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Sparse phase retrieval mainly solves nonconvex and nonsmooth problems. Aiming at the nonsmooth problem in sparse phase
retrieval, we propose a smoothing algorithm which is called sparse smoothed amplitude flow (SPSAF). The proposed SPSAF
algorithm is an amplitude-based nonconvex sparse smoothing phase retrieval algorithm. First, the original phase retrieval loss
function is smoothed without modifying the gradient in the gradient refinement stage, thereby reducing the computational
complexity of the overall algorithm. Secondly, the support of the original signal is estimated by differential analysis of the gaps,
and the initialization can be obtained through a carefully designed method based on this support. Finally, we get sparse
estimates by gradient descent based on hard thresholding. Numerical experiments show that the proposed SPSAF algorithm
has significant improvements in recovery performance, convergence speed, and sampling complexity. Further, the SPSAF
algorithm is stable in noisy environments.

1. Introduction

In real-world applications, especially in the field of channel
estimation and image processing, the primary signal is natu-
rally sparse or accepts sparse representation after some
known deterministic linear transformations [1–5]. When
the measurements are undersampled, phase retrieval will
introduce sparse assumption or direct sparse transformation
for the signal [6–11]. For instance, the sparsely distributed
stars observed in astronomy and the sparsely distributed
atoms or distributions observed in crystallography can all
be regarded as applications of sparse phase retrieval. This
recovery method for solving sparse signals is called sparse
phase retrieval or compressed phase retrieval, which has
fundamental significance in signal recovery and reconstruc-
tion [12, 13].

Sparse prior is essential for solving sparse phase retrieval
problems, and many methods for sparse phase retrieval have
been developed. Based on the PhaseLift algorithm, the CPRL
algorithm [14] is designed by utilizing the ℓ1-norm regular-
ization term, which improves the one-dimensional (1D) sig-
nal to N ×N matrix, and finally obtains the sparse solution.
Aiming at the application problem of the PhaseMax algo-

rithm under sparse conditions, the SparsePhaseMax algo-
rithm was proposed in [15, 16] by utilizing ℓ1-norm
regularization. Based on the alternating minimization algo-
rithm, [17] proposed the Sparse AltMinPhase algorithm,
which solves the sparse solution of the equation by alternat-
ing between the missing phase information and the candi-
date solution. [18] developed a probabilistic phase retrieval
algorithm based on generalized approximate message pass-
ing. [19] proposed a greedy sparse phase retrieval algorithm
(GESPAR) by combining the damped Gauss-Newton
method with the two-element optimization method. It
dynamically updated the support of the signal by using the
two-element optimization method and solved the optimal
value of the current support by using the damped Gauss-
Newton method. [20] proposed a soft threshold TWF algo-
rithm for sparse phase retrieval. Qiu and Palomar developed
C-PRIME and SC-PRIME algorithms based on the
majorization-minimization method [21]. They replaced the
objective function approximately with the convex function.
[22] proposed the sparse truncated amplitude flow algo-
rithm (SPARTA), a sparse phase retrieval algorithm based
on the TAF algorithm. The SPARTA algorithm improves
the performance of sparse phase retrieval by introducing
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truncation procedures. Zhang et al. proposed compressive
reweighted amplitude flow (CRAF) based on the RAF algo-
rithm in [23], making the gradient descent direction of
sparse phase retrieval more effective and accurate by intro-
ducing a weighted program.

When phase retrieval adopts a noise-free Gaussian ran-
dom measurement model, the CPRL algorithm can accu-
rately recover any k-sparse signal from Oðk2 log nÞ
measurements, and the computational complexity is Oðn3Þ
[24]. Sparse AltMinPhase and soft threshold TWF algorithm
need at least Oðk2 log nÞ measurements, and the computa-
tional complexity is Oðk2n log nÞ. The SPARTA algorithm
accurately recovers the signal from about Oðk2 log nÞ ran-
dom Gaussian measurements with a computational com-

plexity of about Oðk2n log nÞ, and the total running time is
a positive correlation to the time required to read the data.
The CRAF algorithm can accurately recover the signal from
Oðk2 log mnÞ random Gaussian measurements.

