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Internet of Vehicles (IoV) is a novel technology to enhance the safety, intelligence, and efficiency of traffic systems, where vehicles
can exchange critical information with other vehicles, roadside units, pedestrians, and cloud platforms. However, the dynamic
network topology, high speed, and exposed communication links inevitably pose security threats to IoV. It is pivotal to
establish a trust management and trust-sharing mechanism between vehicles to guarantee the safety of IoV. This paper
proposes a distributed trust management scheme to discriminate malicious vehicles utilizing the machine learning technology
Random Forest (RF). With the help of the sliding time window technology, the trust degree of vehicles can be
comprehensively evaluated through the CART trees according to the current and historical records. To further improve the
security of communication processes, we also introduce a lightweight cryptography mechanism. In addition, a trust-sharing
mechanism based on path prediction algorithm is proposed to guarantee the consistency of trust information in the network.
Finally, extensive simulations are conducted to demonstrate the feasibility and efficiency of the proposed scheme.

1. Introduction

Under the facilitation of 5G/B5G, bulks of smart-
apparatuses are connected to the Internet to execute massive
information interactions, symbolizing the official arrival of
Internet of Things (IoT) [1]. Internet of Vehicle (IoV) is a
variation of IoT. The ultimate goal of IoV is to enhance
the safety, intelligence, and efficiency of traffic systems, with
vehicles exchanging critical information with other traffic
entities. Recently, IoV is on the verge of widespread deploy-
ment with the emergence of various advancements in radio
access and core network technologies [2, 3]. Equipped with
intelligent devices, such as wireless sensors and On-Board
Units (OBU), vehicles have powerful communication, stor-
age, and computing capabilities. Besides, IoV is also capable
of implementing the Intelligent Transportation System
(ITS), and the integration of dynamic information service,
which can reduce the number of traffic accidents and allevi-
ate traffic congestions [4, 5].

Meanwhile, the highly dynamic network topology,
unconversant relationships between vehicles, and exposed
communication links inevitably pose security menaces to

IoV. On one hand, there are deviations between the infor-
mation obtained by vehicles and the natural environment
because of the failures of sensors or other smart devices.
On the other hand, malicious vehicles can acquire illegal ben-
efits by injecting false information into the network. They
can directly forge and broadcast fake messages, disguise as
legitimate entities, and even tamper with the transmitter’s
practical information [6], which causes threats to the authen-
ticity and reliability of the information. Based on the above
analyses, it is particularly urgent to establish an efficient trust
management mechanism for IoV. A proper trust manage-
ment mechanism can discriminate malicious nodes, resist
malicious attacks, and ensure the stability of communication
processes, thereby improving driving conditions and ulti-
mately improving the safety of IoV.

The concept of “trust management” was first proposed
by M. Blaze in 1996 [7]. The author emphasized that trust
management is an integral part of network service security.
Trust management mechanisms can be considered from
identity verification, attack detection and mitigation, confi-
dentiality, privacy, trust and reputation, and other dimen-
sions. The kernel of trust management is to formulate a
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suitable trust evaluation mechanism according to precise
regulations. Malicious nodes can be discriminated by calcu-
lating trust value, and then, other nodes in the network
select trusted nodes for interactions.

According to the framework of trust management
mechanisms, it can be divided into two categories: centralized
and decentralized management. For centralized trust manage-
ment, a trusted entity in the network is required to execute the
trust management mechanism, and all information is repos-
ited in a central server. When vehicles need to exchange infor-
mation with other vehicles, they must communicate with the
central server. Centralized trust management mechanism has
good stability but poor scalability and cannot adapt to the
highly dynamic network topology of IoV. Besides, it also faces
a single point of failure problem. Conspicuous, the decentra-
lized trust management is more applicable to IoV. At present,
the researches on decentralized trust management mechanism
mainly adopt the following underlying technologies: crypto-
graphic, recommendation-based, fuzzy logic-based, game
theory-based, and machine learning-based approach.

Cryptography is the first line of defense for communica-
tion systems. Choi et al. [8] first associate symmetric certifi-
cation by using short-lived pseudonyms in VANETs.
Vasudev et al. [9] propose a lightweight trust authentication
and management scheme using Cryptographic Hash Func-
tions, but it lacks the judgment on fake messages. In IoV,
it is essential to ensure the trustworthiness of vehicles, but
the authenticity of messages also cannot be fooled. Ahmad
et al. [10] propose MARINE to detect and revoke dishonest
vehicles, incorporating entity and data trust. Wang et al. [11]
propose a distributed HDMA scheme for 5G-enabled
VANETs using a group signature-based algorithm for
mutual authentication between V2V communications.

The trust management method based on neighborhood
vehicle recommendation is realized through indirect com-
munication between vehicle nodes. Hu et al. [12] propose a
scheme called “REPLACE,” which is a trust-based platoon
service recommendation scheme to help the user vehicles
avoid choosing badly behaved platoon head vehicles. Ahmed
et al. [13] combined direct and indirect trust to identify any
potential malicious nodes in the current network by calculat-
ing local trust and analyzing suggestions from other neigh-
bors. Li et al. [14] propose a reputation-based global trust
establishment scheme (RGTE) that safely shares the trust
information in VANET by applying statistical laws. In addi-
tion to the above two methods, Soleymani et al. [15] propose
a fuzzy trust model based on experience and plausibility to
secure the vehicular network. Guleng et al. [16] propose a
scheme that uses a fuzzy logic-based trust calculation
approach to evaluate the direct trust of trustee nodes. Halabi
and Zulkernine [17] present a vehicular coalition formation
approach that incorporates a hedonic cooperative game
model, which aims at preventing malicious or faulty vehicles
from joining collaborative benign vehicular communities.
With the emergence of machine learning, scholars have
made researches on the application of this in network secu-
rity [18]. Jiang et al. [19] propose a new trust evaluation and
update mechanism for underwater wireless sensor networks
based on the C4.5 decision tree algorithm (TECU).

However, vehicle travels at high speed following the
intended driving route and only establishing a suitable trust
management mechanism that is not sufficient to ensure the
safety of IoV. How to certify the consistency of “trust” is
another problem worth paying attention to. At present, most
researchers use the central system controller to share the
trust value of the vehicles. However, the location of the cen-
tral controller is generally stationary, and the potency of
trust sharing drops markedly as the distance between the
vehicle and the controller increases, which imposes restric-
tions on the scalability of IoV.

