (ADAM)
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optimizer to update the network. The basic calculation
expression is as follows:

θt = θt−1 − α ·
m̂tffiffiffiffi
v̂t

p
+ ψ

, ð14Þ

where t is the momentum time step, m̂t is the deviation cor-
rection of the gradient mean, v̂t is the deviation correction of
the square gradient, ψ = 10−8 prevents the divisor from being
0, and the parameters are optimized by continuously updat-
ing mt and vt .

In the training process, user data are randomly gener-
ated, and one-hot encoding is performed on the data, s, as
the input data of the encoder, and is also the target value
for the prediction of the entire neural network. Similarly, ŝ
= gðHf ðsðiÞ ; θf ; εÞ + n ; θ1, θ2, θ3Þ, as the decoded data of
the decoder, are also the estimated value of the entire neural
network. At the same time, the training noise selected during
neural network training has a greater impact on the BER
performance of the system. The variance in the channel
noise power is expressed as β = E½jxj2�/ðηEb/N0Þ, where E½
jxj2� is the transmission signal power, Eb/N0 represents the
bit signal-to-noise ratio, and η represents the spectral effi-
ciency. In the following text, we use enumeration to select
the appropriate training noise.

4. Simulation Results

In this section, the performance of our proposed deep learn-
ing SCMA codec scheme is analyzed and verified through
simulation experiments. The experimental environment of
this paper uses TensorFlow, KERAS, and other deep learn-
ing libraries to conduct simulation experiments based on
Python 3.7.6. The SCMA system carries out simulation
experiments with 6 users occupying 4 resource blocks, and
the codebook size is set as 4. In addition, each user data
point takes 2 bits as a group for single thermal coding and
codebook mapping. Since we use deep learning methods to
adoptively learn the codebooks, the codebook design of each
user does not follow a certain modulation mode, and the
codebooks between users have great differences. The total
dataset includes 300,000 random data points for training,
and the data size of each batch is 400. The ADAM optimizer

with an initial learning rate of 0.00001 is used to update the
loss value of each sample with a gradient, and then, the
weight and bias of the neural network are updated.

First, we study the influence of the number of encoder
neural network hidden layers on the BER performance of
the EN-DAE-SCMA codec scheme to seek a balance
between BER performance and complexity. Figure 5
describes the influence of the number of layers of the
encoder on the BER performance of the system under the
channel environment of Eb/N0 = 8 dB, Eb/N0 = 12 dB, and
Eb/N0 = 16 dB. As the number of encoder layers increases,
the BER performance improves, but it tends to converge
after increasing to a certain number of layers. When the
number of encoder layers reaches 3, the algorithm perfor-
mance almost converges. Therefore, after the performance
comparison of each algorithm, we set the number of encoder
layers of the EN-DAE-SCMA system to 3.

Second, we aim to determine the impact of the input
noise layer in the encoder on the BER performance of EN-
DAE-SCMA. We use the standard deviation σ of the noise
to represent the amount of noise added to the noise layer
and carry out experiments under different Eb/N0 values. As
shown in Figure 6, the noise introduced by the input layer
will have an impact on the performance of the system. When
the noise standard deviation is σ = 0, which means no noise
layer is added at the input, the BER performance is lower
than the noise standard deviation σ = 0:1. However, as the
noise increases, the BER performance begins to show a
decreasing trend. If the neural network is trained by using
noise-polluted data to learn some features of Gaussian noise,
it can reduce the influence of Gaussian noise on the system
to a certain extent. For the high noise in the low Eb/N0 envi-
ronment, the influence of the denoising network is very
small, while the advantage of the denoising network is rela-
tively obvious and shows better robustness for the low noise
in the high Eb/N0 environment. After many experiments
and simulations, the optimal noise standard deviation σ of
the noise layer added in the proposed EN-DAE-SCMA
codec scheme proposed is 0.1.

To study the influence of neural networks trained under
different channel noise levels on the BER performance of
EN-DAE-SCMA, keeping the input noise layer of the
encoder unchanged, we select different channel noise levels
Eb/N0 to train the system. As shown in Figure 7, regardless
of the Eb/N0 values chosen for training, the BER perfor-
mance of EN-DAE-SCMA is similar in low testing Eb/N0
environments. In high Eb/N0 environments, when the values
of training Eb/N0 are set to 4 dB, 6 dB, and 8dB, the BER
performance is poor. When the values of training Eb/N0
are set to 10 dB and 12dB, the BER performance is obviously
advanced, especially for the high Eb/N0 regime. The experi-
mental results show that the training channel noise level Eb
/N0 greatly affects the BER performance of EN-DAE-
SCMA and that the proper value of training Eb/N0 should
be carefully selected in the training phase. Through many
experiments, the suitable value of training Eb/N0 is 10 dB,
and the system trained in this Eb/N0 environment has better
generalization ability, as shown in Figure 7. However, we
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ŷk

Ŝ1
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also note that the optimal value of training Eb/N0 may need
to be revised according to the Eb/N0 level of the actual com-
munication channel.

