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Detecting 3D objects in a crowd remains a challenging problem since the cars and pedestrians often gather together and occlude
each other in the real world. The Pointpillar is the leader in 3D object detection, its detection process is simple, and the detection
speed is fast. Due to the use of maxpooling in the Voxel Feature Encode (VFE) stage to extract global features, the fine-grained
features will disappear, resulting in insufficient feature expression ability in the feature pyramid network (FPN) stage, so the
object detection of small targets is not accurate enough. This paper proposes to improve the detection effect of networks in
complex environments by integrating attention mechanisms and the Pointpillar. In the VFE stage of the model, the mixed-
attention module (HA) was added to retain the spatial structure information of the point cloud to the greatest extent from the
three perspectives: local space, global space, and points. The Convolutional Block Attention Module (CBAM) was embedded in
FPN to mine the deep information of pseudoimages. The experiments based on the KITTI dataset demonstrated our method
had better performance than other state-of-the-art single-stage algorithms. Compared with another model, in crowd scenes, the
mean average precision (mAP) under the bird’s-eye view (BEV) detection benchmark increased from 59.20% of Pointpillar and
66.19% of TANet to 69.91 of ours, the mAP under the 3D detection benchmark was increased from 62% of TANet to 65.11%
of ours, and the detection speed only dropped from 13.1 fps of Pointpillar to 12.8 fps of ours.

1. Introduction

Autonomous driving uses sensors to detect and track mov-
ing objects, such as cars, pedestrians, and cyclists in real-
time. Lidar is arguably the most important. Point cloud gen-
erated by lidar provide geometric structure information of
objects and high-precision spatial coordinates, so how to
use that information is extremely crucial [1].

With the outstanding achievements of computer vision
and deep learning methods in pictures, extensive literature
thinks about how to design end-to-end network results for
point clouds. Unlike images represented as regular dense
grids, 3D point cloud is not only irregular and disordered
but also has the characteristics of uneven density and differ-
ent shape and scaling ratio due to input-output size and
order differences. Therefore, previous convolutional neural

network (CNN) with regular grids is not suitable for point
cloud. The method to solve this problem is to divide the
space into regular geometry, such as 3 ∗ 3 ∗ 3 cm and then
manually design the feature extraction method. However,
different feature extraction methods need to be designed
for different environments and different detection targets,
which is lack generality. In order to solve this problem, based
on the PointNet designed by Qi et al. [2], an end-to-end
detection network VoxelNet is proposed. VoxelNet [3]
divides the point cloud into equidistant 3D voxels and
encodes each voxel through the stacked VFE layer, and then,
3D convolution further aggregates the local voxel features to
convert the point cloud into high dimensional volumetric
representation. Finally, RPN produces test results. While
the VoxelNet performance is strong, at 4.4Hz, the inference
time is too slow to deploy in real time. SECOND [4, 5]
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improved the inference speed of VoxelNet but the 3D con-
volutions remain a bottleneck. Lang et al. [6] use a novel
encoder that learns features on pillars (vertical columns) of
the point cloud instead of voxel to predict 3D oriented boxes
for objects which is highly efficient to compute due to the
key operations can be formulated as 2D convolutions and
Pointpillar runs at 72Hz which has the obvious speed
advantage. Although Pointpillar enables a trade-off between
speed and accuracy, the performance is still unsatisfactory in
challenging cases. As shown in Figure 1, the first row shows
the corresponding 2D image. The second row demonstrates
the 3D detection results produced by Pointpillar. Pedestrians
were not detected due to the severe occlusion. We reveal the
intrinsic reason that the key parameter in Voxel Feature
Encode (VFE) is the size of the voxel. A coarser voxel leads
to a smaller feature map and faster inference speed but has
inferior performance, especially for small objects.

To solve this problem, TANet [7] introduced attention
in the feature extraction stage and also divided FPN-RPN
into coarse extraction and fine extraction to effectively solve
the occlusion problem. Inspired by the words of TANet, we
introduce the mixed-attention network (MA) and the Con-
volutional Block Attention Module (CBAM) [8]. MA com-
bines channel-wise, point-wise, and voxel-wise to enhance
key information and to suppress unstable points. Channel-
wise is used to determine which channels in each voxel;
point-wise is used to determine which points in a voxel;
voxel-wise is used to determine which grids are more impor-
tant in all voxel grids. The CBAM consists of two comple-
mentary attention modules: spatial attention and channel
attention. It can assign more weight to the unshaded part
and less weight to the shaded part. By inserting CBAM into
FPN, more refined features are obtained to improve the
accuracy of classification and regression.