Considering the property of decentralization, immuta-
bility, transparency, and fault tolerance of blockchain, many
researchers use blockchain technology to realize trust man-
agement and sharing mechanism. Singh et al. [20] propose
a blockchain-based decentralized trust management scheme
using smart contracts. Specifically, they introduce block-
chain sharding to reduce the load on the main blockchain
and increase the transaction throughput. Yang et al. [21]
propose a traffic event validation and trust verification
mechanism based on blockchain’s decentralized nature and
first proposes the “proof-of-event” consensus algorithm to
ensure the correctness of stored information. However, it
must be noted that the mining cost of running consensus
mechanisms is expensive and requires enormous computing
and storage resources, limiting blockchain applications.

Our article proposes a Random Forest-based trust manage-
ment mechanism named MTRF for IoV to determine vehicles’
identities and ensure vehicle network security. To avoid the
overfitting problem for decision learning technology, we com-
bine the ensemble learning method Random Forest (RF),
which allows the model to limit overfitting without increasing
the error due to bias. Besides, we also propose a trust-sharing
mechanism based on a path prediction algorithm to forecast
the following orientations of vehicles. The trust value of the
vehicle can be shared point-to-point between RSUs to conquer
the negative impact of the central controller. The main contri-
butions of this paper are summarized as follows:

(i) To reduce the excessive network resources’ consump-
tion and the increaseddifficulty of vehiclemanagement
caused by dynamic vehicle topologies, we propose a
dynamic clustering process according to their current
locations, driving directions, and other parameters.
We also adopt RF technology to realize cooperative
multivehicle trust management in a temporary cluster
to achieve malicious vehicle identification

(ii) Considering the conceptual nature of “trust,” a single
correct behavior is not enough to prove the vehicle’s
identity. Therefore, we introduce a sliding time win-
dow algorithm to store the vehicles’ decision results
at different time slots and comprehensively evaluate
the degree of vehicle trust. In addition, we set a pen-
alty factor to prevent sudden attacks from malicious
nodes with higher accumulated trustworthiness

(iii) To secure communication links between Cluster-
Member-vehicles (CMVs), Cluster-Head-Vehicles
(CHVs), and RSUs, we introduce a lightweight
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cryptography scheme based on Elliptic Curve Cryp-
tography (ECC), Cryptographic Hash Function,
and, XOR operations

(iv) To accurately share the trust information of vehicles
during cluster-switching, we propose a trust-sharing
mechanism by utilizing a DQN-based path predic-
tion algorithm. Therefore, the trust information of
the corresponding vehicle can be shared between
RSUs to conquer the negative impact of the central
controller and improve system scalability

The rest of this paper is organized as follows. The system
model are presented in Section 2. Section 3 introduces the
proposed trust management mechanism. The lightweight
cryptography algorithm is presented in Section 4. Section 5
presents the trust sharing mechanism. Then, the perfor-
mances of our proposed mechanisms are evaluated in
Section 6. Finally, the conclusion is evaluated in Section 7

2. System Model

In this paper, we mainly consider the research on trust
management and trust-sharing mechanism of IoV under
the urban road network scenario. Figure 1 illustrates a typi-
cal urban road network architecture composed of numerous
intersections, where vehicles are randomly deployed on the
roads with known origins and destinations. Roadside units
(RSUs) are deployed at the intersections along the roads.
Three are two kinds of communication modes in the system:
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I), both of which can be undermined by attackers and
reveal important information.

2.1. The Threat and Adversary Model. A variety of emerging
communication technologies provide a stable connection
between vehicles but also put forward higher requirements
on the network model, communication protocol, quality of
service, and security of communication system. Due to the
strange relationship between vehicles, the authenticity and
reliability of the message are questionable.

Figure 2 illustrates three major threats to IoV, in which
vehicle 1 observes the accident message and transmits to
vehicle 2 and vehicle 3 [22]. Figure 2(a) is from the perspec-
tive of legitimate vehicles. It is assumed that vehicles 1, 2, and
3 are legitimate vehicles, and the communication links are
not attacked. However, intelligent devices such as sensors
of vehicle 3 are faulty. At this point, vehicle 2 successfully
receives the accurate information about the real event sent
by vehicle 1, while vehicle 3 receives an error message mess
ageA′ because of sensor malfunction. Even if the identity
of the vehicle is legal, it also unintentionally spreads false
information into the network.

Figures 2(b) and 2(c) are for malicious vehicles. In 2(b),
the malicious vehicle 1 tampers with the observed accident
information and acts as an information source to transmit
false messages to other vehicles for deception. In 2(c), mali-
cious vehicle 2 communicates with vehicle 1 as a legitimate
entity to obtain accident information, tampers with and
forwards the information to vehicle 3, and finally commits

fraud by destroying the communication link between vehicle
1 and 3. They inject false information into the network to
disrupt the transportation system and seek illegal profits.
In our trust management mechanism, we mainly consider
methods to resist the above two attack modes to resist
malicious vehicle attacks.

2.2. Trust Management Process. To improve the framework’s
flexibility and implement the RF, we divide the vehicles into
many clusters that mainly execute decision processes based
on the communication processes between vehicles. Vehicles
have two types: Cluster-Head-Vehicles (CHVs) and Cluster-
Member-Vehicles (CMVs). CMVs establish communication
links with other same-clustered vehicles and collect trust
evidence to evaluate the identity of the node transmitting
messages. The CHV selected for each cluster manages other
same-clustered vehicles and communicates with RSUs. We
set buses as CHVs to ensure high reliability, computing,
and storage capacity [23]. It must be noted that clusters
are temporary and updated overtime because of the high
mobility of vehicles and the dynamic topology changes of
communication networks [24].

Figure 3 visually depicts the configuration of a unitary
intersection. The cluster regulated by CHV1 can illustrate
the trust management process. If vehicle 1 observes the acci-
dent on the road, it will immediately generate the message
and broadcast it in the cluster to inform other vehicles.
CMVs can judge the trust identities of others in the cluster
by utilizing RF algorithm based on the collected trust
evidence. CMVs may have different decision results for the
exact observed vehicle. CHV collects the decision results
from the cluster and transmits them to RSU, enabling RSU
to comprehensively consider the different decision results
and decide the credibilities of vehicles by updating the vehi-
cle’s trust value based on the final integration result.