In Figure 8, we compare the EN-DAE-SCMA codec
scheme with the traditional 6-iteration MPA decoding algo-

rithm, the traditional scheme with an optimal codebook
design method [15], the deep learning-based codec scheme
of D-SCMA [31], and the DAE-SCMA scheme without the
equalization network of EN-DAE-SCMA. We set the num-
ber of nodes in the hidden layer of the multiuser detection
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Figure 5: BER performance under different numbers of encoder network layers.
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Figure 6: BER performance under different noise standard deviations.
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Table 1: MAC operations of SCMA decoders.

D-SCMA [31] EN-DAE-SCMA

MAC 794,694 214,208

8 Wireless Communications and Mobile Computing



network to 512 to achieve its better decoding performance in
DAE-SCMA. The BER performance is shown in Figure 8.
Figure 8 shows that the three deep learning-based SCMA
codec schemes outperform the traditional SCMA schemes.
These deep learning-based schemes have better encoders
than the traditional handcrafted codebook. The BER perfor-
mance of the proposed EN-DAE-SCMA codec scheme is
significantly better than that of the traditional MPA scheme,
the traditional codebook optimal design scheme [15], and
the codec scheme of the D-SCMA system [31]. Because the
system has joined the equalization network, it can reduce
the fading distortion caused by the influence of the transmis-
sion channel, and it is more practical than other solutions
when applied to Rayleigh fading channels that are closer to
the real environment. It is worth noting that the DAE-
SCMA scheme without the equalization network also out-
performs the D-SCMA scheme. This is because the DAE-
SCMA scheme artificially introduces a noise layer to make
the training of the system more robust, so the encoder learns
a better codebook than D-SCMA.

Finally, we analyze the algorithm complexity of the pro-
posed EN-DAE-SCMA scheme. The multiply accumulated
(MAC) operations of the EN-DAE-SCMA decoder are as
follows:

MAC = 2KNP,1 + 〠
LP−1

n=1
Np,nNp,n+1
� �

+ 2KNS,1 + 〠
LS−1

n=1
NS,nNS,n+1ð Þ

+NS,LSND,1 + 〠
LD−1

n=1
ND,nND,n+1ð Þ +ND,LD ,

ð15Þ

where K represents the number of resource blocks and LP,
LS, and LD represent the number of hidden layers of the
parameter estimation network, signal compensation net-
work, and multiuser detection network, respectively. Simi-

larly, Np,n, Np,n, and ND,n represent the number of nodes
of the nth hidden layer of each network.

For the sake of fairness, we choose to compare various
algorithms that all use deep learning and the same experi-
mental platform and simulation machine, where the CPU
processor is an i7-6700 and has 8GB of running memory
and where the elapsed time of the program is exploited to
represent the complexity. Table 1 shows the number of
MAC operations of deep learning- (DL-) based SCMA
decoders. The obtained results in Figure 9 show that the
computing time of the proposed scheme is lower than that
of the D-SCMA scheme. Consequently, the proposed EN-
DAE-SCMA scheme has a lower computational complexity.

5. Conclusions

In this paper, we proposed a novel DL-based SCMA codec
scheme for the uplink Rayleigh fading channel. On the one
hand, we designed a decoding network based on DL. Com-
pared with other conventional decoders, an equalization net-
work composed of two DNN units was added to the decoder.
Obtaining the parameter characteristics of the Rayleigh fad-
ing channel and compensating for the phase shifts of the
received signals are executed by this equalization network.
The decoder combined with the equalization network and
multiuser detection network can achieve better BER perfor-
mance. On the other hand, we make changes on the basis of
the D-SCMA encoder and introduce an extra noise layer at
the input in the training phase. It enhances the robustness
of the encoder. Moreover, by adjusting the structure and
scale of the neural network, the whole encoding and decod-
ing network convergence speed was accelerated. Simulation
and analysis results show that our proposed SCMA codec
scheme requires significantly less training data and that the
decoding complexity is reduced compared with that of D-
SCMA, which also adopts DL schemes. Finally, unlike tradi-
tional codebooks based on handcrafted designs, our scheme
can autonomously learn ideal codebooks with robustness
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through denoising autoencoder technology, which can
improve the applicability of the system in actual engineering.
At present, our proposed scheme has achieved a significant
performance improvement compared with the traditional
SCMA scheme and D-SCMA scheme when the channel state
information remains unchanged. In the future, we will study
the use of a generative adversarial network to simulate the
influence of Rayleigh fading channels or try to introduce
transfer learning methods so that the system can still obtain
performance advantages compared to traditional communi-
cation systems when the channel state information changes
rapidly.
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Conflicts of Interest

The authors declare that there are no conflicts of interest.