The performance of the amplitude-based phase retrieval
method is better than that of the intensity-based phase
retrieval algorithm in both numerical and experimental ver-
ification, which is the same in a sparse environment [25, 26].
The soft threshold TWF algorithm in [20] solves the
smoothing problem in the sparse phase retrieval model

based on the intensity fyi = jaTi zj2g
m

i=1. It adopts the adaptive
hard threshold iterative algorithm based on compressed
sensing. In the gradient optimization stage, each iteration
only retains some maximum indexes.

On the other hand, the Sparse AltMinPhase algorithm in
[17] estimates the support of the original signal and solves
the k-sparse phase retrieval problem. The Sparse AltMin-
Phase algorithm solves the sparse phase retrieval problem
by alternating minimization and resampling conditions
and performs matrix inversion in each iteration. Numerical
experiments show that resampling is a necessary condition
for the Sparse AltMinPhase algorithm; that is, many mea-
surements are needed to estimate the support accurately,
and the importance of the recovery of the support for signal
recovery and even the whole phase retrieval is self-evident.

Among the above methods, the illustrious amplitude-
based sparse phase retrieval algorithms include the SPARTA
algorithm [22] and CRAF algorithm [23]. The SPARTA
algorithm applies the TAF algorithm in a sparse environ-
ment, divided into two stages: initialization and gradient
refinement. Firstly, a reasonable rule is used to solve the sup-
port, and some simple power iterations are used to solve the
initialization problem to obtain the sparse initialization.
Through a series of truncated gradient iterations and the
hard threshold of each iteration, all indexes except k

1. Input: Data fðai, ψiÞgmi=1 and sparsity k; learning rate μ; the maximum number of iterations T ; subset cardinality jJj≔ b3m/13c;
adaptive smoothing factor p ; smoothing vector εi ≔ τψi, and τ is a constant;
2. Construct the support index set ~S, which includes the index corresponding to the largest k in

f~Zi,jg
m

i=1 ≔ f1/m∑m
i=1ψ

2
i a

2
i,jgmi=1 ;

3. Calculate the sparse initial estimate
~z0~S ≔ arg max

kzk=1
zTð1/jJj∑i∈J riai,~SaTi,~SÞz,

where the weighting factor ri = ψ1/2
i ;

4. Initialize
z0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i=1ψ
2
i /m

p
~z0

where ~z0 is obtained by zero-filling ~z0~S ;
5. fort = 0toT − 1do

zt+1 ≔H kðzt − μ∇ℓε,pðztÞÞ
where H kð·Þ is the hard threshold operator, and the gradient

∇ℓε,pðzÞ = 1/m∑m
i=1

½ðjaTi zjp + εpi Þ
1/p

− ðψp
i + εpi Þ

1/p�
ðjaTi zjp + εpi Þ

1/p−1jaTi zjp−1ai sgn ðaTi zÞ
6. end for
7. Output: zT .

Algorithm 1: The proposed SPSAF algorithm.
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Figure 1: The success rate of signal recovery with sparsity k = 30
and estimated sparsity ~k = 55 in the real case.
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maximum values are set to zero to realize the continuous
update of the initial value, where k refers to the signal spar-
sity. The CRAF algorithm further considers the structured
sparsity pattern based on the SPARTA and RAF algorithms.
It proposes the amplitude-based (block) sparse phase
retrieval problem. The CRAF algorithm developed a new
sparse spectrum initialization method in the initialization
phase, wisely assigning negative or positive weights to each
sample. By this method, the mean value of the initialization
matrix obtained by the CRAF algorithm has improved per-
formance. Then, the CRAF algorithm uses the reweighted
gradient in the gradient refinement stage to gradually
improve the initialization of the hard threshold iteration.

Based on the SAFPR algorithm and CRAF algorithm, we
propose a new sparse phase retrieval algorithm, called sparse
smoothed amplitude flow (SPSAF). The SPSAF algorithm is
an amplitude-based nonconvex sparse smoothing phase

retrieval algorithm with two stages: initialization and gradi-
ent refinement. In the initialization stage, we estimate the
support by a reasonable rule. Then, the initial estimation is
obtained by a carefully designed initialization method based
on the support. The gradient descent method updates the
initialization estimate based on the hard threshold in the
gradient refinement stage. Numerical experiments show that
the SPSAF algorithm is robust to additional noise in the
finite support. Compared with the existing typical algo-
rithms, the recovery performance and speed of the SPSAF
algorithm are significantly improved.

