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As a hot research topic, the gain-phase error self-calibration in MIMO radar systems has been investigated for many years. In this
paper, we proposed a novel array error self-calibration method, termed online errors self-calibration based on feature learning
(OES-FL). This method regards the statistical characteristics of the detected targets’ DOA as a prior knowledge and does not
require the calibrated antenna subarray or external reference source to correct the array disturbances in real time. First, we
analyse the monostatic MIMO signal model suffering gain-phase error. Then, we exploit the statistical characteristics of DOA
of many targets for correcting gain-phase error of antenna array. Next, the gain-phase error estimation scheme based on LMS
and the DOA deviation estimation method based on LSTM are proposed, respectively. Using real-life radar data collected at
the integrated transportation hubs to generate simulation data, the proposed approach is shown to be effective in correcting
gain-phase errors and, therefore, provides a promising model for online error self-calibration in monostatic MIMO radars.

1. Introduction

Direction-of-arrival (DOA) estimation has played an impor-
tant role in array signal processing over the past few decades
[1, 2]. Multiple-input multiple-output (MIMO) technology
is first widely used in the field of communication [3–5]
and is later introduced into the radar field [6–9]. MIMO
radar has gained extensive interest owing to the capability
of space diversity [6]. Many DOA estimation algorithms
[10–14] have been proposed. Due to the production process,
external environment factors, there is always inconsistency
among the antenna array elements in practice. The accuracy
of DOA estimation is constricted by this inevitable inconsis-
tency [15–17]. As for MIMO radar, the errors of transmit
and receive antennas are coupled with each other, thus sig-
nificantly causes the performance degradation of DOA esti-
mation [18]. Consequently, it is necessary to correct the
errors of array, including mutual coupling error, position
error, and gain-phase error. In this paper, we focus on devel-
oping the approach to mitigate the gain-phase error of
MIMO radar array.

Due to the fact that the MIMO radar can generate virtual
arrays, the array aperture is enlarged and the number of
array elements is increased. Hence, the parameter estimation
performance of MIMO radar system is superior than that of
conventional phased array radar [7]. Many calibration
approaches have been proposed in the literature, an estimat-
ing signal parameters via rotational invariance techniques-
(ESPRIT-) like algorithm has been proposed by Guo et al.
[18], which can provide closed-form solution for joint
DOD and DOA estimation. Recently, Li et al. [19] proposed
an eigenspace based algorithm for joint parameter estima-
tion. This method initially uses the eigenvalue decomposi-
tion (EVD) of covariance matrix to acquire the coarse
estimation results of DOA and then applies an improved
multiple signal classification- (MUSIC-) based cost function
to obtain more accurate estimation of DOA. The accurate
estimated DOAs interfering with the noise subspace, the
error vector of array gain-phase is achieved. Wen et al.
[20] proposed a novel parallel factor (PARAFAC) estimator
for estimating the DOD and DOA, and this method utilizes
the combination of one-dimensional grid searching and least
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squares (LS) fitting, which avoids the most of the costly
computations generated by eigen decomposition or high-
dimension spectrum searching. Li et al. [21] proposed a cal-
ibration method for coprime MIMO radar, this method esti-
mates the gain-phase errors by trilinear decomposition,
iteratively updated based on least squares, and has an ideal
performance. Hu et al. [22] proposed an efficient com-
pressed sensing based DOA method for bistatic MIMO
radar with unknown gain-phase errors, which has a high
computational efficiency and stability.

These recently proposed methods usually assume that
several antennas in the array have been corrected or employ
the auxiliary array as a reference. At times associated with
complexity of scenario, these corrected antennas or auxiliary
array cannot realize. Furthermore, correcting a limited num-
ber of antennas also increases the experiment cost, and the
antenna array with large scale integration cannot be readily
dismantled. Such a kind of self-calibration method would
be unsuitable in many field experiments. Consequently,
developing a self-calibration approach without any cali-
brated antennas is very necessary for MIMO radar system.
It is the purpose of the present paper to develop a real-
time self-calibration approach that accurately estimates the
DOA of targets by learning the information acquired by
itself.

