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Smartwatches are increasingly popular in our daily lives. Motion gestures are a common way of interacting with smartwatches, e.g.,
users can make a movement in the air with their arm wearing the watch to trigger a specific command of the smartwatch. Motion
gesture interaction can compensate for the small screen size of the smartwatch to some extent and enrich smartwatch-based
interactions. An important aspect of motion gesture interaction lies in how to determine the start and end of a motion gesture.
This paper is aimed at selecting gestures as suitable delimiters for motion gesture interaction with the smartwatch. We designed six
gestures (“shaking wrist left and right,” “shaking wrist up and down,” “holding fist and opening,” “turning wrist clockwise,”
“turning wrist anticlockwise,” and “shaking wrist up”) and conducted two experiments to compare the performance of these six
gestures. Firstly, we used dynamic time warping (DTW) and feature extraction with KNN (K-nearest neighbors) to recognize these
six gestures. The average recognition rate of the latter algorithm for the six gestures was higher than that of the former. And with
the latter algorithm, the recognition rate for the first three of the six gestures was greater than 98%. According to experiment one,
gesture 1 (shaking wrist left and right), gesture 2 (shaking wrist up and down), and gesture 3 (holding fist and opening) were
selected as the candidate delimiters. In addition, we conducted a questionnaire data analysis and obtained the same conclusion.
Then, we conducted the second experiment to investigate the performance of these three candidate gestures in daily scenes to
obtain their misoperation rates. The misoperation rates of two candidate gestures (“shaking wrist left and right” and “shaking wrist
up and down”) were approximately 0, which were significantly lower than that of the third candidate gesture. Based on the above
experimental results, gestures “shaking wrist left and right” and “shaking wrist up and down” are suitable as motion gesture
delimiters for smartwatch interaction.
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1. Introduction

Smartwatches have become a popular device in people’s
daily life [1]. People can use smartwatches in many day-to-
day activities such as checking emails and sending and
receiving messages [2]. Besides, smartwatches are also con-
venient for health management, e.g., sleep and heart rate
monitoring [3, 4].

The questions of how to improve smartwatch interaction
has attracted much attention in the HCI field. Currently,
most popular commercial smartwatches such as Apple
Watch still rely on touch interaction, physical buttons, and
voice input [5]. These interaction methods are limited by
screen size and environments, restricting the application of

smartwatches to a wider extent. Therefore, smartwatches
need new interaction methods to improve usability [6].
Motion gestures have potential advantages for smart-
watch interaction [7]. For example, a user can draw a circle
in the air with the wrist wearing a smartwatch to trigger a
specific command of the smartwatch. Compared with inter-
action methods such as touchscreens, motion gesture inter-
action is less likely to be limited by the size of the screen.
However, motion gesture interaction needs to address two
main challenges. The first one is how to effectively obtain
motion gesture data. Popular motion gesture recognition
systems rely on cameras to capture gesture images or sensors
such as gyroscopes and accelerometers to collect user action
data [8-11]. Since smartwatches are mainly worn on the
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wrist and move along with the wrist, we can use in-built sen-
sors of smartwatches to collect gesturing data. Compared to
gesture images captured using a camera, sensor data requires
fewer computational resources to collect and can be used to
identify gesture delimiters more effectively. The second one
is how to determine the start and end of an intended gesture
[12]. In the process of motion gesture interaction, the smart-
watch needs to continuously record movement data, both
nonuser-intended (e.g., the wrist keeps swinging while
walking) and user-intended (performing defined gestures).
Therefore, we need to specify the start and end of the
intended gesture. There are two common ways. First, the
user clicks the button to determine the start and end of a
motion gesture [13], which usually requires the nonwatch-
wearing hand to perform the click. This could interrupt
the interaction flow. Second, the user performs a defined
gesture as a delimiter. The defined delimiter is used to distin-
guish the gestures that the user intends to input from unin-
tended ones. The delimiter should be significantly different
from the common actions and other gestures to avoid false
recognition and should be simple enough to perform. We
use delimiters to determine the start and end of a gesture,
which allows for a more natural way of user interaction
and requires no additional hardware than using buttons.