The contributions of this paper include the following
three aspects. Firstly, we introduce one novel single-stage
framework, named MANet, which strikes a balance between
accuracy and speed. Secondly, we introduce the MA model
which can feedback the original features of the point cloud
more effectively and retain better geometric properties of
the point cloud. Thirdly, our model runs at 11 frames per
second while achieving competitive performance on the
KITTI dataset.

The rest of the paper is organized as follows. Section 2
introduces the related achievements on the 3D object detec-
tion and analyzes their merit and demerit. Section 3 presents
network architecture and the elaboration of mixed attention
and CBAM. Section 4 presented the relevant parameter set-
ting of the experiment, evaluation criteria, and comparative
results with other models. Section 5 concludes this paper.

2. Relation Work

2.1. 3D Object Detection. Object detection of the point cloud
is an integral part of the 3D vision. Like the task of 2D target
detection, 3D target detection is to locate all interested tar-
gets in a given scene accurately. At present, 3D object detec-
tion can generally be divided into region proposal-based and
single-shot methods [5]. The methods based on the candi-

date region firstly predict the region with possible objects
(also known as the proposal), then extract the features of
each region to determine the object category of each candi-
date region. Figure 2 shows the development process of the
3D object detection algorithm. According to the different
methods for generating proposals, these methods can be fur-
ther divided into three categories: multi-view-based
methods, segmentation-based methods, and point-based
methods. Among them, Frustum-PointNet [9], a technique
based on the PointNet++ [10] cone proposed by qi, achieves
high benchmark performance, but its multistage design
makes end-to-end learning impractical. The methods based
on single-shot methods predict category probability directly
and use a single-level network to regression the 3D bound-
ing box of objects. These methods do not require region pro-
posals and postprocess, making them ideal for real-time
applications. According to the type of input data, the
methods can be divided into three types: methods based on
BEV (projection graph) [3, 11, 12], methods based on discre-
tization, and methods based on the point. VoxelNet is the
first method to deploy a point network in a lidar point cloud
for target detection. The author transforms the irregular
point cloud into regular voxels, then processes them by a
set of three-dimensional convolution layers, followed by a
two-dimensional backbone and a detection head. This
makes end-to-end learning possible, but like earlier work
that relied on 3D convolution, requiring 225ms of reasoning
time (4.4Hz) for a single point cloud. Pointpillar proposes
converting voxels into pseudoimages and then using mature
2D target detection methods to carry out detection, which
successfully realized real-time reasoning. TANet researches
the relationship between point cloud, space, and voxel based
on the Pointpillar, suppressed the unimportant and high-
lighted the important parts through the attention mecha-
nism, and solves the interference of background points to a
certain extent. HVNet [13] solves the balance problem of
accuracy and speed caused by voxel division by integrating
multiscale voxels.

2.2. Attention. In recent years, attention has gained popular-
ity as a plug-and-play module for the existing basic convolu-
tional neural network (CNN) architecture [13–17].

Figure 1: Detection results for Pointpillar.
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Attention mechanisms are aimed at mimicking the human
visual system by focusing on more relevant features to the
target rather than an entire scene containing some unrelated
background. Many methods have been introduced to esti-
mate attention (weight) maps to reweight the original fea-
ture maps learned from CNN. SENet uses the global
average set feature to calculate channel-level attention in
their squeeze and excitation module for image-related tasks.
They ignore spatial attention, which plays an essential role in
deciding “where” as shown in [18]. After analyzing the
defects of SENet and SKNet [19], a lightweight module
CBAM is proposed to realize the mixing of space and chan-
nel by serial instead of parallel, which dramatically reduces
the running time. Some scholars have tried to introduce
attention to point cloud network architecture in recent years.
The experiment of [20] verified that both 2D and 3D atten-
tion modules could be inserted into the existing modules to
improve the feature extraction capability of the point cloud
network. TANet combines channel attention, point atten-
tion, and voxel attention to enhance the critical information
of the target and suppress unstable points, thus improving
the robustness of the network. In addition, [21–23] intro-
duce transformer into point cloud classification to enhance
it by four points over PointNet with half the number of
parameters.