With the development of machine learning, adaptive
technology has made great progress in communication
[22–24] and recognition [25, 26]. Real-time parameter opti-
mization can be realized online in a large number of scenar-
ios according to the environment. These experiment
conditions in this paper based on a radar system are
deployed for a very long period. Although the active cali-
brated has been carried out, the antenna array must be cor-
roded and damaged after a long time of work, resulting in
gain-phase error. Under this common phenomenon, we
design an online gain-phase error self-calibration method
by considering DOA statistical characteristics of the detected
targets as a prior information. We design the gain-phase
error estimation method based on LSM and the DOA offset
estimation method based on LSTM, which realizes the real-
time online error correction achieved without reference
sources.

This paper is organized as follows. Section 2 presents a
brief description of signal model with gain and phase errors
in monostatic MIMO radar. Section 3 focuses on the con-
cepts of the proposed calibration method and its way to
achieve. In Section 4, we analyse the performance of the pro-
posed approach using abundant real-life millimeter-wave
radar data collected at the junction urban and suburb. Con-
cluding remarks are given in Section 5.

2. Signal Model

Theoretical analysis and simulation results are exhibited for
illustrating the superiority of the proposed scheme, includ-
ing the ideal estimation accuracy and the robustness for cor-
recting gain-phase errors. Assume that there is a monostatic
MIMO radar system composed of the M transmit antenna
elements and N receive antenna elements, and ATðθÞ and

ARðθÞ, respectively, represent the receive and transmit steer-
ing vectors without array gain-phase errors, respectively.

AT θð Þ = 1 ej2πdT sin θð Þ/λ ⋯ ej2π M−1ð ÞdT sin θð Þ/λ� �
,

AR θð Þ = 1 ej2πdR sin θð Þ/λ ⋯ ej2π N−1ð ÞdR sin θð Þ/λ� �
,

ð1Þ

where θ is the DOA of a target, the separation distance
between the transmit antenna elements is dT, and the dR
represents separation distance between the receive antenna
elements. λ is the wavelength. Suppose that the error of each
cell with respect to the first cell is

ΓT = aT1 e
jϕT1 aT2 e

jϕT2 ⋯ aTMe
jϕTM

h i
,

ΓR = aR1 e
jϕR1 aR2 e

jϕR2 ⋯ aRNe
jϕRN

h i
,

ð2Þ

where aTm represents the gain error of the mth transmit
antenna element and ϕTm represents the phase error of the
mth transmit antenna element. Accordingly, the aRn and ϕRn
represent the gain error and phase error for nth receive
antenna element, respectively. And particularly, a1ejϕ

T
1 = b1

ejϕR1 = 1. Then, the echo signal of the target can be expressed
as

x θð Þ = ΓT ⊙AT θð Þð Þ ⊗ AR θð Þ ⊙ ΓRð Þ, ð3Þ

where ⊙ represents the Hadamard product, and ⊗ repre-
sents the Kronecker product. xðθÞ is a vector with a length
of MN , and it can also be reshaped into a M ×N dimen-
sional matrix XðθÞ. In the matrix XðθÞ, the element xðm, n
Þ in mth row and nth column represents the echo signal
transmitted from the mth transmit antenna, then reflected
from the target and received by the nth receive antenna ele-
ment. Hence, xðm, nÞ can be expressed as

x m, nð Þ = aTme
jϕTmej2π m−1ð ÞdT sin θð Þ/λej2π n−1ð ÞdR sin θð Þ/λaRne

jϕRn

= aTma
R
ne

j 2π m−1ð ÞdT sin θð Þ/λ+2π n−1ð ÞdR sin θð Þ/λ+ϕTm+ϕRnð Þ:
ð4Þ

When separating the amplitude and the phase, we can
obtain

A m, nð Þ = aTma
R
n ,

Φ m, nð Þ = K m, nð Þ sin θð Þ + ϕTm + ϕRn ,
ð5Þ

where Kðm, nÞ = ½2πðm − 1ÞdT + 2πðn − 1ÞdR�/λ and the
amplitude error can be obtained according to the previous
Aðm, nÞ. As for obtaining phase error, ϕT1 and ϕR1 are known,
and the rest part of the antenna errors can be solved by the
following equation.

Φ =HX, ð6Þ
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where Φ = Φð1, 2Þ Φð1, 3Þ ⋯ Φð1,NÞ Φð2, 1Þ ⋯½
ΦðM,NÞ�,

Equation (6) can be viewed as an equation set of multiple
variables consisting of MN − 1 linear equations. Because the
last column of H can be represented by a linear combination
of the previous M +N columns, the maximum rank of this
matrix is M +N − 2. And the total number of unknowns is
M +N − 1; obviously, this equation has multiple solutions,
and the additional information is required to determine
the value of each unknown. In the active calibration technol-
ogy, where θ is known, that full rank can be satisfied, and the
errors of each element can be solved. For the self-calibration
algorithm, θ is unknown, as long as the error of any element
is known, that is to say, one antenna is calibrated in this
array, and the phase errors of each element can be obtained.