References

[1] C. Bockelmann, N. Pratas, H. Nikopour et al., “Massive
machine-type communications in 5g: physical and MAC-
layer solutions,” IEEE Communications Magazine, vol. 54,
no. 9, pp. 59–65, 2016.

[2] J. Xia, L. Fan, W. Xu et al., “Secure cache-aided multi-relay net-
works in the presence of multiple eavesdroppers,” IEEE Trans-
actions on Communications, vol. 67, no. 11, pp. 7672–7685,
2019.

[3] H. Ye, L. Liang, G. Y. Li, and B. H. Juang, “Deep learning-based
end-to-end wireless communication systems with conditional
GANs as unknown channels,” IEEE Transactions on Wireless
Communications, vol. 19, no. 5, pp. 3133–3143, 2020.

[4] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and
K. Higuchi, “Non-orthogonal multiple access (NOMA) for cel-
lular future radio access,” in 2013 IEEE 77th Vehicular Technol-
ogy Conference (VTC Spring), pp. 1–5, Dresden, Germany, 2013.

[5] H. Nikopour and H. Baligh, “Sparse code multiple access,” in
2013 IEEE 24th Annual International Symposium on Personal,
Indoor, andMobile Radio Communications (PIMRC), pp. 332–
336, London, UK, 2013.

[6] S. Hara and R. Prasad, “Overview of multicarrier CDMA,”
IEEE Communications Magazine, vol. 35, no. 12, pp. 126–
133, 1997.

[7] R. Hoshyar, F. P. Wathan, and R. Tafazolli, “Novel low-density
signature for synchronous CDMA systems over AWGN chan-
nel,” IEEE Transactions on Signal Processing, vol. 56, no. 4,
pp. 1616–1626, 2008.

[8] J. Liu, G. Wu, S. Li, and O. Tirkkonen, “On fixed-point imple-
mentation of log-MPA for SCMA signals,” IEEE Wireless
Communications Letters, vol. 5, no. 3, pp. 324–327, 2016.

[9] H. Mu, Z. Ma, M. Alhaji, P. Fan, and D. Chen, “A fixed low
complexity message pass algorithm detector for UpLink
SCMA system,” IEEE Wireless Communications Letters,
vol. 4, no. 6, pp. 585–588, 2015.

[10] Y. Du, B. Dong, Z. Chen, J. Fang, and L. Yang, “Shuffled mul-
tiuser detection schemes for uplink sparse code multiple access

systems,” IEEE Communications Letters, vol. 20, no. 6,
pp. 1231–1234, 2016.

[11] F. Wei andW. Chen, “Low complexity iterative receiver design
for sparse code multiple access,” IEEE Transactions on Com-
munications, vol. 65, no. 2, pp. 621–634, 2017.

[12] C. Zhang, C. Yang, X. Pang et al., “Efficient sparse code multi-
ple access decoder based on deterministic message passing
algorithm,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 4, pp. 3562–3574, 2020.

[13] C. Husmann, C. Jayawardena, A. Maaref, P. Xiao, and
K. Nikitopoulos, “Low-complexity SCMA detection for unsu-
pervised user access,” IEEE Communications Letters, vol. 25,
no. 3, pp. 1019–1023, 2021.

[14] J. Bao, Z. Ma, G. K. Karagiannidis, M. Xiao, and Z. Zhu, “Joint
multiuser detection of multidimensional constellations over
fading channels,” IEEE Transactions on Communications,
vol. 65, no. 1, pp. 161–172, 2017.

[15] L. Tian, J. Zhong, M. Zhao, and L. Wen, “A suboptimal algo-
rithm for SCMA codebook design over uplink Rayleigh fading
channels,” in 2018 IEEE 87th Vehicular Technology Conference
(VTC Spring), pp. 1–5, Porto, Portugal, 2018.

[16] J. Bao, Z. Ma, Z. Ding, G. K. Karagiannidis, and Z. Zhu, “On
the design of multiuser codebooks for uplink SCMA systems,”
IEEE Communications Letters, vol. 20, no. 10, pp. 1920–1923,
2016.