This study is aimed at selecting suitable motion gestures
as delimiters for smartwatches to improve smartwatch inter-
action in low power consumption and natural way. We first
selected six candidate gestures: “shaking wrist left and right,”
“shaking wrist up and down,” “holding fist and opening,”
“turning wrist clockwise,” “turning wrist anticlockwise,”
and “shaking wrist up” (Figure 1). Then, we conducted two
experiments to evaluate the performance of these gestures
as motion gesture delimiters. Considering the relatively low
computing power of the watch and the requirement for fast
and stable delimiter recognition, we used DTW (dynamic
time warping) [14] and feature extraction with KNN
(K-nearest neighbors) [15] to perform gesture recognition
based on the data collected by the inbuilt gyroscopes and
accelerometers of smartwatches. Results showed that “shak-
ing wrist left and right,” “shaking wrist up and down,” and
“holding fist and opening” achieved significantly higher rec-
ognition rates than “turning wrist clockwise,” “turning wrist
anticlockwise,” and “shaking wrist up.” In addition, we con-
ducted a usability evaluation to support this conclusion.
Hence, we further evaluated the performance of the former
three gestures in daily scenes in terms of misoperation rates.
“Shaking wrist left and right” and “shaking wrist up and
down” had a misoperation rate of approximately 0, which
could be primarily considered as the delimiters for smart-
watch interaction.

2. Related Work

2.1. Motion Gesture Data Collection and Gesture Recognition.
Motion gesture data collection for wearable devices usually
relies on sensors. For example, EMG sensors [16, 17] or pres-
sure sensors [18] can be used to collect data generated by hand
movements. However, current smartwatches do not have such
sensors. Instead, it is common to use inbuilt sensors such as
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FIGURE 1: Six delimiter candidates. Gesture (a): “shaking wrist left
and right”; gesture (b): “shaking wrist up and down”; gesture (c):
“holding fist and opening”; gesture (d): “turning wrist clockwise”;
gesture (e): “turning wrist anticlockwise”; and gesture (f):
“shaking wrist up.”.

accelerometers and gyroscopes to sense wrist movement and
collect gesture data [19-21]. Our study also used these sensors
for gesture data collection.

There are many methods for motion gesture recognition.
Usually, feature extraction is carried out for gesture data,
and neural network algorithms such as CNN, RNN, FNN,
and HMM are trained for gesture recognition [22-26]. In
our study, DTW (dynamic time warping) [14] and feature
extraction + KNN(K-nearest neighbors) [15] are used for
gesture recognition, respectively, as they need low sensor
requirements and low computational requirements.

DTW can match two sequences of different lengths so
that the minimum distance between the two sequences can
be calculated. Then, the matching result can be compared
based on this distance. The DTW algorithm has the advan-
tages of short computation time. Sensors on smartwatches
commonly collect gesture data at a fixed time interval. Two
gesture data to be compared may have different lengths
and cannot be matched directly. The DTW algorithm can
be used to match data sequences of different lengths. And
the distance and similarity between the two sequences of
sample and template are calculated.

The feature extraction + KNN algorithm extracts some
features of the whole set of gesture data and classifies the
gesture data according to these features for gesture recogni-
tion. KNN calculates the distance between the sample X and
the template samples and takes the top K template samples
closest to it. If the top K samples have the most samples
belonging to category R, then sample X also belongs to cat-
egory R. K is usually an odd number not greater than 20.
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Different K values generally lead to different classification
results. Therefore, an optimal K value should be selected
according to the results. The classification of template sam-
ples needs to be accurate as possible to ensure the correct
classification of test samples.

2.2. Motion Gesture Interaction and Gesture Delimiters.
Motion gestures are a promising way to interact with wear-
able devices [19, 27, 28]. Gesture interaction is especially
suitable for mobile devices, such as changing the screen dis-
play direction by tilting the phone [29] and moving the cur-
sor with gestures [30]. In addition, gesture interaction can
also achieve more complex operations, such as text input
with gestures on smartwatches [31], identity authentication
by recognizing user gestures [32], and access data on virtual
bookshelves around users [33].

An important step of using motion gestures is to sepa-
rate normal smartwatch motion from a user’s intended
input. A common way to achieve it is to press button [13],
but such a way requires both hands for interaction, which
may not be always feasible. [34] collected IMU data to recog-
nize three distinct phases of gesture entry: the start, middle,
and end of a gesture motion for mobile devices. [35] used a
dedicated delimiter sensor to detect the start and end of a
gesture, which requires additional device support. [36] pro-
posed a method for evaluating smartwatch delimiters using
DTW, but using only accelerometers as data. Previous
research has proposed to use double flip (ie., rotating a
smartphone along its long side to flip it twice) [12]. How-
ever, such a delimiter may not be applicable to wrist-worn
devices, as it is in constant motion and therefore more error-
prone. To find proper gesture delimiters for smartwatch
interaction, our study considered six gesture candidates and
examined their performance with two experiments.