3. Error Calibration Method

3.1. Theoretical Model. The previous methods usually esti-
mate the DOA of the targets by applying the calibrated
antennas and then estimate the gain-phase errors of other
elements in the array according to the DOA of targets. If

the gain-phase errors of all antenna elements are unknown,
Equation (6) has infinite number of solutions. In addition,
if a phase error between two elements in array is ignored, a
wrong DOA estimation result will be obtained by this pair
of elements. When utilizing this wrong DOA estimation
result to further estimate the error of other antenna ele-
ments, all the results are a function of the element that we
ignored. And the DOA results of this array will also have a
fixed phase deviation, which is the phase error of the ignored
element. Using this correction result to estimate the DOA of
targets again, all the obtained results will have a fixed devia-
tion. In this scenario, when the distribution characteristics of
targets’ DOA are identified, the errors of DOA will be cor-
rected. Therefore, we propose a calibration algorithm model
as shown in Figure 1. The calibration algorithm model con-
sists of two parts: error estimation and DOA deflection
estimation.

In the error estimation, we first ignore the error of an
antenna element, and anyone has opportunity to be tenta-
tively ignored. For example, we ignore the error of the sec-

ond transmit antenna element, bϕT
2 = 0, hence, the Equation

(6) has only one unique solution as follows.

bϕT
m =Φ m, 1ð Þ − m − 1ð ÞΦ 2, 1ð Þ,

bϕR
n =Φ 1, nð Þ − n − 1ð ÞΦ 2, 1ð Þ dR

dT
:

ð7Þ

As for another target with direction φ, the array echo cal-
ibrated by Equation (7) is as follows.

Φφ m, nð Þ = K m, nð Þ sin φð Þ + ϕTm − bϕT
m + ϕRn − bϕR

n

= K m, nð Þ sin φð Þ + m − 1ð Þ + n − 1ð Þ dR
dT

� �
ϕT2

= K m, nð Þ sin φð Þ + λϕT2
2πdT

" #
:

ð8Þ

In practice, there is a fixed phase offset Δφ = λϕT2 /ð2πdTÞ
when the DOA of target is estimated after correcting. If the
distribution of real targets obeys a normal distribution and
the mean of DOAs is 0°, the results will have a fixed devia-
tion after the calibration. The mean is changed as arcsin ðΔ
φÞ. The mean of DOAs can be obtained by applying a great

�e estimation of array
gain-phase error

DOA deflection
estimation

DOA offset

Radar echoes DOA estimation Correction results

�e coefficient of array
gain-phase error

Figure 1: Flowchart diagram of proposed algorithm.

�reshold

Error estimation

Error correction

Figure 2: LMS algorithm processing scheme.

3Wireless Communications and Mobile Computing



deal of statistical information, so Δφ can be estimated, and
the accurate calibration is realized.

3.2. Algorithm Flow. Assume that targets with different dis-
tances and speeds have been separated by applying coherent
integration and eigenvalue decomposition in the signal pro-
cessing process, thus, the echo XðθÞ only contains one target.
In order to weaken the interference of noise, least mean
square (LMS) is used to iteratively calculate the gain-phase
error of array, and the target with high SNR is selected for
estimating gain-phase errors during each iteration.

Figure 2 illustrates the processing scheme of LMS, where
the XðnÞ represents the nth echo data. The targets with high
SNR are selected, which can grant the ideal accuracy and
efficiency of estimation, and these selected targets are put
into the successive iteration for estimating the gain-phase
errors. YðnÞ represents the corrected results of output, and
RðnÞ as the reference signal is the theoretical echo data cor-
responding to the estimated DOA by using the first two ele-

ments in XðnÞ, x1ðnÞ and x2ðnÞ. The estimated DOA bθ can
be defined as

bθ = arcsin angle
x2 nð Þ

x1 nð ÞK 1, 2ð Þ
� �� �

: ð9Þ

Hence, the reference signal is defined as

R nð Þ = 1 e
jK 1,2ð Þ sin bθ� 	

⋯ e
jK M,Nð Þ sin bθ� 	� �

:

ð10Þ

The equation for the YðnÞ and EðnÞ can be described as

Y nð Þ =X nð ÞW nð Þ,
E nð Þ = R nð Þ − Y nð Þ,

W n + 1ð Þ =W nð Þ + αE nð ÞX∗ nð Þ,
ð11Þ

where WðnÞ is the calibrated coefficient, α represents the
learning factor, and X∗ðnÞ is the conjugate for XðnÞ. After
completing the iteration, we obtain W ∈ℂMN×1 which is
the calibration coefficient of the virtual array, and W could
be reshaped into a matrix �W ∈ℂM×N . The ratio of each col-
umn of �W to the other is the error between the two transmit
elements; similarly, the ratio of each row of �W to the other is
the error between the two receive elements. We can get the
gain-phase errors of transmit array bΓT and that of receive

array bΓR as follows.

bΓT =
�W �W†

C

N
,

bΓR =
�W†

R
�W

� 	T

M
,

ð12Þ

where �WC ∈ℂ1×N is the first column of �W, �WR ∈ℂM×1 is the
first row of �W, and ð⋅Þ† is the pseudoinverse of a matrix.

Then, the DOA offset is estimated by using the statistical
characteristics of the targets’ DOA. In most cases, when
deploying a new antenna array, all the antenna elements
should be calibrated and tested. Consequently, there is a rea-
sonable prospect that the intrinsic error of antenna array has
been calibrated, and then, radar can normally operate over
an ideal period. While a considerable amount of work has
been done, the antenna array system absolutely be damaged
due to the corrosion and wear of antennas, which causes the
gain-phase errors of the antennas. We can use the detection
data of the radar system recently deployed radar system to
collect the characteristics of the DOA distribution of targets,
and then, these characteristics will as reference data to cor-
rect the errors generated in the subsequent work.

For radars used to detect fixed areas or basically
unchanged scenes, the statistical characteristics of the DOA
of detected target are relatively stable in a long observation
period. It is not surprised that the fluctuations of DOA char-
acteristics in a short term also can be found.

Such as the road surveillance radar, it is used to monitor
a confined area. For an urban highway, a large number of
people leave from the residential area to the workplace in
the morning, and the number of vehicles leaving the residen-
tial area will be significantly more than the vehicles entering
the residential area, so that the average DOA of targets in a
short period tends toward the side of the lane leaving the
residential area. In contrast, when people return to the resi-
dential area in the evening, the average DOA of targets will
tend toward the other side. In this paper, the DOA distribu-
tion characteristics of targets are estimated by using LSTM
network. Together, the learning of DOA distribution charac-
teristics in the initial stage helps to readily predict the distri-
bution characteristics in the following stage, which ensures
to timely calibrate the antennas array. There have been
aroused interests in the performance capabilities of DOA
estimation. Figure 3 shows the description above.

�e gain-phase error estimation of antenna array

Radar deployment
Error generation

DOA distribution features learning DOA distribution features estimation

Calibration completion

�e operation time of
antenna array

Figure 3: Proposed approach description and main steps.
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4. Experiment Results and Discussion

We conducted an experiment with a millimeter-wave radar
to monitor vehicles on the road. The radar is deployed on
the pedestrian bridge where the main road connects the sub-
urb and the urban area. A typical road monitoring installa-
tion along the middle of the road is shown in Figure 4.

We collected 14440 batches of data, containing a total of
354,000 targets. The distribution of the captured samples
points is shown in Figure 5(a). And the histogram of DOA
distribution is shown in Figure 5(b).

We first count the DOA of the targets in each frame of
data, and all the average DOA of these targets was about
-2 degrees. Then, we divide the 354,000 targets into 354
groups, and each group consists of 1000 detected targets.
Next, the mean value of DOA of each group is calculated.
Finally, the LSTM network is applied to estimate the mean
value of the targets’ DOA. The applied LSTM has 128 hid-
den units, the first 300 groups data are applied for training,
and the rest of the groups are used for testing the prediction
performance of LSTM. The prediction results are shown in
Figure 6. As shown in Figure 6, the blue curve represents
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Figure 5: Targets detection results. (a) The location map of 354,000 targets. (b) The histogram of DOA distribution of 354,000 targets.