However, a high trust value of vehicle at the current time
is not necessarily indicative of the reliable identification of
the vehicle. Trust is a dynamic accumulated value that allows
vehicles to use both current and historical records as bench-
marks for the trust value. RSU adopts sliding time window
technology to compute the trust value of the vehicle both
based on the reputation value from the current and former
time slots. RSU has the right to remove the vehicle whose
trust value is below the specified threshold from the current
cluster and notify other CHVs of the vehicle’s identity.

By utilizing Random Forest, the identity of vehicle is
jointly determined by the other vehicles in the cluster, which
partly avoids the problem of decision failure caused by com-
munication interruption between CMVs. However, CMVs,
CHVs, and RSUs exchange highly-aggregated information,
severely affecting the accuracy of vehicle identity judgment.
To strengthen the mechanism’s ability against attacks, we
introduce a lightweight cryptography mechanism based on
Elliptic Curve Cryptography (ECC), Cryptographic Hash
Function, and XOR operations to protect the above communi-
cation processes from being destroyed by malicious vehicles.

2.3. Trust-Sharing Process. The driving routes of CHVs are
comparatively fixed. The diversity of driving orientations
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Figure 1: The system architecture of MTRF.
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between CHV and CMV causes the vehicle to break away
from the current cluster and find an appropriate one called
cluster switching. Meanwhile, the trust information of vehi-
cles needs to be synchronized to the corresponding CHV to
facilitate the implementation of trust management for
newcomers. To overcome the weakness of the traditional
algorithm, we propose a novel trust-sharing mechanism
based on the vehicle path prediction algorithm utilizing deep
reinforcement learning in this paper.

Our algorithm takes the intersection as a unit. Vehicles
execute the path predicting algorithm based on the traffic
conditions to forecast the following driving orientations by
Deep Q-network whenever they reach intersections. When
the prediction is complete, CHV receives the prediction
results sent by CMVs and compares the information with
its direction. If there is a discrepancy, the CHV will establish
a communication link with its RSU, and then RSU finds the
applicable RSU in the same direction as the prediction. The
vehicle trust information is transmitted between RSUs to
facilitate synchronization to the corresponding CHVs. Vehi-
cles can predict the next driving direction so that the trust
value of the vehicle can be shared point-to-point between
RSUs to conquer the negative impact of the central control-
ler, which brings the benefits as follows:

(1) The path prediction algorithm is executed at the
vehicle layer to improve network scalability and
adapted to IoV

(2) The vehicle trust information is only transferred
between CHVs and RSUs, without additional com-
munication with the central controller, which
reduces signaling overhead

(3) Vehicles need not to maintain communication
links with ancient CHVs to reduce communication
resource consumption. The target CHV receives
vehicle trust information before the vehicle reaches
the cluster and actively establishes communication
when the vehicle enters its communication range.

3. Trust Management Process of MTRF

Figure 4 shows the primary process of the proposed trust
management mechanism, which consists of five parts:
dynamic clustering, trust evidence collection and prepro-
cessing, trust evaluation, trust value calculation and update,
and communication process encryption. In this section, we
elaborate on each of the above four former parts.

3.1. Dynamic Clustering Process. The high-density vehicles
are randomly deployed at intersections with different speeds
and paths, which significantly increases the difficulty of vehi-
cle management. An apposite dynamic clustering process is
indispensable to reduce excessive signaling overhead and
enhance the stability and scalability of the system.

The Euclidean distance between vehicle i and j is defined
as dij. This parameter is collectively determined by the cur-
rent location of the vehicle and the destination location. Xi

ðtÞ and ~Xiðt + ΔtÞ, respectively, represent the current and

the estimated position of vehicle i. XiðtÞ, and ~Xiðt + ΔtÞ
and dij are expressed as follows:

Xi tð Þ = xi, yið Þ,
~Xi t + Δtð Þ = xi + vi,xΔt, yi + yi,xΔt

� �
,

dij = xj + vj,xΔt
� �

− xi + vi,xΔtð Þ� �2n
+ yj + vj,yΔt
� �

− yi + vi,yΔt
� �h i2o1

2
:

ð1Þ

To maintain the relative stability of a cluster, we also
consider the driving directions of vehicles in our study.
The driving direction of vehicle i is defined as di. Only the
vehicles moving in the same directions can be grouped into
a same cluster. Binary judgment variable αij is defined to
describe this constraint.

αij =
1, di = dj

0, di ≠ dj

(
, ð2Þ

where αij = 1 represents vehicle i and j that have the
same driving directions; otherwise, αij = 0. After defining
dij and αij, we can execute vehicle clustering operations.
The bus w with Rw communication range is designated as
the CHV of the w − th cluster. CMVs belonging to cluster
w can be defined as follows:

βwi =
1, αwidwi ∈ 0, Rw½ Þ
0, αwidwi ∉ 0, Rw½ Þ

(
, ð3Þ

where βwi represents whether vehicle i belongs to cluster
w, and the CMV i will become the member of m − th cluster
only if it satisfies the requirement of driving condition and
communication condition simultaneously.

Since the irregular distribution of CHVs, a CMV may be
located at the overlapping area of two clusters. In this case,
we stipulate that vehicle chooses the cluster where vehicle
is closest to its corresponding CHV. We assume that vehicle
j locates at the overlapping area of cluster w and w + 1, and
then, it chooses the cluster by

V j ∈min
αwjdwj

Rw
,
α w+1ð Þjd w+1ð Þj

R w+1ð Þ

 !
: ð4Þ

As stated previously, clusters are impermanent and
changing over time. If an CMV changes its path or takes
an overtaking action, it will potentially exceed the current
CHV’s communication range and depart from the current
cluster. In this case, to ensure the consistency of the vehicle
trust value, the vehicle trust information needs to be
synchronized with the corresponding CHV. This paper
introduces a DQN-based path prediction algorithm for
vehicles to solve the above issue, which will be described
in Section 5.
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3.2. Trust Evidence Collection. Trust evidence is the basis of
decision tree learning used to train the tree’s structure and
test the tree’s accuracy, which is crucial to the performance
of MTRF. We collect evidence from three aspects: vehi-
cle-based, data-based, and link-based to consider the cred-
ibility of IoV comprehensively. However, the raw data
collected by sensors contain missing values, outliers, and
obsolete or redundant fields. To ensure the accuracy of
the RF-based trust management mechanism, we must pre-
process the trust evidence before training. In our proposed
scheme, each trust evidence is missing, and default values
are replaced by its field mean. Through Equations (5) to
(9), we also normalize all the indicators and ensure that
they increase monotonically.