3. Candidate Gesture Delimiters

Gesture delimiters applicable to smartwatch interaction
should satisfy the following requirements:

(i) Easy to recognize: the smartwatch system needs to
recognize gesture delimiters with high accuracy

(ii) Easy to learn: the user can learn gesture delimiters
easily and recall them without much effort

(iii) Easy to perform: gesture delimiters would be per-
formed frequently; so, they should have simple
and should not lead to high hand and arm fatigue

To satisfy these requirements, six gestures were selected
as candidate delimiters in our study. A pilot experiment with
6 right-handed participants was conducted to measure the
average time of performing these gestures.

(i) Gesture 1: shaking wrist left and right. As shown in
Figure 1(a), the user shakes the wrist twice with a
small movement from side to side, and that the
mean time of performing this gesture was 0.76s

(ii) Gesture 2: shaking wrist up and down. As shown in
Figure 1(b), the user slightly shakes his wrist twice
from top to bottom. The average execution time of
this gesture was 0.72s

(iii) Gesture 3: holding fist and opening. As shown in
Figure 1(c), the user clenches all fingers together
and then opens them. The average execution time
of this gesture was 0.55s

(iv) Gesture 4: turning wrist clockwise. As shown in
Figure 1(d), the user makes a fist and rotates the fist
90 degree clockwise. The average execution time
was 1.13s

(v) Gesture 5: turning wrist anticlockwise. As shown in
Figure 1(e), the user makes a fist and rotates the fist
90 degree counterclockwise. The average time taken
for gesture 5 was 1.10s

(vi) Gesture 6: shaking wrist up. As shown in Figure 1(f),
the user shakes the wrist upward significantly. Com-
pared with the up-and-down shake of gesture 2, the
movement range of gesture 6 is larger. The average
time for performing gesture 6 was 0.53s

Gestures 4 and 5 were designed based on the double flip
gesture [12], which has been verified as a usable delimiter for
mobile phone interaction. We would like to exam if gestures
4 and 5 would be feasible as a delimiter for smartwatch
interaction.

4. Experiment One: Delimiter Recognition with
DTW and Feature Extraction + KNN

We conducted an experiment to evaluate the effectiveness of
the six delimiter candidates. The experiment consisted of
two parts. First, we examined recognition rates of the six
delimiters with DTW and feature extraction + KNN algo-
rithms. Then, we evaluated the usability of the six delimiters
according to subjective questionnaires.

4.1. Experimental Apparatus and Participants. The experi-
ment was conducted with a Huawei Watch 2 smartwatch,
which had a 1.2-inch round AMOLED display with a resolu-
tion of 390 x 390 pixels, a speed sensor, and a gyroscope sen-
sor. The program was written in Python. In the experiment,
sensor data of the smartwatch were recorded as gesture data,
including the three axes of the acceleration and gyroscope
sensors. Samples were recorded at 20 ms intervals.

There were a total of 10 participants (8 males) with an
average age of 22.6 years. Each participant was asked to per-
form each gesture 30 times while wearing a smartwatch. Six
of the students participated in the pilot study of gesture
selection. Others did not have experience using smart-
watches. All participants were right-handed and wore the
smartwatch on their right hand. To obtain better results,
we let the experimenter wear the watch with their dominant
hand. Since the two hands are symmetrical, it should be
reasonable to generalize the results from the right hand to
the left hand.



In total, we collected 1800 gesture samples from 10 par-
ticipants. We selected one sample per person per gesture for
training, which means 60 samples for training and the
remaining 1740 gestures for testing.

4.2. Data Preprocessing

4.2.1. Smoothing. Due to hand jitter and false operation of
the user, the collected sensor data had a lot of noise.
Figure 2(a) shows the raw data of gesture 1 collected from
the x-axis of the accelerometer, which have many burrs
and spikes. The burrs and spikes would reduce the accuracy
and increase the difficulty of gesture segmentation and fea-
ture extraction. Smoothing filtering algorithms can reduce
the noise.

There are many algorithms for smoothing filtering, e.g.,
moving average filter, median filter, and Gaussian filter.
The algorithm of moving average filter was chosen in this
study because it is relatively simple but effective. The moving
average filter calculates the average value within a window
and collects new data for each movement. The window
slides forward, and the average value is calculated as the
valid data. Figure 2(b) shows the data from Figure 2(a) after
smoothing and filtering. It can be seen that after the moving
average filter, the burrs and spikes in the data are effectively
reduced.