2.3. Datasets. Semantic 3D is a large-scale point cloud classi-
fication benchmark, which provides a 3D point cloud dataset
of natural scenes with large labels, totaling over 4 billion
points and 8 category labels. And it also covers a wide variety
of urban scenarios. KITTI [24] can not only have lidar,
image, GPS, and INS data but also have manually labeled
segmentation tracking results, which can be used to objec-
tively evaluate the effect and performance of a large-range
of 3D modeling and fine classification. The 3D object detec-
tion benchmark consists of 7,481 training images and 7,518
test images along with the corresponding point clouds,
including a total of 80,256 labeled objects. The recent H3D
dataset [25] records the crowded and highly interactive
urban scenes, including a total of 1 million labeled instances
in 27721 frames. The KAIST multispectral dataset [26] is a
multispectral pedestrian detection dataset, which provides
black-and-white thermal imaging image pairs during the
day and night. Through the complementary advantages of
color image and thermal imaging, the dataset improves the

accuracy of pedestrian detection and overcomes the prob-
lems of previous pedestrian detection data, such as blocked
pedestrians, messy background, and unclear imaging at
night. Other noteworthy multimodal datasets include [27]
providing driving behavior tags, [28] providing location
classification tags, and raw data without semantic tags. The
nuScenes dataset [29] contains 3D bounding box of 23 clas-
ses and 8 properties, with his annotation number being more
than one times KITTI 7, resolving errors due to data
enhancement.

3. Approach

This part introduces our object detection network based on
attention object networks shown in Figure 3, called mixed-
attention-Pp. The model structure diagram can be divided
into VFE, multiscale pseudograph feature learning module,
and detection head. Firstly, the original point cloud is trans-
formed into a grid composed of voxels and obtains a more
discriminative representation through mixed attention.
Then, the features are aggregated by maximum pooling
and finally dispersed back into a pseudoimage of H ∗W ∗
C. In the feature extraction stage, we added CBAM to the
original FPN [30–33]. The ability to capture detail is
improved by inserting a CBAM module in the upsampling
stage. Finally, a single shot multibox detector (SSD) is used
to detect the position and classify categories.

We defined some common variables of the point cloud in
advance. Point cloud set P = fpi = ½xi, yi, zi, ri�t ∈ Rgi=1,2,⋯,M
where xi, yi, and zi represent the coordinates of the midpoint
in lidar space. ri represents other spatial features, such as
reflectivity and normal. M represents the number of point
clouds. We use (cx, cy, cz , h, w, ℓ, θ) to define a 3D bounding
box where cx, cy, and cz represent the center point of the box; h
, w, and ℓ represent the size of the box; and θ represents the
direction of motion of the object.

3.1. Stacked Mixed-Attention. The entire range of space S is
discretized into the point cloud P, where the range of P is
(W∗,H∗,D∗). P is equally divided into a specific voxel grid
V = fv1,… , vkg where vk ∈RN∗C , k represents the index of
voxels, N represents the maximum number of point clouds
per voxel, and c represents the characteristic number of
point clouds. Each grid size is w =W∗/v∗w, h =H∗/v∗h , and
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Figure 2: The development process of a 3D object detection algorithm based on point cloud representation.
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D =D∗/v∗d . In the z-axis, we regard it as a whole, so the D is
1. They are shown in Figure 4.

3.1.1. Point-Wise Attention. Given the input vk where its
shape is ðK ,N , CÞ. K represents the number of voxels, N
represents the number of voxels, and C represents the num-
ber of channels. Firstly, we use maxpooling to make the fea-
ture transfer from the previous layer a vector then we use
two MLP to obtain global coding features Sk.

Sk =W2δ W1E
K� �
, ð1Þ

where EK is point-wise, W1 and W2 are the weight parame-
ters of two MLP, respectively, and δ is the ReLU activation
function.