3.2.1. Vehicle-Based Trust Evidence. We consider malicious
vehicles have three types of attacks: generating fake
messages, tampering with messages they received, and delib-
erately concealing messages about actual accidents. Vehicles
receive multiple information about the same event sent by
other CMVs and decide whether to forward the information.
The number of information and correct information
forwarded by the vehicle can reflect its identity. Two param-
eters TEVi

1 and TEVi
2 are proposed to represent the degree

of selfishness and honesty of the vehicle i [16].

TEVi
1 =

Ni
send mð Þ

1/H∑H
h=1 N

h
send mð Þ

, ð5Þ

TEVi
2 =

∑M
m=1 N

i
honest mð Þ

∑M
m=1 N

i
send mð Þ

, ð6Þ

where H is the number of neighbor vehicles that send
messages about accident m, Ni

sendðmÞ is the number of

messages that vehicle i sends to its neighbor’s vehicle, M is
the number of accidents that occurred on the roads. ∑M

m=1
Ni

honestðmÞ is the total number of honest messages that vehi-
cle i sends to its neighbors, and ∑M

m=1 N
i
sendðmÞ is the total

number of messages that vehicle i sends.

3.2.2. Data-Based Trust Evidence. Data-based trust evalua-
tions use the message to measure the vehicle’s reliability.
CHVs collect messages about each accident from different
vehicles. Based on the spatial-temporal correlation, the qual-
ity of interactive information can be measured by its rele-
vance to other information about the same accident.
According to [25], we assume that the data obeys the
normal distribution. The deviation between data and the
average value reflects the reliability of the data. If the data
is closer to the mean value, it will be more reliable than
those far away. TEV3 is defined to evaluate the trust
degree of messages.

TEVi
3 = 1 − 2

ðvmi
μ

1
σ
ffiffiffiffiffiffi
2π

p e−
x−μð Þ2
2σ2 dx, ð7Þ

where vmi is the value of message transmitted by vi.

3.2.3. Link-Based Trust Evidence. The link quality influences
the accuracy of messages transmissions among vehicles.
Considering attack patterns, such as Man-in-the-Middle
attacks [26], attackers intercept normal network traffic data
by attacking communication links and perform data tamper-
ing and sniffing. We measure the link quality from two
aspects: link transmission delay and usage frequency [19].

TEVi
4 = 1 −

ldelay nið Þ
ldelay nið Þ +∑H

j=1 ldelay nið Þ
, ð8Þ
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Figure 4: The overview of MTRF.
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TEVi
5 =

luse nið Þ
luse nið Þ +∑H

j=1 luse nið Þ
, ð9Þ

where TEVi
4 and TEVi

5 represent the link transmission
delay and the link usage frequency, respectively, ldelayðniÞ is
the link transmission delay between vehicle ni and its neigh-
bor nj, and luseðniÞ is the link usage of ni.

After completing the trust evidence collection, we have
five continuous variables. In order to further shorten the
MTRF execution time and better meet the requirements of
IoV delay sensitivity, we adopt the fuzzification method for
TEVi

1 ~ TEVi
5. Each data is converted into two-category

variables fLow,Highg based on fuzzy rules to reduce the
computational complexity and latency. If the data is less
than threshold, the discrimination is Low; otherwise, the dis-
crimination is High. Vehicles can further use the discretized
trust evidence for trust degree classification.

3.3. Trust Evaluation Based on Random Forest.We adopt the
Random Forest algorithm to evaluate vehicle reliability.
Random Forest is an ensemble learning algorithm using
bootstrap technology to extract a random sample set from
the original sample set to construct a single decision [27].
Splitting nodes are selected to split at each node of the deci-
sion tree employing random feature subspace. Finally, these
decision trees are combined to generate the final classifica-
tion results through majority voting (bagging). RF synthe-
sizes multiple deep decision trees that are trained on
different parts of a training set to solve the overfitting prob-
lems by reducing variance instead of pruning processes. The
details of RF are shown in Algorithm 1.

The CART is selected to generate trees because it uses
GINI impurity metric to minimize classification error. S
represents the training set with the size of N , which has
class-labeled tuples. F represents the attribute set with the
size of five. Y contains two types of target fHigh, Lowg
and represents the trust degree of vehicles.

As previously described, vehicles have been grouped into
several temporary clusters, and the formulas are shown in
Equations (10) to (13). Let the total number of clusters as
the P, and Num describe the number of vehicles in different
clusters. For the w − th cluster, each vehicle trains a CART
tree, and the RF scale of cluster w is numw. T

w represents
the set of decision trees in the w − th cluster. Sw1 and Fw

1
are the training data extracted from S and the attribute set
for the Tw

1 , respectively.

Num = num1, num2,⋯, numPf g, ð10Þ

Tw = Tw
1 , Tw

2 ,⋯, Tw
numw

,
n o

, ð11Þ

Sw1 = sw11, sw12,⋯, sw1Nf g, ð12Þ

Fw
1 = f w11, f w12,⋯, sw1mf g: ð13Þ

It is important to note that each sample from S is
extracted multiple times because N samples are randomly
selected from the training set S with replacement. Each tree

has a different training set, and a spot of identical samples
appears in Sw1 . m is determined by the size of attribute set
F. The training delay is not considered in our proposal
because the classifiers are trained offline.

As demonstrated previously in Figure 3, once Vx dis-
cover the accident e occupied on the road, it will transmit
messagee to other vehicles in the same cluster. Then, Vi, i
= 1, 2,⋯, x − 1, x + 1,⋯numw implements decision process
based on Fw

i independently and forward the decision result
resex,i to the CHV. Each resex,i, i = 1, 2,⋯, numwandi ≠ x is a
target label that represents the trust evaluation result. Let R
ESex represent the decision results made by vehicles in cluster
w, and CHV integrates all resex,i to obtain RESex which is
transmitted to the corresponding RSU.