4.2.2. Gesture Segmentation. In this experiment, we collected
continuous three-axis acceleration sensors and three-axis
gyroscope sensor data. The data collected by the sensors
include unintended-gesture data and intended-gesture data.
Gesture segmentation needs to extract valid gesture data
from these data. Figure 3 shows part of the collected data
of one trial of performing gesture 1. The data from 0 to 3,
4 to 6, and 7.5 to 8.55s are not related to the delimiter, and
the rest data is valid delimiter data. It can be seen that when
the participant is performing the delimiter, the collected data
is fluctuating significantly; when the participant is not per-
forming the gesture, the collected data is fluctuating gently.
So, we can rely on this feature to segment gestures.

We used differential methods to implement gesture seg-
mentation. Differential methods can effectively show the
volatility of data and have the advantages of easy implemen-
tation and running in real-time. A differential method is per-
formed to obtain the total change data of two sensors, and
then the start and end of the gesture are calculated by com-
paring the total change of two sensors with the preset
threshold value. The main steps of gesture segmentation
using the differential method are as follows.

Calculate the data variation: the formula for calculating
the variation is as follows:

Aay = |x = X5 | + [V = Vi | + 12— 2 s (1)

where x, y,, and z; represent the values of the sensor in
the x, y, and z axis at the k — th data point, respectively. Since
the data collected in this experiment come from two differ-
ent sensors, it is necessary to calculate the variation of two
sensors and add the two variations to obtain the total varia-
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tion AA;. To make the system more robust, we use the sim-
ple moving average algorithm (SMA) with a window size of
3 (W =3) to smooth the gesture data. The mean of the k-th
and subsequent W —1 data points is denoted as SMA,,
which is the k-th data point after smoothing. SMA, is calcu-
lated as Eq. (2).

1 k+W
SMA, = o Y A4 (2)
k

Calculate the threshold: Figure 4 shows the data after dif-
ferential processing in a trial. The results show the fluctua-
tion of the data. The more intense the fluctuation, the
more likely the data from valid gestures. For data lasting
more than eighty seconds, the differential value fluctuations
appear twenty times, and each fluctuation corresponds to
the data variation of the gesture’s six-axis data in Figure 3.
To effectively identify the valid gesture interval, two thresh-
olds need to be set: “Start” represents the start threshold, and
“End” represents the end threshold. And to filter out the
noise and the integrity of the gesture data, “Start” should
be greater than “End.”

Since the fluctuation range of gestures is different, the
thresholds of gestures are also different. The threshold values
selected for gestures are calculated based on our experimen-
tal data, as shown in Table 1. For example, when we segment
the differential data of gesture 1 in Figure 4, we first detect
the differential value 0.9 as the beginning of the gesture,
and then we mark the end of the gesture when the differen-
tial value drops to 0.6. Generally, the greater the fluctuation
range of a gesture, the greater the data variation, the larger
difference between the “Start” and “End” thresholds, and
vice versa.

Result of segmentation is as follows: Figure 5(a) shows
the fluctuation graph of a valid gesture after the segmenta-
tion of Figure 3. Figure 5(b) shows the fluctuation graph of
a single valid gesture data for gesture 2. It can be seen that
the trends of the sensor data for gesture 1 and 2 are different
due to the different trajectories of gesture movement. Hence,
we can perform gesture recognition based on the data
characteristics.

In addition to the data trend, features such as mean, var-
iance, and peak-to-peak values can also reflect the differ-
ences in this data. Figure 6 shows the mean and variance
between gestures 1 and 2 on different axes. The data for ges-
tures 1 and 2 are very different, except for the average values
over the acceleration z-axis. Hence, we can recognize ges-
tures based on such feature differences.

4.3. Classification Methods. This study uses both DTW and
feature extraction with KNN methods for gesture recognition.
Although these are traditional methods, they are easy to
implement and suitable for fast recognition of delimiters on
smartwatches with low computational power. Future work
will consider other algorithms to cater for other requirements
of gesture interaction (e.g., higher recognition accuracy).