3.1.2. Channel-Wise Attention. Channel-wise attention is
very similar to channel-wise attention. The only difference
is maxpooling in the first dimension of input vk. Specifically,
we do maxpooling to convert the feature map of the previ-
ous layer into vector Uk ∈ R1∗C , which aggregates the fea-
tures of all points on each channel. Then, through the two
MLP to estimate the attention characteristic map Tk =W2′δ
ðW1′ðUkÞÞ where W2′ ∈ RR∗C ,W1′ ∈ RR∗C . Then, Sk and Tk

are combined through multiply, and the attention weight
Mk is obtained through sigmoid activation function. Finally,
FK
1 is obtained by dot product of vk and Mk.

Mk = δ Sk ∗ Tk
� �

: ð2Þ

Voxel

TA

H

C

H
/
2

H
/
4 H

/
8

H
/
2

W w/2 w/4 w/8

w/2
6C

2C 2C 2C

Deconv

SSD detection
head

Classification

Localization

Direction

Fully connected

Max pooling

ConcatenationC

Element-wise sum

Deconv
Deconv

C
B
A
M

C
B
A
M

C
B
A
M

p
c cw

h

Stack mixed
attention

TA c

Figure 3: The full pipeline of network.

4 Wireless Communications and Mobile Computing



3.1.3. Voxel-Wise Attention. Further, the importance of vox-
els is judged by focusing on voxels. The input for voxel-wise
is VC and FK

1 where VC represents the center of gravity point
of each 3D voxel grid. Its size is ðK , 1, 3Þ. We first expand VC
to ðK ,N , 3Þ in the first dimension and then concatenate VC
and FK

1 in the first dimension and then obtain voxel level
attention weight Q which size is ðK , 1, 1Þ through two full
connection layer and sigmoid. Finally, FK

2 = qk ∗ FK
1 .

3.1.4. Stack-TA. Considering that TA module directly acts
on point cloud, it does not contain high-dimensional seman-
tic features. The generalization ability of this network is
insufficient. We chose to stack TA in order. We choose to
stack TA in a sequential manner. Specifically, VX and VC
are input into the first TA, and the output is M. M is used
as the input of the second TA attention. The difference from
the former is that we directly add the input and output
instead of splicing. Finally, maxpooling is used to aggregate
the features of all voxels.

3.2. Convolutional Block Attention Module (CBAM). As
shown in Figure 5, CBAM is the mixed-attention composed
of two continuous attention blocks. To be specific, with the
intermediate feature graph F ∈ RC∗H∗W as input. CBAM suc-
cessively deduced the one-dimensional channel attention
graph MC ∈ RC∗1∗1 and the 2D space attention graph Ms ∈
R1∗w∗h. The whole attention process can be summarized as

follows: graph Ms ∈ R1∗w∗h. The whole attention process
can be summarized as follows:

F ′ =MC Fð Þ⨂F,

F ′F ′ =MS F ′
� �

⨂F ′:
ð3Þ

3.3. Backbone. We used a trunk similar to FPN [31], whose
structure is shown in Figure 3. The backbone network can
be divided into three parts. The one on the left is the
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Figure 4: The architecture of the mixed attention module.
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downsampling network, which produces features with
smaller and smaller spatial resolutions. The CBAM module
in the middle inputs the feature map into CBAM after con-
volution, and CBAM extracts useful information while inhi-
biting irrelevant information. On the right is the upsampling
module, which combines the feature layer (6c,w/2, h/2)
through deconvolution. The final output features are a con-
catenation of all features that originated from different
strides.

3.4. Detection Head and Loss. We use the same detection
header as SSD [5, 34] to locate 3D objects. Ground truth
(gt) and anchors are defined by ðx, y, z,w, l, h, θÞ where ðx,
y, zÞ, (w, l, h), and θ are the center point, size, and angle of
the box, respectively. Local residuals between the anchors
and the ground truth are defined:

Δx = xgt − xα

d
,

Δy =
xgt − xα

d
,

Δz =
zgt − zα

hα
,

Δw = log
wgt

wα
,

log
lgt

lα
Δh = log

hgt

hα
,

Δθ = sin θgt − θα
� �

,

ð4Þ

where d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwaÞ2 + ðlaÞ2

q
and gt and a are, respectively,

the ground truth and anchor box. In order to train our

model, we carried out regression, classification and memory
update, the total loss is

L =
1

Npos

λregLreg + λdirLdir

+λclsLcls + λmemLmem

 !
, ð5Þ

where Npos represents positive anchors; the equilibrium
parameter of the corresponding loss and the total localiza-
tion loss is defined as follows:

L reg = 〠
r∈ X ,Y ,Z ,W ,ℓ,h,θð Þ

SmoothL1 Δrð Þ: ð6Þ

4. Experiment and Discussion

4.1. Parameter Settings. We set the threshold on the XY of
the scene of the point cloud to (0, 70.4) and (-40, 40). The
resolution of the pillar is 0.16m, the maximum number of
columns is 12000, and the maximum number of points per
column is 100. If the points are less than 32, then we randomly
sample the points in the column. If the points’ number is more
than 100, then we use farthest point sampling for downsam-
pling. We share the matching strategy for the box and predic-
tion box as Pointpillar. Specifically, the anchors consist of the

Table 1: Ablation experiments on the effect of CBAM, SE, and TA
as well as different combination settings.

Methods Car Pedestrian Cyclist mAP

Baseline [6] 74.9 43.5 64.5 59.0

SE [18] 68.3 44.94 51.72 54.9

CBAM [8] 76.1 50.2 64.3 63.5

TA [7] 78.8 46.47 59.60 62

TA+CBAM 78.8 51.74 64.74 65.1
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Figure 7: The loss of train. (a) The ablation experiments of different attention. (b) The component of the total loss.
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following 7 parameters (cx, cy, cz, h, w, l, θ), and the anchor
direction, θ, is applied to two orientations (0 and π/2). We
regard anchors with intersection over union (IOU) greater
than 0.6 as positive samples and those less than 0.2 as negative
samples. We ignore those anchors with IOU between (0.2, 0.6)
when calculating the loss. We select the nonmax suppression
(NMS) score of 0.5 in the postprogress step. Due to the large
body size gap between cars and people, we set the correspond-
ing parameters for different objects.

Car. Thresholds are set to (0, 70.4) and (-40, 40), the size
of the prior box is set to (1.6, 30.9, 1.5), and the size of the
confidence interval was set to (0.45, 6).

Pedestrian and Cyclist. Since pedestrians are blocked
and the number of point clouds is sparse, we set the scene
range to (0, 48) and (-20, 20), the size of the prior box is
set to (0.6, 0.8, 1.73), and the confidence interval to (0.2,
0.6). The prior size of all boxes is set to (1.6, 3.9, 1.5) and
(0.6, 0.8, 1.73) for pedestrians and individuals. The confi-
dence interval for the vehicle is (0.45, 0.6), and the pedes-
trian is (0.5, 0.35).

4.2. Sample Ground Truths from the Database. This paper
takes the KITTI dataset as the benchmark. Since the dataset
samples are only 7361 frames and the number is small, we
can manually add some objects to the point cloud to
improve the effect of model training. This paper adopts the
same data enhancement method as Pointpillar. Firstly,
points in the prior box are removed and recorded from the
training set. Secondly, N samples are randomly selected,
and the prior box and point cloud of the selected samples
were randomly rotated (- π/20, π/20) and translated (0,
0.25); then, we added the samples to the training set.

4.3. Algorithm Performance Evaluation. In the field of target
detection [35–37], recall and precision are mainly used as
the performance measure of the algorithm. Precision (P)
and recall (R) are, respectively, defined as follows:

R = TP
TP + FN

,

P =
TP

TP + FP
,

ð7Þ

where TP, FP, TN, and FN are represented as true and
false positive and true and false negative examples, respec-
tively. It can be seen that the denominator of P is the total
number of boxes detected by the detec-tor, and the denom-
inator of R is the total number of boxes given by GT. Since R
and P are a pair of paradoxical quantities. To balance them,
the “P-R” curve obtained with P as the vertical axis and R as
the horizontal axis is used to reflect the relationship in the
Figure 6.

The average accuracy comes from the PR curve. In prac-
tice, we do not directly calculate the PR curve, but instead
smooth the PR curve. That is, for each point on the PR

Table 2: Results on the KITTI test BEV detection benchmark.