The rest of this paper is organized as follows. In Section
2, the sparse smoothing phase retrieval problem is formu-
lated. Section 3 introduces the SPSAF algorithm in initializa-
tion and gradient refinement two stages, respectively.
Numerical experiments are provided in Section 4. Finally,
Section 5 summarizes this paper.

2. Sparse Phase Retrieval Problem

2.1. Amplitude-Based Sparse Phase Retrieval. The amplitude-
based sparse phase retrieval problem is a kind of problem to
reconstruct the sparse signal from the phaseless measure-
ments [19, 20, 22]. Mathematically, we can describe the
sparse phase retrieval problem as a set of phaseless quadratic
equations, namely,

ψi = aTi x
�� ��, 1 ≤ i ≤m subject to xk k0 ≤ k, ð1Þ

where k represents the level of sparsity. k·k0 express a zero-
norm operator, that is, the number of nonzero elements. The
signal x is k-sparse, consisting of up to k nonzero elements
and n − k zero elements. The goal of amplitude-based sparse
phase retrieval is to reconstruct the sparse signal x ∈ℝn or
ℂn based on the given measurements ψi.

For theoretical analysis, suppose sparsity k is prior
known. In the real case, the number of measurements
required to the k-sparse signal x recovery is at least m ≥
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Figure 2: The success rate of signal recovery with sparsity k = 30
and estimated sparsity ~k = 55 in the complex case.
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Figure 3: The success rate of signal recovery with prior sparsity k
= 30 in the real case.
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Figure 4: The success rate of signal recovery with prior sparsity k
= 30 in the complex case.
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min f2k, 2n − 1g. [27] pointed out that k-sparse signals can
be reconstructed by selecting m ≥min f2k, 2n − 1gmeasure-
ments on general positions in real number space ℝn. Simi-
larly, in the complex cases, the number of measurements
required for k-sparse phase retrieval is at least m ≥ 4k − 2
[28]. Due to the lack of more phase information in the noise
environment, stable sparse or compressed phase retrieval
needs as many measurements as the relevant compressed
sensing problem. Therefore, as with compressed sensing,
stable sparse phase retrieval requires at least Oðk log ðn/kÞÞ
measurements [29]. [30] proves that sparse phase retrieval
requires Oðk log ðn/kÞÞ measurements to recover sparse sig-
nals stably in the real case.

We adopt a real-valued Gaussian model to analyze
sparse phase retrieval in this paper. The model assumes
sparse signal x ∈ℝn and i.i.d. standard Gaussian sensing vec-
tor ai ~N ð0, InÞ, i = 1,⋯,m. Nevertheless, the proposed
algorithm is also applicable to the complex-valued Gaussian

phase retrieval model, namely, signal x ∈ℂn and i.i.d. stan-
dard Gaussian sensing vector ai ~CN ð0, InÞ =N ð0, In/2Þ
+ jN ð0, In/2Þ, i = 1,⋯,m. Given the data fðai, ψiÞgmi=1 and
assuming that the equation has a unique k-sparse solution,
our goal is to develop a simple and efficient algorithm that
can recover any k-sparse n-dimensional signal x from as
few amplitude measurements as possible in (1).

Using the least square criterion, the problem of recon-
structing k-sparse solution from phaseless quadratic equa-
tion (1) can be naturally transformed into the problem of
minimizing the amplitude-based empirical loss function:

min
z

ℓ zð Þ∶ = 1
2m〠

m

i=1
ψi − aTi z

�� ��� �2
s:t: zk k0 ≤ k

S zð Þ ⊆ n½ �≔ 1, 2,⋯, nf g
z ∈ℝn,

ð2Þ

where SðzÞ represents the support of z and k is the signal
sparsity. The objective function ℓðzÞ in (2) is nonconvex
and nonsmooth, which is subject to the combined constraint
of zero norm kzk0 ≤ k. Therefore, the sparse phase retrieval
optimization problem is NP-hard, which is difficult to solve
in the calculation [31–33]. The methods to solve these prob-
lems include the following:

(1) In the initialization stage, the support of the signal
needs to be accurately estimated, and the accurate
support information can correctly restore the origi-
nal sparse signal. The selection of initialization
methods is also critical. At present, there are many
initialization methods, including spectral initializa-
tion, orthogonal promotion initialization, and
reweighted maximum correlation initialization,
which can be applied to nonconvex sparse phase
retrieval models
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Figure 5: Comparison of signal recovery success rate under
different sparsity k selection.
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Figure 6: Comparison of convergence rate in the real case.
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Figure 7: Comparison of convergence rate in the complex case.
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(2) In the gradient refinement stage, inspired by the iter-
ative hard threshold algorithm of compressed sens-
ing [34, 35], in the descent process, the adaptive
hard threshold process that only retains some maxi-
mum indexes in each iteration is proved to be
effective

2.2. Smoothing Scheme of Sparse Phase Retrieval. Due to the
existence of modulus in the sparse phase retrieval objective
function (2), there will be dramatic changes and discontinu-
ous changes in the gradient function at point z when aTi z = 0,
which makes the normal gradient descent method ineffec-
tive. Therefore, the sparse optimization problem in (2) is
nonconvex and nonsmooth. Usually, the way to solve this
kind of nonsmooth function is to bypass this nonsmooth
function, such as the SPARTA or CRAF algorithm. [22]
points out that if jaTi zj/ψi is less than a certain threshold,
the SPARTA algorithm will remove these “bad” gradient
components by the truncation program. The CRAF algo-
rithm [23] is based on the same principle, but it is not a sim-
ple removal of these “bad” gradient components, but
according to the size of jaTi zj/ψi to reweight gradient compo-
nents, the effect is better than the SPARTA algorithm. How-
ever, the above two methods will introduce additional
calculation for the gradient, resulting in changes in the
search direction and thus affecting the update of the entire
gradient direction.

In recent years, there have been many research on the
nonconvex phase retrieval algorithm, among which the opti-
mization of the nonsmooth term in the empirical loss func-
tion has made great progress. [36] proposed a mixed
optimization method to modify the empirical loss function
and solve the nonsmooth problem through the classical
proximal method. Pinilla et al. [37] proposed to smooth
the phase retrieval problem. They introduced a special
smoothing function to replace the nonsmooth term in the
original loss empirical function and solved the related prob-
lems using the projection conjugate gradient method. [38]
adopted the same smoothing strategy. By introducing the
smoothing approximation function, it replaced the non-
smooth term and used the same operation to put forward
a new smoothing loss empirical function. [39] introduced
two smoothing functions for the nonconvex phase retrieval
loss function and proposed two smoothing algorithms. [40]
further improves the smoothing operation for the loss func-
tion and proposes a faster stochastic smoothing phase
retrieval algorithm.

By introducing the smoothing function, we approximate
and replace the absolute value function jaTi xj in (2) to obtain

an approximate sparse smoothing phase retrieval loss empir-
ical function. Therefore, no additional operation on the gra-
dient is needed in the iterative update process, which reduces
the computational complexity. There are many substitution
methods for the absolute value function. We mainly use
the following method to smooth the phase retrieval loss
function (2).

We first define the concept of smoothing function to be
used.

Definition 1. Define the absolute value function f ðuÞ = juj. If
gεðuÞ is smooth for any real constant ε ≥ 0 in ℂn and for any
fixed u ∈ℂn

lim
ε⟶0

gε uð Þ = f uð Þ, ð3Þ

then gεðuÞ: ℂn ×ℝ⟶ℝ is the smoothing function of f ðuÞ.

By Definition 1, the smooth substitution function of the
absolute value function f ðuÞ = juj is defined as

gε,p uð Þ∶ = uj jp + εp
� �1/p, ð4Þ

where the relaxation factor ε ≥ 0 is a real constant and the
smoothing parameter p > 0.

As a smooth approximation function of the absolute
value function f ðuÞ, gε,pðuÞ must have the following
properties:

(1) gε,pðuÞ is a Lipschitz continuous function
(2) gε,pðuÞ is even, namely, gε,pðuÞ = gε,pð−uÞ
(3) gε,pðuÞ uniformly converges to f ðuÞ in ℝ

Proof.