4.3.1. DTW. Dynamic time warping (DTW) is a simple
recognition algorithm based on the idea of dynamic
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First, the system creates an N x M matrix D, where the
number of rows N represents the number of frames of the
sample sequence to be recognized, and the number of col-
umns M represents the number of frames of the template
sequence, i.e., the sample sequence to be identified is T
=[T,, T,... T,_;, T,], and the template sequence is R=[R,
R,..R,,_;, R,]. T, is the feature of the n-th frame with the
frame length f. Similarly, R,, represents the feature of the
m-th frame of the template with the frame length f. Since
this experiment collects six-axis data from two sensors, the
length of each frame is 6, i.e., f =6, which represents the
acceleration three-axis coordinate and gyroscope three-axis
coordinate. D;; represents the shortest distance between

node i of T and node j of R. The Dy, is the shortest distance
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Time (s) Then, we calculate Dij. Since the two sample sequences
are not equal in length, we use the nonlinear matching
Ficure 4: Differential processing result. method in DTW. As shown in Figure 7, we take T as the
horizontal axis and R as the vertical axis and draw a grid dia-
gram in the coordinate system. The intersection points in
TasLE 1: Gesture threshold. the grid represent the distance between the template at
Gesture Start End frame m and the sample to be identified at frame n. We find
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where d(i,, j,,) is the distance between two sequences
at (m,n). This experiment uses the 2-norm algorithm,
the Euclidean distance, to calculate the distance between
two vectors.

The short distance Dy, between the template R and the
sample T indicates that the template R has a high similarity
with T, which means they may come from the same gesture
set. By calculating the shortest distance between the sample
to be detected and multiple templates, we can get the best
matching gesture based on the maximum similarity, i.e.,
the shortest matching distance. The algorithmic process of
gesture recognition using DTW is shown in Figure 8.

4.3.2. K-Nearest Neighbor. The K-nearest neighbor algo-
rithm (KNN) is a simple method in data mining, and its
key idea is that if a sample has K nearest samples, most of
which belong to class R, then the sample also belongs to class
R. The selection of K has a significant impact on the overall
classification result; so, an optimal K value should be
selected based on comparative experiments, and K is usually
an odd number no greater than 20.

In general, the label of the template data is known, but
the label of the test sample is unknown. The system calcu-
lates distance (similarity) between the test samples and the
templates by Euclidean distance and selects K nearest sam-
ples. Based on the class of K nearest samples, the system

finds the most occurring class R, which is the label of the test
sample. The algorithm described as follows:

(1) Calculating the distance between the test sample and
the template data

(2) Sorting in ascending order by distance
(3) Selecting the K nearest samples

(4) Calculating the occurrence frequency of the class of
K nearest samples

(5) According to the class and occurrence frequency of
K nearest samples, the class R with the highest
occurrence frequency is selected, which is the class
of test sample

4.4. Results

4.4.1. Result Analysis of DTW. After the preprocessing step
in Section 5.2, we used the DTW algorithm to perform ges-
ture recognition. The DTW algorithm depends on the
results of matching with templates. To eliminate recognition
errors caused by inaccurate templates, we used 10 templates
per gesture and took the average value. That is, there were 10
templates R for each gesture, and we need to calculate the
distance of the test gesture T from these templates R and
take the mean values of them as the final distance between
the test gesture T and the training sample. The DTW algo-
rithm is shown in Figure 7.

The DTW algorithm can easily recognize gestures, but it
has a high computational cost. Although the time for DTW
to recognize a single gesture data is short, it took signifi-
cantly longer times when the amount of gesture data
increases. In this experiment, 100 samples were collected
for each gesture, and it took about 3 minutes to calculate
the recognition result for each gesture data set. Although
the approximate FastDTW algorithm can be considered, it
reduces the running time at the expense of lowering recogni-
tion rate. In order to achieve a high recognition rate and
short recognition time for a single gesture, the classic
DTW algorithm was used in this study.

Figure 9 shows the recognition rate of each gesture. Since
the motion range of gesture 3 is relatively slight, it is easily
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confused with other gestures. After excluding gesture 3,
Figure 10 shows the recognition rates of other gestures. It
can be found that gesture 6 (shaking wrist up) and gesture
2 (shaking wrist up and down) are easily misidentified due
to their high similarity in movement.

4.4.2. Result Analysis of Feature Extraction with KNN. After
the preprocessing step in Section 5.2, we used the feature
extraction + KNN algorithm for delimiter recognition. We
needed to extract features from the data and then performed
delimiter recognition based on the KNN algorithm.

We considered 30 features for our purpose. For x, y, and
z axis of the accelerometer and gyroscope, we used the fea-
tures of average value, variance, peak-to-peak, and inter-
quartile. Besides, for the accelerometer and gyroscope, we
used the correlation coefficient between x-axis and y-axis,

between x-axis and z-axis, and between y-axis and z-axis.
We then examined if using a subset of the 30 features could
achieve similar recognition rates as using the 30 features. We
employed the ExhaustiveSearch method provided on WEKA
(Waikato Environment for Knowledge Analysis). This
method finds a result with the highest recognition rate in
the full set and all subsets. By combining it with evaluation
strategies (CfsSubsetEval), we found that using all 30 fea-
tures could obtain the highest recognition rate. Therefore,
all the 30 features were adopted for further analysis with
the KNN algorithm.