[17] L. Yu, P. Fan, D. Cai, and Z. Ma, “Design and analysis of
SCMA codebook based on Star-QAM signaling constella-
tions,” IEEE Transactions on Vehicular Technology, vol. 67,
no. 11, pp. 10543–10553, 2018.

[18] X. Li, F. Dong, S. Zhang, andW. Guo, “A survey on deep learn-
ing techniques in wireless signal recognition,” Wireless Com-
munications and Mobile Computing, vol. 2019, Article ID
5629572, 12 pages, 2019.

[19] H. Ye, G. Y. Li, and B. Juang, “Power of deep learning for chan-
nel estimation and signal detection in OFDM systems,” IEEE
Wireless Communications Letters, vol. 7, no. 1, pp. 114–117,
2018.

[20] G. Gui, H. Huang, Y. Song, and H. Sari, “Deep learning for an
effective nonorthogonal multiple access scheme,” IEEE Trans-
actions on Vehicular Technology, vol. 67, no. 9, pp. 8440–8450,
2018.

[21] Y.Wang, M. Liu, J. Yang, and G. Gui, “Data-driven deep learn-
ing for automatic modulation recognition in cognitive radios,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 4,
pp. 4074–4077, 2019.

[22] J. Xia, D. Deng, and D. Fan, “A note on implementation meth-
odologies of deep learning-based signal detection for conven-
tional MIMO transmitters,” IEEE Transactions on
Broadcasting, vol. 66, no. 3, pp. 744-745, 2020.

[23] K. He, Z. Wang, D. Li, F. Zhu, and L. Fan, “Ultra-reliable MU-
MIMO detector based on deep learning for 5G/B5G-enabled
IoT,” Physical Communication, vol. 43, pp. 101181–101187,
2020.

[24] L. He, K. He, L. Fan, X. Lei, A. Nallanathan, and G. K. Kara-
giannidis, “Towards optimally efficient search with deep learn-
ing for large-scale MIMO systems,” IEEE Transactions on
Communications, pp. 1–12, 2022.

[25] S. Tang, “Battery-constrained federated edge learning in UAV
enabled IoT for B5G/6G networks,” Physical Communication,
vol. 47, article 101381, 2021.

10 Wireless Communications and Mobile Computing



[26] W. Zhou, “PSO based offloading strategy for cache-enabled
mobile edge computing UAV networks,” Cluster Computing,
no. 24, pp. 1–13, 2021.

[27] L. Chen, “Intelligent ubiquitous computing for future UAV-
enabled MEC network systems,” Cluster Computing, no. 25,
pp. 1–10, 2021.

[28] S. Tang and L. Chen, “SNIFF: a scalable network inference
framework for measuring end-to-end performance,” IEEE
Trans. Network Science and Engineering, pp. 1–12, 2022.

[29] L. Chen, “Physical-layer security on mobile edge computing
for emerging cyber physical systems,” Computer Communica-
tions, pp. 1–10, 2022.

[30] T. O’Shea and J. Hoydis, “An introduction to deep learning for
the physical layer,” IEEE Transactions on Cognitive Communi-
cations and Networking, vol. 3, no. 4, pp. 563–575, 2017.

[31] M. Kim, N. Kim, W. Lee, and D. H. Cho, “Deep learning-aided
SCMA,” IEEE Communications Letters, vol. 22, no. 4, pp. 720–
723, 2018.

[32] Y. Han, Z.Wang, Q. Guo, andW. Xiang, “Deep learning-based
detection for moderate-density code multiple access in IoT
networks,” IEEE Communications Letters, vol. 24, no. 1,
pp. 122–125, 2020.

[33] J. Lin, S. Feng, Y. Zhang, Z. Yang, and Y. Zhang, “A novel deep
neural network based approach for sparse code multiple
access,” Neurocomputing, vol. 382, pp. 52–63, 2020.

[34] C. P. Wei, H. Yang, C. P. Li, and Y. M. Chen, “SCMA decoding
via deep learning,” IEEE Wireless Communications Letters,
vol. 10, no. 4, pp. 878–881, 2021.

11Wireless Communications and Mobile Computing


	Equalization Network-Aided SCMA Codec Scheme with Deep Learning
	1. Introduction
	2. System Model
	3. Proposed Scheme
	3.1. SCMA Encoder
	3.2. SCMA Decoder
	3.3. Neural Network Training

	4. Simulation Results
	5. Conclusions
	Data Availability
	Conflicts of Interest