RESex = resex,1,⋯, resex, x−1ð Þ, resex, x+1ð Þ,⋯, resex,numw

n o
: ð14Þ

3.4. Trust Value Calculation and Update. Given the concep-
tual nature of “trust,” both current and historical records can
be used as benchmarks for trust values. Trust of vehicles can
be evaluated based on historical data records, especially if
there is no direct interaction between neighboring vehicles.
The traditional RF algorithm finally uses the majority vote
method to get the decision result. Since the RF training
process requires a random selection of features and sam-
ples, it makes an inevitable training result unsatisfactory
and leads to failure in the decision of vehicle trust. To
solve the above issues, we make some improvements to
traditional algorithms.

In our proposed algorithm, as shown in Figure 5, a slid-
ing time window is used to store the trust characteristics of
the vehicle nodes. The trust value calculation process con-
sists of two parts: majority voting and trust accumulation.

As mentioned earlier, after CHV consolidates the deci-
sion results of vehicles in the cluster to obtain RESex and
uploads it to RSU, the RSU executes the majority voting pro-
cess to obtain the classification result VRt

x of the vehicle x at
the current moment. In the follow-up process of trust accu-
mulation, the sliding time window is adopted to perform a
weighted summation of the trust values from time t − ðh −
1Þ to t to obtain the final trust value of Vx according to
Equation (15).

TVt
x =

Nt
H

Nt
H +Nt

L

	 
 1ffiffiffiffiffiffi
Nt

L
δ
p

 !
, ð15Þ

where Nt
H and Nt

L are the number of high and low classifica-
tion results in VR, respectively. δ is a positive integer. The
value of

ffiffiffiffiffiffi
Nt

L
δ
p

rises sharply with the increase in the number
of low labels, reflecting the strict punishment characteristics
for malicious vehicles.

Figure 6 is an effect diagram of Equation (15), where the
horizontal axis is δ and the number of classified results as
Low, and the vertical axis represents the trust value of the
vehicle. Compared with the traditional linear relationship,
the addition of the penalty factor δ makes the trust of the
vehicle shows a rapid decline with the appearance of the
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malicious rating, reflecting the system’s strict punishment
characteristics for malicious vehicles. But at the same time,
the penalty factor cannot be selected too small because the
system needs to be fault-tolerant to decision failures caused
by the randomness of the RF training process.

For MTRF, the computational complexity is mainly
composed of RF decision process. Profit from the dynamic
clustering mechanism, the evaluation process of the trust
degree of the observed vehicles is restricted to a single clus-
ter, which is uniformly managed by CHV. The out-of-cluster
CMVs need not to participate in the decision-making pro-
cess, resulting in lower computational complexity Oðρ2
Ntotal

2 log ðρNtotalÞ
ffiffiffiffiffi
M

p Þ, where ρ≪ 1 is the proportion of
vehicles in the cluster to the total number of vehicles in the
environment.

4. The Lightweight Cryptography Algorithm

With the help of MTRF, attacks by malicious vehicles broad-
casting fake information among CMVs can be resisted effec-
tively. However, this is not enough for a complex
communication network such as IoV. IoV communication
is carried out in an open wireless channel, where numerous
types of adversarial behaviors exist. The communication
processes between CMVs, CHV, and RSU lack protection
mechanisms. Once attackers attack the above communica-
tion processes, information such as resex,1 and RESex are
directly disclosed, which poses a severe threat to the effec-
tiveness of MTRF.

Input: Training set S = fs1, s2,⋯, sNg with targets Y = fy1, y2,⋯, yNg
Attribute set F = f f1, f2, f3,⋯, f Mg

Output: A random Forest ðS, Y , KÞ
For k = 1⟶ K do

Bootstrapping:
For k − th tree, N samples are randomly extracted from the training set S with replacement to constitute a new training set

Sk with targets Yk.
Specify a constant m that is far less than M, m features are randomly selected from the attribute set F as a new attribute set Fk.

Training:
Use Sk, Yk, and Fk to perform CART procedure and train a classification Tk.

End for
Bagging:
The final classification is performed by majority vote which is based on the decision results generated by K trees.

Algorithm 1: Random forest algorithm.

Sliding time window moving direction

TVx
t – h TVx

t – (h – 1) TVx
t – (h – 2) TVx

t – 1 TVx
t

VRx
tVRx

t – 1VRx
t – (h – 2)VRx

t – (h – 1)VRx
t – h

Sliding time window size is h

....

....

.... ....

....

RESx
tRESt – 1RESx

t – (h – 2)RESx
t – (h – 1)RESx

t – h ....

Figure 5: The sliding time window.

0.9

0.8

0.7

0.6

Tr
us

t v
alu

e 0.5

0.4

0.3

0.2

0.1
0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.1

0.2

0

1086420
1 2 3

The number of classified results as low

4 5 6 7 9 108

Figure 6: The performance under different δ:

8 Wireless Communications and Mobile Computing



Considering the limited computing, storage capacities of
vehicles, and strict requirements for time delay for IoV, we
propose a lightweight cryptography mechanism. The nota-
tions used are shown in Table 1.

Elliptic Curve Cryptography (ECC) is an asymmetric
encryption algorithm based on the mathematical theory of
elliptic curve. Compared with RSA, the ECC has the advan-
tage of using shorter keys to achieve even higher security
than RSA [28]. As shown in Table 1, Fp represents the finite
field of a large prime number p, Epða, bÞ is an elliptic curve
defined by homogeneous Equation (16), where x, y, a, and
b belong to Fp and are satisfied with Equation (17) [29].
And then Gðx1, y1Þ is assigned as the base point of Epða, bÞ
of which the order n is a large number. The random number
N∗ is less than n.

y2 = x3 + ax + b mod pð Þ, ð16Þ

4a3 + 27b2 mod pð Þ ≠ 0: ð17Þ
The communication channels exposed to the environ-

ment are vulnerable to malicious attacks. Providing that only
two communication processes are taken into consideration:
CMV and CHV, CHV, and RSU. In addition, we assume
that each type of road entity knows its identifier ID and pri-
vate key PRK and generates its own public key PUK based
on PRK ×G, which is shared in the communication net-
work. The proposed cryptography mechanism is shown in
Figure 7. If an CMV Vi makes a decision about the vehicle
under observation and wants to transmit resei to corre-
sponding CHV, it will first encrypt resei through hash function
and self IDVi

to generate Msg1ei according to Equation (18)
and then select a random number NVi

. Finally, Vi transmits
fNVi

G,Msg1ei ⊕NVi
PUKCHVg to CHV.