(1) By Definition 1, gε,pðuÞ is smooth for any real con-
stant ε ≥ 0 in ℂn, so we can have

∇gε,p uð Þ = uj jp−1
uj jp + εp
� �1−1/p = uj j

uj jp + εp
� �1/p

 !p−1

: ð5Þ

Since the real constants ε ≥ 0, p > 0, therefore,

uj jp + εp
� �1/p ≥ uj jp� �1/p = uj j: ð6Þ

According to (5) and (6), it can be obtained that

∇gε,p uð Þ
��� ��� = gε,p u1ð Þ − gε,p u2ð Þ

u1 − u2

����
���� ≤ 1: ð7Þ

Therefore, gε,pðuÞ is a Lipschitz continuous function
with bounded first-order function, and its Lipschitz con-
stant is 1.

Table 1: Comparison of convergence speed and time cost.

Algorithms
Real case Complex case

Iterations Time (s) Iterations Time (s)

SPSAF 26 0.1035 75 1.3525

CRAF 64 0.2013 94 1.6509

SPARTA 27 0.1352 96 1.8528

5Wireless Communications and Mobile Computing



(2) By definition of the absolute value, it is obvious that

gε,pðuÞ = gε,pð−uÞ = ðjujp + εpÞ1/p

(3) According to Definition 1 and (4), we can have

gε,p uð Þ − f uð Þ
��� ��� = uj jp + εp

� �1/p − uj j
��� ���: ð8Þ

According to the Minkowski inequality, it can be
obtained that

gε,p uð Þ − f uð Þ
��� ��� = uj jp + εp

� �1/p − uj j
��� ��� ≤ uj jp� �1/p + εpð Þ1/p − uj j

��� ��� = ε: ð9Þ

Therefore, gε,pðuÞ can converge uniformly to f ðuÞ and
only depends on the value of ε.

Let u = jaTi zj, according to (2) and (4), the smoothing
sparse phase retrieval loss function can be expressed as

min
z

1
2m〠

m

i=1
ψi − aTi z

�� ��
ε,p

� �2
s:t: zk k0 ≤ k

S zð Þ ⊆ n½ �≔ 1, 2,⋯, nf g
z ∈ℝn:

ð10Þ

To ensure that the introduction of gε,pðjaTi zjÞ does not
affect the global minimum of the original nonconvex loss
function (2), the measurement ψi adopts the same smooth-
ing strategy, i.e.,

ψið Þε,p∶ = ψp
i + εpi

� �1/p
: ð11Þ
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Figure 8: Relative error of additional noise in the real case.
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Figure 9: Relationship between relative error and SNR.
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Due to the fact that smoothing vector εi is a positive cor-
relation to the amplitude ψi of signal x, we approximate it as

εi∶ = τψi, ð12Þ

where the coefficient τ is a constant.
Combining (10) and (11), we can obtain the amplitude-

based sparse smoothing phase retrieval least-square optimi-
zation problem:

min
z

ℓε,p zð Þ∶ = 1
2m〠

m

i=1
aTi z
�� ��p + εpi

� �1/p
− ψp

i + εpi
� �1/p� 	2

s:t: zk k0 ≤ k

S zð Þ ⊆ n½ �≔ 1, 2,⋯, nf g
z ∈ℝn:

ð13Þ

Function ℓε,pðzÞ is an approximate smoothing function
of the original loss function ℓðzÞ. Both of ℓε,pðzÞ and ℓðzÞ
have the same global minimum. When the smoothing relax-
ation factor εi ⟶ 0 or the smoothing parameter p⟶ 1,
ℓε,pðzÞ will be reduced to the original function ℓðzÞ.

3. The Proposed SPSAF Algorithm

To solve the smoothing sparse phase retrieval least-square
optimization problem (13), we propose a new smoothing
sparse phase retrieval algorithm, named SPSAF. It can be
classified into two periods: initialization and gradient refine-
ment, which are described in detail.