Methods 3D mAP
Car Pedestrian Cyclist

Easy Mod Hard Easy Mod Hard Easy Mod Hard

VoxelNet [3] 58.25 89.25 79.26 77.39 46.13 40.74 38.11 66.70 54.76 50.55

Pp [6] 66.19 88.35 86.10 79.83 58.6 50.23 47.19 79.14 62.25 56.00

F-P [9] 65.39 88.70 84.00 75.33 58 50.22 47.20 75.38 61.96 54.98

PIXOR [12] N/A 89.38 87.30 77.97

MV3D [38] N/A 86.02 76.90 68.49

SECOND [39] 60.56 88.07 79.37 77.95 55.1 46.27 44.76 73.67 56.04 48.78

MANet 69.91 89.21 86.36 83.10 61.4 55.01 51.23 82.81 68.36 63.76

Table 3: Results on the KITTI test 3D detection benchmark.

Methods Mod Bev mAP
Car Pedestrian Cyclist

Easy Mod Hard Easy Mod Hard Easy Mod Hard

MV3D [38]
Lidar&img

N/A 71.09 62.35 55.12

F-P [9] 57.35 81.20 70.39 62.19 51.21 44.89 40.23 71.96 56.77 50.39

VoxelNet [3]

Lidar

49.05 77.47 65.11 57.73 39.48 33.69 31.5 61.22 48.36 44.37

SECOND [39] 56.69 83.13 73.66 66.20 51.07 42.56 37.29 70.51 53.85 46.90

Pp [6] 59.20 79.05 74.99 68.30 52.08 43.53 41.49 75.78 59.07 52.92

TANet [7] 62 83.81 75.38 67.66 54.92 46.67 38.63 73.93 59.60 53.59

MANet 65.11 83.47 78.85 71.89 56.02 51.74 45.58 80.08 64.74 60.79

Table 4: Results on the test nuScenes 3D detection benchmark.

Methods Car Pedestrian Cyclist mAP

Baseline [6] 62.5 50.2 64.5 57.6

PVRCNN 64.8 46.7 — —

Centerpoint 66.1 62.4 67.6 65.3

Point augmenting 62.2 64.6 73.3 66.7

Ours 65.1 63.7 65.9 64.9
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curve, the value of precision takes the value of the largest
precision on the right side of that point. In addition, for a
better performance of the reaction model, we also intro-
duced mAP (mean average precision) to represent the mean
of AP values for all types.

mAP =
∑C

i=1APi

� �
C

: ð8Þ

In this paper, according to the complexity of the envi-
ronment, we divided the objects into easy, moderate, and
hard and counted the models for 3D bounding box AP,
Bev AP, Bev mAP, and Bev bounding box, respectively.

4.4. Performance Analysis

4.4.1. Loss. Train runtime is measured on a GTX 1050 Ti
GPU. As mentioned in 3.4, loss consists of three parts: clas-
sification, localization, and direction. Figure 7(b) shows the
changes of loss in the training process. As can be seen in
the figure, the model directly generates the category proba-
bility and position coordinate value of the object without

generating the candidate region first and then classifying
the candidate region, so it has a faster detection speed. In
Figure 7(a), we made statistics on the decrease of loss in 4
situations: Pointpillar, Pointpillar +CBAM, Pointpillar+TA,
and Pointpillar +TA+CBAM during the training process.
The results in Figure 7(a) show that whether inserting
CBAM or TA, the loss value of final convergence is lower
than the original Pointpillar.

4.4.2. Analysis of the Attention Mechanisms. Table 1 presents
ablation studies of the proposed attention mechanisms. The
recall for cars, pedestrians, and cyclists is set to (0.7, 0.5, 0.5),
and the score threshold is set to 0.4. We removed both the
TA and the CBAM from our model as the baseline and
achieve a 3D mAP of 59.0%; with only CBAM and SENET,
we can see that if only the channel attention mechanism is
added, the accuracy is reduced by KITTI 4% while CBAM
outperforms the baseline model by 4.5% from Table 1. This
suggests that the spatial information is beneficial for the
regression of the 3D bounding box. We add the TA module
to the baseline base, and the performance was promoted to
62. Finally, we reinserted TANet and CBAM into the model,

Figure 8: Results of 3D detection on the KITTI test set. For better visualization, the 3D boxes detected using lidar are projected onto images
from the left camera.
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with the model accuracy further improved to 65. The exper-
iments show that the performance of the network can be
effectively improved by assigning weights to different points
for some objects with occlusion. Figure 7 shows the loss of
train. Figure 7(a) shows the ablation experiments of different
attention. Figure 7(b) shows the component of the total loss.