Msg1ei = resei h reseiðk kIDVi

�
: ð18Þ

After CHV received the information from Vi, it restores
Msg1e′i based on its PRKCHV and then calculate hðrese′i kI
DVi

Þ . If hðrese′i kIDVi
Þ = hðreseikIDVi

Þ, resei will be regarded
as a complete and legal message. CHV then generates V
Rt
x and Msg2ex and transmits fNCHVG,Msg2ex ⊕NVi

PU
KRSUg to RSU. The RSU performs the same steps to verify
the received VRt

x, calculates the TVt
x, and returns it to the

CHV to ensure the accuracy of TVt
x.

We take the communication process of CHV-RSU as an
example to verify the mechanism’s effectiveness. CHV inde-
pendently chooses the random number NCHV , which is
unknown to other road entities. It is almost impossible for
an attacker to recover Msg2ex from fNCHVG,Msg2ex ⊕NVi

P
UKRSUg, when only the RSU public key PUKRSU is known.
In addition, since the public key of the post-RSU is used to
encrypt the information, the RSU is competent to use its
private key to restore Msg2ex based on Equation (19). To
restoreMsg2ex , an attacker must have G and NCHVG to solve
for NCHV , which is considered problematic.

Msg2e′x = Msg2e′x ⊕NCHVPUKRSU

� �
⊕ PRKRSU NCHVGð Þð Þ

=Msg2e′x ⊕NCHV PRKRSUGð Þ ⊕ PRKRSU NCHVGð Þ
=Msg2e′x = VRt′

x h VRt
x

��� ��IDCHVÞ:
ð19Þ

5. The Trust Sharing Algorithm

At present, most researchers use the central system control-
ler to share the trust value of the vehicles across the cluster
and adopt the soft handoff method. However, for the net-
work with strong mobility and high delay sensitivity as
IoV, it is confronted with the following three weaknesses:

(1) When the vehicle requires cluster switching, it must
primarily establish a communication connection
with the central controller and inform the target
cluster. The trust value of the vehicle cannot be
shared until the controller establishes communica-
tion with the target cluster, resulting in high commu-
nication delay and signaling overhead

(2) The location of the central controller is generally sta-
tionary, and the potency of trust sharing drops
markedly as the distance between the vehicle and
the controller increases, which imposes restrictions
on the scalability of IoV.

(3) The employment of soft handoff makes the vehicle
maintain the communication connection with the
historical CHV before joining the new cluster, which
is a waste of the communication resources of histor-
ical CHVs

In this paper, we combine trust information sharing with
vehicle path prediction, so that trust information can be
shared locally purposefully. Recently, reinforcement learning
(RL) is developing rapidly and has a good application pros-
pect in path prediction. RL is a principled mathematical

Table 1: Main symbols used in the proposed cryptography
mechanism.

Notation Description

p A large prime number

Fp The finite field of p

Ep a, bð Þ An elliptic curve defined by equation

G The base point of Ep a, bð Þ
n The order of G

ID∗ The identifier of traffic entity ∗

PRK∗,PUK∗ The private and public key of traffic entity ∗

N∗ The random number generated by ∗

h ·ð Þ The hash function

⊕ The exclusive-OR operation

|| The message concatenation operation
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framework for experience-driven autonomous learning [30].
An agent learns how to maximize the benefits of a sequential
decision problem by interacting with the environment. For-
mally, RL can be described as a Markov decision process
(MDP), composed of a 5-dimension tuple ðS ,A ,P , R, γÞ,
where S and A is the state and action set, respectively, P
represents the state transition probability Pr ðst+1 ∣ st , atÞ, R
stands for the expected reward set. At each time slot t, an
agent observes state st and takes action at to make the inter-
action with environment. If the agent takes at , it will be
transformed to a new state st+1 and acquire a reward rt ∈ R
based on the current state and the chosen action. The ulti-
mate goal of RL agent is to find a policy π to maximize the
cumulative reward Eπ½∑∞

t=1 γ
t−1rt �, where γ is a discount fac-

tor and belongs to ½0, 1�.
Q-learning is a widely used model-free RL algorithm that

aims to find the Q-function of each state-action pair for the
given policy, which is defined as

Qπ st , atð Þ = E 〠
∞

t ′=1
rt ′ ∣ s1 = st , a1 = at

" #
, ð20Þ

whereQπðst , atÞ represents the cumulative reward when taking
action at in state st and under the policy π. Q-learning
updates the value function by time difference formula:

Q st , atð Þ⟵Q st , atð Þ + α rt + γ max
at+1

Q st+1, at+1ð Þ −Q st , atð Þ
� 

,

ð21Þ

where α is the learning rate.
However, the traditional Q-learning algorithm learns

the optimal policy by establishing and updating a Q-table,
limiting the RL’s scalability and ability to solve high-
dimension problems. Deep Q-network, which is the com-
bination of deep learning and Q-learning, is proposed to
settle the above problems by using deep neural networks
to approximate the value of the Q-table. The architecture
of DQN is shown in fig.~reffig:DQN, and after using
DQN, Equation (22) can convert to

θt+1 ⟵ θt+1 + α rt + γ max
at+1

Q st+1, at+1 ; θ−ð Þ −Q st , at ; θð Þ
� 

× ∇Q st , at ; θð Þ,
ð22Þ

Figure 7: The cryptography mechanism based on ECC and hash function.
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where Qðst , at ; θÞ and Qðst+1, at+1 ; θ−Þ are the evaluation
and target network, respectively, with different weight θ,
θ−, which is used to improve the training stability of
DQN. It should be pointed out that the weight θ− of target
network is synchronized with θ periodically. Then we use
the mean-square error to define the loss function. The
network is trained by minimizing the loss, and finally Q
ðst , atÞ is estimated.