The K value of KNN has a significant impact on the
experimental results, the estimation, and approximation
errors. The K value is usually an small odd number to bal-
ance the estimation and approximation errors. The K value
was set as 1, 3, 5, and 7 in this study. Table 2 shows the result
of recognition rates for the six gestures with the four K
values. After a comprehensive comparison, the gesture rec-
ognition rate with K =1 should have the highest recognition
accuracy. As shown in Figure 11, the recognition results of
feature extraction with KNN are much better than the
traditional DTW algorithm, e.g., the recognition rates of
gestures 1, 2, and 3 reached 0.99. Overall, the recognition
rates of gestures 4, 5, and 6 are lower than gestures 1, 2,
and 3. We hence further look at the false recognition results
of the three gestures.

Figure 12 shows that the false recognition results of ges-
tures 4 and 5 are very similar. 86% of the false recognition
results of gesture 4 were recognized as gesture 5, and 98%
of the false recognition results of gesture 5 were recognized
as gesture 4. By analyzing the motion trend of gestures 4
and 5, we found that the difference between gestures 4 and
5 only lies in the direction of rotation, which is weakly
reflected in the data of x- and z-axes of gyroscope. The range
of motion and the amount of change of different axes of the
sensor are not greatly affected by the direction. Therefore,
the recognition algorithm of feature extraction with KNN
cannot distinguish well the differences between gestures 4
and 5. 84% of the false recognition results for gesture 6 were
recognized as gesture 2. This is largely due to similar ranges
of motion, i.e., gesture 2 was performed with a small jitter,
and gesture 6 with too little range performed by the user
was recognized as gesture 2. If the range of the upward fling
of gesture 6 is defined with a threshold, then the fatigue of
performing gesture 6 would increase and could not be suit-
able for some people.

Moreover, we deployed the algorithm on Huawei Watch
2 with Snapdragon Wear 2100 processor and tested the algo-
rithm execution time. We used the time module in Java to
check the time consumption of feature extraction and the
KNN for the test set and then got 12.1ms and 3.5ms for
every sample. The algorithm’s low computing power
requirements further contribute to the deployment and
research of smartwatch delimiter research on mobile devices.

4.4.3. Impact of Gestures with Different Execution Times. We
turther discuss the influence of gestures with different execu-
tion times on recognition accuracy. Our system can reliably
achieve a high recognition rate for gestures with different
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TaBLE 2: The accuracy of several K.

Gesture Gesture Gesture Gesture Gesture Gesture
1 2 3 4 5 6
K=1 1 0.98 1 0.64 0.47 0.88
K=3 1 0.99 0.99 0.64 0.46 0.79
K=5 099 0.99 0.99 0.57 0.41 0.76
K=7 0.99 0.97 0.99 0.42 0.56 0.73
Value
Gesture3 1 - 0.9
Gesture2 1 -
© 0.8
5 Gesturel 4 -
g Gesture6 0.7
& 1
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FiGURE 11: The accuracy of KNN when K =5.

execution times from 0.4s to 2s. In the experiment, every
participant performed six gestures with as fast as possible,
standard, and as slow as possible speed. To test the accuracy
of the KNN algorithm for gestures with different execution
times, we collected data from another five participants (three
males and two females) with the same setting of experiment
one. Table 3 shows the accuracy for gestures with different
execution times. We observe that the accuracy is similar
for gestures with fast and standard execution times, while
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Ficure 12: Confusion matrix graph generated using KNN when
K =5.

there is a slight decrease in accuracy at shorter execution
times. The speed limit of performing the gestures may lead
to this difference. The time difference between gestures with
fast and standard execution speed is slight (from 0.1 to 0.3 s),
leading to similar accuracy. However, the time difference
between gestures with slow and standard execution speed
is more significant (from 0.4 to 1s), resulting in slightly
lower accuracy. Generally, our system achieves a high recog-
nition rate for gestures with different execution times,
benefiting from the five features together.

4.5. Questionnaire Data Analysis

4.5.1. Questionnaire Settings. After completing the experi-
ment task, each participant was asked to fill in a question-
naire to rate the six delimiters on 5-point Likert scales
regarding “easy to learn,” “easy to perform,” “accurate to
recognize,” “avoid misoperation,” and “suitable as the delim-
iter” (5 for the highest preference and 1 for the lowest pref-
erence). We created the questionnaire through an online
website and then sent it to each participant through commu-
nication applications. Participants fill out the questionnaire
via their smartphones or personal computers.