4.4.3. Quantitative Analysis. In Tables 2 and 3, we compared
our model with the others. For comparison convenience, the
car, pedestrian, and cyclists’ recall are set to (0, 7, 0.5, 0.5),
and the score threshold is set to 0.1. All detection results
are measured using the official KITTI evaluation detection
metrics which are bird’s-eye view (BEV) and 3D. We

(a) (b)

(c) (d)

Figure 9: Results of 3D detection on the KITTI test set: (a) the corresponding 2D image; (b) the detection results of the Pointpillar; (c) the
detection results of the Pointpillar+SE; (d) the detection results of ours.

Pointpillar Ours Ground truth

Duplicate predictions

Duplicate predictions

Correct prediction

Correct prediction

Figure 10: Results of 3D detection on the nuScenes test set. The first column is Pointpillar, the second column is our algorithm, and the
third is the ground truth.
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classified the 3D detection model as lidar and lidar and
image-based. As can be seen from the table, our mAP rose
from Pointpillar at 66.19% and 59.20%, respectively, to
69.91 and 65.1; the 3D bounding box in difficult environ-
ments has increased by 4%, which is an exciting result. This
suggests that adding attention modules makes the network
still work in the face of complex environments. In Table 4,
we also add the latest detection model-TANet; we all adopt
TA attention in the VFE stage; in the pseudoimage feature
extraction stage, our model adopts FPN+CBAM mode,
and TANet adopts CFR (coarse regression module and a fine
regression); the results show that our model outperforms
TANet. We also tested on the large dataset nuScenes, and
the experimental results are shown in Table 4. Our method
achieves some improvement in single-stage centerpoint
compared to pillar and PVRCNN, but point augment
achieves high accuracy in cycling and pedestrian detection
results. The reason is that point augment uses a multimodal
approach, which integrates the semantic information of
images, and pictures have a natural advantage for capturing
small objects.

4.5. Test Result. Figure 8 shows some test results on the
KITTI test set to visually show the detection effect of the
model. Each image consists of 2 parts: the first row is the
predicted 3D bounding box projected into the image, and
the second row is the predicted results of Bev where the
red represents the car, yellow is the cyclist, and blue is the
pedestrian. The images in the first row select the road with
few pedestrians and no occlusion. It can be seen that our
algorithm detects all objects without occlusion, and the sec-
ond row selects the scene when there are many pedestrians.
It can be seen that pedestrians will block each other and
vehicles, and our algorithm can still have a high recall rate.

To further verify the robustness of our algorithm, we
compared our method with other current state-of-the-art
algorithms. In Figure 9(a), most of the pedestrian’s body is
covered by the vehicle, and the radar has collected less than
30 points. The original Pointpillar experiment results are
shown in Figure 9(b), and the pedestrians were not found.
The Pointpillar+SE algorithm (Figure 9(c)) mistakenly
detects the road signs as pedestrians. We analyze that the
fake image weakens the spatial feature and strengthens the
channel feature. SE attention further strengthens the channel
feature, so there will be a problem of false detection. While
we propose a mixed-attention model that the global spatial
information, local spatial information and point features
are integrated so the pseudoimage contains more spatial fea-
tures. CBAM combines space with channels, so it can show
excellent performance. In addition to comparing the effect
on KITTI, we also verified it in nuScenes. As shown in
Figure 10, our algorithm detected the sparse pedestrians
missed by second and avoid the repeated detection problem
caused by crowding.

5. Conclusion

In this paper, we have designed the MA-CBAM-Pp for
single-stage 3D object detection, which improves detection

performance, particularly in crowd scenes. Two attention
models are inserted into Pointpillar, where the mixed atten-
tion is added in VFE which feedback the original features of
the point cloud more effectively and retain better geometric
properties of the point cloud, and the CBAM attention mod-
ule was embedded in FPN to mine the deep information of
pseudoimages from spatial dimension and channel dimen-
sion. Significantly, our result on KITTI with MA-CBAM-
Pointpillar outperforms the previously best result that uses
TANet by about 3.11%. Detailed experimental comparisons
have demonstrated the value of our method, which improves
detection accuracy by a large margin in occlusion scenarios.
Meanwhile, the visualization results also demonstrate that
our inserted modules help improve the accuracy of single-
stage 3D object detection. Future work will do fine regres-
sion based on this model to further improve the accuracy
of the model.
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