3.1. Sparse Weighted Spectrum Initialization. Based on the
weighted initialization method proposed in [41], the SPSAF
algorithm proposes an improved sparse weighted initializa-
tion estimation method. Compared with the orthogonal pro-
motion initialization method used in the SPARTA
algorithm, this method abandons the truncation procedure.
It adopts the reweighted strategy so that the information of
all samples is effectively applied. We divide the initialization
algorithm of SPSAF into three parts, including the general
initialization method, support recovery method, and sparse
initialization method.

3.1.1. General Initialization Method. First of all, assume kx
k = 1 without loss of generality. It can be seen from [25,
41] that there is a certain correlation between ai and x.
The larger the amplitude ψi = jaTi zj of the inner product of
ai and x is, the higher the correlation between ai and the
unknown solution x is, so it carries more profitable direction
information of signal x. Similar to the weighted maximum
correlation method in [41], the corresponding sequence of
ai can be obtained by sorting the amplitude ψi, and then,
the unknown solution x can be estimated.

Let set J ≔ f1, 2,⋯,mg denote the set of indexes that par-
ticipate in the calculation initialization of the picking sensing
vector ai. The vector ai corresponding to the largest jJj mea-

surements fψ½i�g1≤i≤jJj have the largest correlation with the

real solution x, where jJj is an integer of m. Therefore, we
can estimate the real solution x by indexing ai with jJj, that
is,

~z0 ≔ arg max
zk k=1

1
Jj j〠i∈J

aTi z
�� ��2 = arg max

zk k=1
zT 1

Jj j〠i∈J
aiaTi

 !
z:

ð14Þ

Secondly, to further strengthen the ability of ai to point
to the real solution x, the initialization method uses the
reweighted strategy to add weights to different faigi∈J . Sort-
ing index set J according to the size of fψ½i�g1≤i≤jJj. The larger
J corresponds to the larger weight, and the smaller index
corresponds to the smaller weight or even negative weight,
namely,

~z0 ≔ arg max
zk k=1

zT 1
Jj j〠i∈J

riaiaTi

 !
z, ð15Þ

where ri ∈ℝ is the weight corresponding to different
indexes. According to the size of ψi, we define the weight

ri = ψ1/2
i : ð16Þ

When kxk ≠ 1, utilizing the strong law of large numbers
and rotation invariance of Gaussian sampling vector ai, we
can get the initiation

z0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m
〠
m

i=1
ψ2
i

s
~z0: ð17Þ

From Theorem 1 in [23], we can see that given a con-
stant δ0 ∈ ð0, 1Þ, there exist constants c0 > 0 and C0, and
when m ≥ C0n, the error distðz0, xÞ between the initial esti-
mate z0 and the real solution x meets

dist z0, xð Þ ≤ δ0 xk k2, ð18Þ

with probability exceeding 1 − 10 exp ð−c0mÞ.
Finally, it is worth emphasizing that since the signal x is

k-sparse and k≪ n, the initialization method in (15)
becomes

~z0 ≔ arg max
zk k=1

zT 1
Jj j〠i∈J

riaiaTi

 !
z

s:t: zk k0 ≤ k,
ð19Þ

by utilizing ℓ0 regularization to represent sparse prior
information.

3.1.2. Accurate Support Recovery. When the measurements
are undersampled, the number of measurements is less than
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the dimension of the signal; that is, m < n. At this time, the
sparse assumption of the signal needs to be introduced.

Without loss of generality, we set the support S ⊆ ½n�≔
f1,⋯,ng of unknown k-sparse solution x, and jSj = k≪ n.
According to [22], we define random variables:

Zi,j∶ = ψ2
i a

2
i,j, j = 1,⋯, n: ð20Þ

For the normalized Gaussian sensing vector ai ∼N ð0,
InÞ, let p be a positive integer; we can get

E a2pi,j
� �

= 2p − 1ð Þ!!, ð21Þ

where !! denotes two-order multiplication. According to the
rotation invariance of Gaussian distribution, it can be
proved that for all 1 ≤ j ≤ n,

E Zi,j
� �

= E aTi x
� �2

a2i,j
� �

= E a4i,jx
2
j + aTi,/jx/j
� �2

a2i,j

� 	
= 3x2j + x/j



 

2
2 = 2x2j + xk k22,

ð22Þ

where aTi,/j, x/j ∈ℝn−1 is aTi , x ∈ℝn after removing the jth
element.