The questionnaire uses a 5-point Likert scale. The 5-
point Likert scale has five options with five different scores
according to the user’s level of agreement, often with scores
of 5,4, 3, 2, and 1. The user chooses suitable options accord-
ing to their degree of conformity to the declarative state-
ments, and we calculate the total score according to the
score assigned to each option of the scale for subsequent
analysis. The declarative statements comprise unfavorable
and favorable statements. In this experiment, the options
indicate five different levels of strongly agree to disagree,
and the scores are 5, 4, 3, 2, and 1 if it is a favorable state-
ment and 1, 2, 3, 4, and 5 if it is an unfavorable statement.
The gesture with the highest score represents the most
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TABLE 3: Accuracy of feature extraction with KNN for gestures with different execution times.

Execution time Gesture 1 Gesture 2 Gesture 3 Gesture 4 Gesture 5 Gesture 6

Short 0.95 0.98 1 0.7 0.56 0.77

Standard 1 0.98 1 0.64 0.46 0.79

Long 1 0.88 1 0.6 0.45 0.75

suitable defining gesture from the user’s subjective feeling
perspective. In designing the questionnaire, it needs to set
declarative statements in terms of fatigue, speed of perform-
ing gestures, guessability, gesture recognition accuracy, and
user’s subjective perception, as shown in Table 4.

4.5.2. Experimental Results. We used the chi-square statistics
method to calculate the differences of delimiters in the mea-
sures. Regarding “easy to learn” and “easy to perform,” par-
ticipants generally regarded that the six delimiters were quite
similar. These gestures were simple in form; so, participants
thought they were all easy to learn and perform. However, in
terms of “accurate to recognize,” “avoid misoperation,” and
“suitable as the delimiter,” the scores of gestures 1, 2, and 3
were significantly higher than other gestures (all p < 0.05),
and there was no significant difference between the three
gestures (all p > 0.05). In addition, in the questionnaire, par-
ticipants who regarded gestures 1, 2, and 3 suitable for defin-
ing gestures account for 30%, 40%, and 30%, respectively. By
combining the above results, the three gestures were selected
as the suitable delimiters for further consideration.

Gesture 3 has the highest score, 40% of people thought
it was easy to learn, and 60% of people thought it was
suitable as a defined gesture. And the recognition rate of
gesture 3 was 0.99 by the feature extraction with the
KNN recognition algorithm; so, the gesture was considered
as the best defined gesture.

The scores of gestures 1 and 2 are high, and the recogni-
tion rates of two gestures by the feature extraction with the
KNN recognition algorithm are both 0.99. In the question-
naire survey, 20% of people thought that gesture 1 was suit-
able as the defining gesture, and 60% thought that gesture 2
was suitable as the defining gesture. In a comprehensive
view, gesture 1 (shaking wrist right and left) and gesture 2
(shaking wrist up and down) can also be selected as the best
defining gestures.

5. Experiment Two: Misoperation
Rate of Delimiters

In this experiment, we aimed to investigate misoperation
rate of delimiters in representative daily activities. According
to experiment one, gesture 1 (shaking wrist left and right),
gesture 2 (shaking wrist up and down), and gesture 3
(holding fist and opening) were selected as the candidate
delimiters to be tested in this experiment.

5.1. Experimental Settings. The experimental equipment and
participants were the same with experiment one.

5.2. Experimental Tasks. We evaluated misoperation rates of
the three delimiters in three common scenes in our lives:
walking, running, and standing up and sitting down. As a
controlled study, we could not cover all daily activities.
Instead, we selected three representative activities, that is,
walking, running, and standing up and sitting down, to test
the misoperation rate of three delimiters. The three scenar-
ios can cover basic day-to-day activities. The data were col-
lected from the participants, who wore the smartwatch to
perform ten steps of walking, ten steps of running, and ten
times of standing up and sitting down.

As experiment one, we processed the sensor data by the
data preprocessing step and then recognized the gesture data
to see whether participants accidentally performed gesture 1,
2, and 3 in the three scenes, so as to obtain the misoperation
rate of gestures.

5.3. Experimental Results. According to experiment one, the
feature extraction with KNN was faster and had better rec-
ognition performance than the DTW algorithm. Thus, the
feature extraction with KNN was selected as the gesture rec-
ognition algorithm in this experiment. The misoperation
rates are shown in Table 5.