Figure 4: Images of millimeter-wave radar in the field experiment.
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Figure 6: The prediction results of the DOA mean value of each
group by using LSTM network.
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the real DOA of 354 groups, and the red curve represents the
predicted DOA by using LSTM network. Generally, the pre-
dicted results curve approaches to the real DOA. But we also
find that some spikes and highlight them by using red cir-
cles. This phenomenon can be attributed that the amount
of the data is not sufficient for training more ideal network

structure, and we will also further improve the design of
the LSTM network in the next work.

In order to verify the gain-phase error estimation ability
of LMS algorithm, a set of original data are generated
according to the detected target information. Specifically,
suppose that a radar has three transmitting antennas and
four receiving antennas, as depicted in Figure 7 where the
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space between receiving antennas is half wavelength, the
space between transmitting antennas is two times wave-
length, and a 12-element virtual uniform linear array can
be obtained. The simulated echo data is generated by associ-
ating with the information of detected real target, and the
DOA of simulated data is the same as real data.

We used LMS algorithm to calibrate the gain-phase
errors, and the estimated errors are shown in Figure 8. We
assume that transmitting antenna 1, 2, and receiving
antenna 1 have no errors, and other antennas have random
gain-phase errors. The gain errors are uniformly distributed
between 0.5 and 1.5, and the phase errors are uniformly dis-
tributed between −π/2 and π/2. The SNR of targets are
30 dB. The red stars represent the real gain or phase errors,
and the black circle represents the estimated results. Clearly,

the result comparison of estimated and real data implies that
the proposed method successfully estimates the unknown
targets.

Furthermore, for assessing the SNR effect for estimation
accuracy, the simulations are run by performing different
SNRs iterates from 0 to 1000. Figures 9 and 10 show the
exemplary of the distinct relationship between the SNR
and estimation accuracy, the SNR is higher, and the esti-
mation accuracy is more ideal. This results also imply that
the value of SNR has a considerable effect on estimation
accuracy, so selecting the data with high SNR as input
data can sufficiently facilitate the estimation performance
of LMS.

Figure 11 shows the estimate error results of different
algorithm. The simulation of LMS is conducted with 1000
iterates. A target with random angle is generated in each
iterate. The simulation of MUSIC and ESPRIT is conducted
with a target with 1000 snapshots. There are 2 experiments
for MUSIC and ESPRIT, respectively. There are 2 elements
that have been calibrated well in one experiment and 5 cali-
brated well elements in another. The results are the mean of
200 Monte Carlo trials for every experiments. Although the
performance of LMS for gain error estimation is lower than
others, but has a stable phase error estimation performance
with only 2 elements.

At last, we simulate a real-world problematic situation, a
MIMO radar system is deployed with well down calibration,
and the stochastic gain-phase errors appear in every antenna
element after a period of time. We simulated the process of
such a scenario to verify the proposed method. The gain-
phase errors appear in the 201th time point. Figure 12 shows
the RMSE of DOA estimation of 1000 targets changed over
time.

Figure 12 describes the RMSE of DOA, and we can
observe that the value of RMSE is small in the absence of
errors. At the i point, the estimation performance of DOA
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is suddenly degraded, which is depicted in black dots. After
correcting the gain-phase error, the estimation performance
of DOA is worse than before. However, after correcting
DOA offset, the value of RMSE is obviously lower than
before, which is shown in blue circle. At the ii point, some
points appear in Figure 12, which can be attribute that the
SNR of target is generated according to the SNR of real data,
and the SNR at some moments is relatively small, causing a
larger RMSE. But this phenomena does not affect the overall
conclusion.

The results of phase error are shown in Figure 13. The
amplitude errors can be estimated well with the error esti-
mation by LMS, while the phase errors still have a deflection,
which can be accurately estimated after angle deflection esti-
mation using LSTM.

5. Conclusions

In this paper, an online calibration method of array gain-
phase error has been proposed for a variety of radar array.
This online error calibration method considering the charac-
teristic of DOA distribution applies LSTM network to pre-
dict the subsequent DOA. The proposed method is feasible
and simply operated because it does not require the external
reference source or some calibrated antenna. Hence, the pro-
posed method can be readily applied to long-term range sur-
veillance of various targets due to the cost-effective
advantage and feasible establishment. Numerical examples
demonstrate improvements in high resolution multiple
source locations, which has confirmed that taking the
DOA distribution characteristic of targets as priori informa-
tion and sufficiently learning this information can address
problem concerning DOA estimation. Despite the promising
results, this analysis opens new research directions, all aimed
to improve the proposed algorithm system adaptability and
confidence in enhancing estimation accuracy.
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