If index j ∈ S which means the corresponding x j is a non-
zero term, that is, x j ≠ 0, then (22) can be converted to

E Zi,j
� �

= 2x2j + xk k22, j ∈ S: ð23Þ

Conversely, if j ∉ S which means x j = 0, we can get

Zi,j
� �

= xk k22, j ∉ S: ð24Þ

According to formulas (23) and (24), we can find that for
j ∉ S and j ∉ S, the expected value of Zi,j has at least 2x2j inter-
vals, which we call the gap. As long as the gap 2x2j is large
enough, the support S can be restored accurately in this
way [22]. That is, the index set corresponding to kmaximum
EðZi,jÞ can restore the support S of the original signal x.
However, since fEðZi,jÞg is actually unavailable, it is
replaced by their independent implementation. At the same
time, following the law of strong numbers, the sample mean
should approach a whole ~Zi,j.

To estimate the support S of the original signal x, we first
calculate the empirical estimate of the so-called sample mean

~Zi,j∶ =
1
m
〠
m

i=1
Zi,j =

1
m
〠
m

i=1
ψ2
i a

2
i,j ð25Þ

as the expected EðZi,jÞ. The larger ~Zi,j, the greater probability
of nonzero the corresponding element xj is. Therefore, we

need to collect indexes corresponding to k maximums in f
~Zi,jg, which form an estimated support ~S that can be

expressed as

~S∶ = j ∈ n½ �jindexes corresponding to kmaximums in ~Zi,j
n on o

:

ð26Þ

[22] proves that to improve the probability of accurately
recovering the support S, Oðk2 log nÞ measurements are
needed. At the same time, in order to ensure the separation
of the index of the support, the smallest nonzero item

xmin∶ =min
j∈S

x j
�� �� ð27Þ

of the signal is approximately 1/
ffiffiffi
k

p kxk2; that is, for some
constants C0 > 0, there are

xmin =
C0ffiffiffi
k

p xk k2: ð28Þ

3.1.3. Sparse Initialization Method. After obtaining the sup-
port domain estimate ~S of the original signal, we can esti-
mate the initialization according to ~S. Specifically, for all
1 ≤ i ≤m, we rewrite the measurements ψi as

ψi = aTi x
�� �� = aTi,~Sx~S

��� ���, ð29Þ

where ai,~S includes the element of ai,j whose index j ∈ ~S, and
x~S is the element of x whose index j ∈ ~S.

Apply the general weighted initialization method in (19)
to the reduced data fai,~S, ψigmi=1, that is,

~z0~S ≔ arg max
zk k=1

zT 1
Jj j〠i∈J

riai,~SaTi,~S

 !
z

s:t: zk k0 ≤ k:

ð30Þ

By zero-filling the element corresponding to the index j
∉ ~S of ~z0~S, we can construct k-sparse n-dimensional initializa-
tion ~z0. When kxk ≠ 1, the final k-sparse initialization z0 can
be obtained through the norm estimation of x in (17).

3.2. Thresholded Gradient Stage. After obtaining an accurate
k-sparse initialization z0, we put it into the gradient iteration
for continuous refinement. Our SPSAF algorithm introduces
a smoothing strategy for the amplitude-based phase retrieval
loss function, avoiding the nondifferentiable objective func-
tion. It significantly simplifies the convergence analysis of
SPSAF, eliminating the need to perform other operations
on the gradient like other algorithms.

The method we adopt is to iteratively refine through a
series of gradient iterations based on the k-sparse hard
threshold, that is,

zt+1∶ =H k zt − μ∇ℓε,p ztð Þ� �
, ð31Þ

where t is the number of iterations and constant μ is the step
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size. H kðuÞ denotes the k-sparse hard threshold operator,
which can transform all elements except k largest elements
in u into zero, thus transforming n-dimensional vector u
into k-sparse n-dimensional vector �u, i.e.,

�uj =
uj, if j ∈ S,
0, if j ∉ S:

(
ð32Þ

Combining (13), the Wirtinger gradient ∇ℓε,pðzÞ of the
SPSAF algorithm can be expressed as