L θ, θ−ð Þ = E rt + γ max
at+1

Q st+1, at+1 ; θ−ð Þ −Q st , at ; θð Þ
	 
2
" #

:

ð23Þ

The formulation of path prediction mechanism is
mainly divided into three parts: environment observation,
action space design, and reward design.

5.1. Environment Observation. Environment observation is
the input of the neural network. Whether the observation
design is close to the natural environment information
directly affects the availability of prediction results. So, the
design of observation must accurately capture the character-
istics of the application scenario. As for IoV, we take driving
safety and driving efficiency as the focus to simulate the
environment. The input of DQN is an RGB pixel image,
which is shown in Figure 8, consisting of origin, terminus,
and current point. To better simulate road conditions, the
obstacles, flow, and accident points are also settled.

5.2. Action Space. In traffic path prediction algorithm, there
are four types of actions in action space A , A = fup, down,
lef t, rightg. Each vehicle is an agent, which comprehensively
considers the vehicle’s current location and the surrounding
environment. Vehicles choose different behaviors to interact
with the environment and learn the best policy.

5.3. Reward Design. The core of RL is to learn unfamiliar
scenes through interaction with the environment to obtain
behavioral strategies to meet the set goals. In this process,

the reward is the only feedback that an agent can obtain
from the environment [31]. Rewards directly affect whether
an agent can learn toward the desired goal and determine
the model’s effectiveness. Therefore, the design of rewards
must fully reflect the expectation. For the consideration of
driving safety and efficiency, the reward design of this mech-
anism focuses on four aspects: avoiding the section where
traffic accidents are happening, avoiding the section with
high vehicle density, avoiding the obstacle, and reaching
the destination. The reward function is defined as folows:

rewardt =

rbarrier , if crash the barrier
raccident , if receive accident message

rf low, if f low > f lowthreshold

rreach, if arrive at destination
0, otherwise

8>>>>>>>><
>>>>>>>>:

,

ð24Þ

where f lowthreshold is the maximum traffic flow that meets
the normal driving speed of vehicles and according to the
degree of need of different targets, rbarrier < raccident < r f low
< 0 < rreach.

Based on MTRF, we adopt the cryptography mechanism
to prevent malicious attackers from destroying the commu-
nication connection between CHVS, CMVS, and RSUs,
which effectively protects vehicle privacy information and
decision results from being disclosed. After going through
the trust management mechanism, the ultimate trust values
of vehicles are stored in RSUs and propagated among RSUs
according to the path prediction results. Considering that
RSUs are mainly deployed by the government and have
good authority and security, we assume that RSUs cannot
be compromised by attackers. Under this assumption, when
the RSU is not under attack, the private information of the
vehicle is not easy to disclose.

6. Implementation and Performance Analysis

The simulation process consists of two parts: MTRF and
DQN-based path prediction, and the parameters are shown
in Table 2. As for the MTRF training process, each vehicle
goes through a random selection of samples. Some samples
are not involved in the training process for each vehicle’s
CART tree, called the out-of-bag samples. The system’s
accuracy can be evaluated by classifying the samples out of
the bag by using RF [32]. We use the parameter accuracy
to measure the performance of MTRF.

accuracy = 1 −OOB = 1 − Nout−correct
Nout

, ð25Þ

where OOB represents the out-of-bag error, Nout−correct is the
number of correctly classified out-of-bag samples, and Nout
is the total out-of-bag samples. In order to make the results
more accurate and convincing, the decision-making process

Convolution Convolution

Fully connected

Output

Input

Figure 8: The architecture of DQN.
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of each vehicle is repeated 500 times to calculate the compre-
hensive value.

Figure 9 illustrates the accuracy and time-consuming
with the variable of the proportion of randomly extracted
features. It can be seen that as the proportion increases, the
accuracy of MTRF first increases rapidly, and then gradually
stabilizes, accompanied by a rapid increase in time con-
sumption. This is because too small feature extraction rate
results in incomplete growth of decision tree training and
inability to accurately determine vehicle identity; excessive

feature extraction rate results in complete growth of decision
trees, and the forest composed of such trees is too capable to
reflect the RF superiority. Time-consuming continues to
increase as the complexity of the decision tree structure
increases. Considering the accuracy of the system and the
time-consuming comprehensively, the proportion of
extracted features is 0.3, that is, when two features are
selected, the accuracy and effectiveness of the system are
both quite satisfactory. It should be noted that f eatureextr
actionrate ×M is a noninteger, and the rounding operation

Table 2: The core parameters.

Parameter Parameter values

Simulation scene Urban crossroad

Vehicle type Honest + malicious vehicle
Attack behavior Falsify and forward the decision results

Penalty factor δ 2

Extracted features rate 0.3

The number of vehicle in a single cluster 1 × CHV + 31 × ordinary
The number of malicious vehicles in a cluster 3˜30
The probability of malicious vehicle attack 0.1˜1.0

The scale of the network 7 × 7 ~ 11 × 11
Environment size 25, 29, 33, 37, 41

Batch size 100

Learning rate 0.001

Epochs 8

rbarrier -100

raccident -80

r f low -60, -40, -20

rreach +100
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is adopted in the experiment, resulting in the same number
of feature extraction, which causes the slow growth of the
time-consuming curve at the early stage.

Figure 10 illustrates the accuracy of MTRF with a
variable of the number of vehicles in a cluster, where the
variable gradually increases from 10 to 30. The proportion
of malicious vehicles remained 30%, and the probability of
malicious vehicles attacking remained unchanged at 50%.
It can be seen that as the number of vehicles in the cluster
increases, the system’s overall accuracy decreases slightly.
When the number of vehicles is 11, the accuracy reaches
the maximum 98:0879%, and when the number of vehicles
is 29, the accuracy reached the lowest 91:4176%. The overall
system accuracy remained above 90% with no apparent
downward trend, which verified that the system we pro-
posed could identify malicious vehicles, thereby improving
the reliability of IoV. The random selection of samples and
features during RF training results in slight fluctuations in
the accuracy of MTRF, but within a reasonable range.