The misoperation rate of gestures 1 and 2 is 0 in all
scenarios. Gesture 3 had 0 in the running and walking
scenarios, but 21% in the standing up and sitting down
scenario. Therefore, in most scenarios, gestures 1 and 2 are
more suitable as the delimiter than gesture 3.

6. Discussion

This study examined six gestures as delimiters for motion
gesture interaction with smartwatches. We evaluated the
performance of the six delimiters to select the proper ones.
First, we used DTW and feature extraction with KNN to
obtain gesture recognition accuracy for the delimiters. It is
concluded that the feature extraction with KNN has a higher
recognition rate for the gesture data, and its recognition rate
for gestures 1, 2, and 3 exceeds 0.98. In addition, we checked
he misoperation rate of gestures 1, 2, and 3 in three daily
scenes. The misoperation rate of the three gestures in the
scenarios of walking and running is 0. For standing up and
sitting down, the misoperation rate of gestures 1 and 2 is
0, but the misoperation rate of gesture 3 is 21%. Therefore,
gesture 1 (shaking wrist left and right) and gesture 2
(shaking wrist up and down) should be more suitable as
delimiters for motion gesture interaction on smartwatches.
Despite excluding gesture 3 as a delimiter, its excellent
recognition accuracy and outstanding performance in the
questionnaire still prove its importance as a motion gesture.
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TABLE 4: Average rating of each gesture for each measure.

Measure Gesture 1 Gesture 2 Gesture 3 Gesture 4 Gesture 5 Gesture 6

Easy to learn 4.3 4.2 44 4.2 4.3 4.2

Easy to perform 4.5 4.4 4.4 4.1 4.1 44

Accurate to recognize 4.5 4.5 4.1 3.1 3.1 33

Avoid misoperation 42 42 4.1 2.9 3.0 33

Suitable as delimiter 4.5 4.4 43 33 3.2 37
TaBLE 5: Misoperation rate of gestures 1, 2, and 3. gesture 2 are suitable as motion gesture delimiters for smart-

watch interaction.

Scenario Gesture 1 Gesture 2 Gesture 3

Running 0 0 0 Data Availability

Walking 0 0 0

Standing up and sitting down 0 0 0.21 We collected gesture data from ten participants, including

We can further improve our work in the following direc-
tions. First, for recognition algorithms, only two basic algo-
rithms were used for gesture recognition in this paper. We
need to test other algorithms, e.g., recognition algorithms
based on the hidden Markov model. Second, for experimen-
tal design, this paper only designed six candidate gestures for
experiments, and there may be other more suitable defined
gestures. Third, participants can be selected from different
ages, genders, and occupations. More user data and wider
coverage of subjects help to draw more accurate conclusions.
Fourth, for the obtained defined gestures, the experiments in
this paper were conducted under lab conditions. Consider-
ing that the defined gestures are often used together with
common action gestures, their practical applications in
motion gesture interaction need to be further investigated.
Finally, gesture data collection is susceptible to the environ-
ment. The sensors that collect the data also produce a certain
amount of errors, and even the way the user wears smart-
watches could affect collected data. Advances in wearable
devices can mitigate the impact of these problems and
improve the usability of gesture interaction, and the devel-
opment of gesture interaction can also promote the progress
and popularity of wearable devices.

7. Conclusion

This paper is aimed at selecting suitable gestures as the
delimiter for smartwatch motion gesture interaction. To this
end, this study firstly selected six candidate gestures (gesture
1: shaking wrist left and right; gesture 2: shaking wrist up
and down; gesture 3: holding fist and opening; gesture 4:
turning wrist clockwise; gesture 5: turning wrist anticlock-
wise; gesture 6: shaking wrist up). We conducted two
experiments to evaluate the performance of the above six
candidate delimiters. We used DTW and feature extraction
with KNN to recognize these delimiters. Results showed that
gestures 1, 2, and 3 achieved high recognition rate. In the
second experiment, during the common scenes in our life,
the misoperation rate of gestures 1 and 2 is 0, but the miso-
peration rate of gesture 3 is 21%. Therefore, gesture 1 and

eight men and two women, through sensors in smartwatches.

Additional Points

Research Highlights. (i) A study was conducted to investigate
motion gesture delimiters for smartwatch interaction. (ii)
“shaking wrist left and right” and “shaking wrist up and
down” can serve as delimiters for motion gesture interaction
with smartwatches. (iii) Feature extraction with KNN pro-
vided higher recognition accuracy than the DTW algorithm.
(iv) The study provides insights into designing gesture-based
delimiters for smartwatch interaction.
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