Figures 11 and 12 illustrate the accuracy of MTRF with
the variables of the number of malicious vehicles in a cluster
and the probability of launching a malicious attack.

Figure 11 shows the performance under different num-
bers of vehicles in a cluster. The four broken lines represent
four different attack probabilities. It can be seen that when
the attack probability is lower than 0.3, the accuracy of
MTRF for malicious vehicle identification remains around
90% and does not change significantly with the increase of
the number of malicious vehicles in the cluster. When the
attack probability is higher than 0.5, the accuracy of MTRF
decreases to a certain extent with the increase of the number
of malicious vehicles in the cluster, but MTRF still maintains
the accuracy of 77.8% until there are half of the malicious
vehicles in the cluster.

Figure 12 shows the performance under different proba-
bilities of launching attacks. The six broken lines represent

six different numbers of malicious vehicles in a cluster. It
can be seen that when the attack probability of malicious
vehicles is 0.1, even if the malicious vehicles in the cluster
increase to 27, the accuracy can be maintained above 92%.
When the number of malicious vehicles in the cluster is less
than 9, MTRF is almost not affected by the attack probability
of malicious vehicles. Even if all attackers launch attacks in
the cluster, MTRF can still maintain an accuracy rate above
83%. When the number of malicious vehicles is greater than
15, the accuracy of MTRF decreases as the probability of a
malicious vehicle launching an attack increases, but the
accuracy remains around 70% until the probability is 0.5.

The above results can prove that MTRF has a relatively
superior effect. The RSU consolidates the results of all vehi-
cles through the voting process, which is why only when
both the number of malicious vehicles and the probability
of launching attacks remains high, accuracy will be dramat-
ically reduced. Malicious vehicles randomly choose whether
to reverse the decision result according to the probability.
When the proportion of malicious vehicles is less than 50%
, it is difficult to affect the system classification results even
if the attack is launched. When the proportion of malicious
vehicles exceeds 50% and the probability of attack remains
at a medium or low level, according to probability statistics,
the probability of simultaneous attacks by vehicles is low so
that the system can effectively resist attacks and the system
accuracy is maintained at a high level.

We also compare the performance of MTRF with that of
TECU proposed in [19] in the case of 30% malicious
vehicles. As shown in Figure 13, under the same malicious
vehicle number in a cluster and three different probabilities
of malicious attack, the accuracy of MTRF is significantly bet-
ter than TECU. In [19], the authors only realize the identifica-
tion of malicious nodes but do not consider the attack
behavior of malicious nodes. Once the node launches an
attack, the system performance will decline sharply. Especially
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Figure 10: The performance under different number of vehicles in a cluster.
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when the probability of malicious attack is 0.5, the accuracy of
TECU to identify malicious nodes is less than 80%. ForMTRF,
we use RF to make the vehicles in the cluster jointly identify
malicious vehicles and weaken the attack effect of malicious
nodes and keep the classification accuracy of MTRF above
90% even in the terrible environment. In addition, with the
help of encryption algorithms, we further improve MTRF’s
ability to resist malicious vehicle attacks, thus maintaining
superior performance.

The next portion is the simulation of the path prediction
mechanism based on DQN. We use a 25 × 25 pixel image to

simulate the traffic environment. As shown in Figure 14(a),
the circumstance is composed of 25 intersections and 20
T-shaped intersections. Pixels have six corresponding RGB
values. Black represents clear roads, white represents obsta-
cles, blue and green represent the current location and desti-
nation of the vehicle, and red represents accidents. The other
three colors represent the degree of congestion in the road,
quantified by the traffic volume, and the degree of conges-
tion increases as the color darkens.

There are two traffic accidents on the road. First of all,
we simulate the path prediction with good traffic conditions.
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There are two traffic accidents on the road, four sections
with light congestion, four sections with moderate conges-
tion, and three sections with severe congestion. It can be
seen from the simulation results that the vehicle as an agent
finds a path in the network that can avoid the above nodes
and reach the destination safely. However, it is worth men-
tioning that there is more than one optimal path because
the road conditions are relatively simple. Then we worsened
the traffic situation, which consisted of six accident nodes, 15
lightly congested road sections, ten moderately congested

road sections, and eight severely congested road sections.
As shown in Figure 14(c), there is no perfect path in the cur-
rent network, and the vehicle must experience congestion.
However, according to our proposed algorithm, the vehicle
chooses a path that only passes through a section of lightly
congested traffic and obtains a better effect.

Figure 15 shows the average loss during the training
process of the above two situations. It can be seen that
there is a fast convergence rate in both scenarios, and the
learning net would be desired. With the increase of the
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Figure 14: DQN-based path planning environments and results.
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scene’s complexity, the convergence speed does not signifi-
cantly improve, with good generalization, which can cope
with the scene of the IoV.

Finally, to more convincingly illustrate the superiority of
the proposed path prediction mechanism, we compared the
time consumed by the DQN-based path planning algorithm
and the traditional A ∗-based algorithm under the same
environmental conditions, and the results are shown in
Figure 16. When the scale of IoV network is small, the differ-
ence between the time-consuming of the above algorithms is
not apparent. With the increase of network topology scale,
the delay and delay growth rate of the A ∗-based algorithm
are much higher than those of our proposed algorithm,

which showcases the superiority of our algorithm in terms
of timeliness.

7. Conclusion

This paper proposed an efficient RF-based trust manage-
ment mechanism MTRF tailored to the urban scenarios in
IoV. We also proposed a trust-sharing mechanism based
on path prediction using Deep Q-network. According to
simulation results, we demonstrated the performance of
our trust management scheme under different situations.
In addition, we simulated the path prediction algorithms
under different IoV network topology scales and different
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traffic conditions to verify that the proposed mechanism can
achieve good results and has good convergence perfor-
mance. Compared with the traditional A ∗-based algorithm,
the proposed algorithm can also highlight its better general-
ization and superiority in time-effectiveness. For the trust
management mechanism, we mainly considered two types
of attack modes, and lacked the considerations of other
attack modes such as Sybil attack, which limited the defense
capability of MTRF. In addition, the simulation of the urban
road network environment took regular intersections as the
basic unit, which simplified the complexity of roads to a
certain extent. The defects mentioned above should be
solved in future research.
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