∇ℓε,p zð Þ = 1
m
〠
m

i=1

aTi z
�� ��p + εpi

� �1/p
− ψp

i + εpi
� �1/p� �

aTi z
�� ��p + εpi

� �1/p−1
aTi z
�� ��p−1ai sgn aTi z

� � :
ð33Þ

It is worth emphasizing that for the smoothed sparse
phase retrieval model, the selection of different p will affect
the recovery performance and calculated efficiency of the
algorithm. Specifically, the larger the p value, the better the
restore performance of the algorithm, but the convergence
rate will slow down; the smaller the p value, the faster the
algorithm converges, but the recovery performance
decreases. We set the p value selection according to the ratio
of measurements to sparsity m/k. When the ratio m/k is less
than 1:9 in the real case or 2:8 in the complex case, p = 2 or 3
; otherwise, p = 4 or 5. The specific SPSAF algorithm is
described as follows.

4. Experimental Results

This section will introduce the relevant numerical results of
the SPSAF algorithm. To reflect the superiority of the SPSAF
algorithm, we compare it with the SPARTA algorithm [16]
and CRAF algorithm [20], which are the latest methods of
sparse phase retrieval. The parameters of all algorithms will
use their recommended values. All simulation experiments
were conducted with 100 independent Monte Carlo experi-
ments. In each experiment, all algorithms’ initialization
power iteration numbers and gradient refinement iteration
numbers are set to 100.

In all experiments, the signal x ∈ℝ3000 or ℂ3000 to be
recovered is k sparse signal in the real or complex case.
When the sparse phase retrieval adopts the real-valued
Gaussian model, the sparse signal is x ~N ð0, I3000Þ and the
sensing vector is ai ∼N ð0, I3000Þ, i = 1,⋯,m. When sparse
phase retrieval adopts the complex Gaussian model, the
sparse signal is x ~CN ð0, I3000Þ =N ð0, 1/2I3000Þ + jN ð0, 1/
2I3000Þ and the sensing vector is ai =N ð0, 1/2I3000Þ + jN ð0
, 1/2I3000Þ, i = 1,⋯,m. In addition, other parameters of the
SPSAF algorithm are selected according to experience: learn-
ing rate μ = 0:8 in the real case or μ = 1 in the complex case,
smoothing parameter p = 2.

We use relative error as our performance index, that is,

Relative error∶ = dist z, xð Þ
xk k2

, ð34Þ

where distðz, xÞ is the Euclidean distance from the estimated
value z to the real solution x. When the relative error is less
than 10−5, it can be considered that the original sparse signal
has been successfully recovered. Namely, the current exper-
iment is successful.

4.1. Recovery Success Rate with Unknown Sparsity k. In some
practical applications, the sparsity k of the signal may be
unknown, so it is necessary to test the running state of the
algorithm in the case of unknown sparsity, namely, the algo-
rithm’s stability. We define ~k as the estimation of sparsity k
and set it to the upper bound of sparsity level in theory. The-
orem 1 in [16] proves that when m is approximately equal to
n, the upper limit of the sparsity level in this paper is about
d ffiffiffi

n
p e = 55.

When the phase retrieval model is in the real case, the
recovery success rates of SPSAF, SPARTA, and CRAF algo-
rithms are compared as shown in Figure 1, where the num-
ber of measurements m increases from 400 to 2400. Notably,
these curves show that SPSAF has higher precision recovery
performance than other comparison algorithms. When the
sparsity k is unknown, the SPSAF algorithm shows higher
stability, and the recovery rate reaches more than 90% when
m = 1000 and achieves accurate recovery when m = 1400.

When the phase retrieval model is in the complex case,
the recovery success rates of SPSAF, SPARTA, and CRAF
algorithms are shown in Figure 2, where the number of mea-
surements m ranges from 800 to 2800. It can be found from
Figure 2 that the SPSAF algorithm has a weak advantage in
recovery ability compared with other algorithms. When the
actual sparsity k = 30, the estimated sparsity ~k = 55; the
SPSAF algorithm is stable. It is worth emphasizing that
when the number of measurements m = 500, the SPSAF
algorithm first reaches more than 80%, showing excellent
recovery ability.

4.2. Recovery Success Rate with Known Sparsity k. In this sec-
tion, we compare the signal recovery success rates of each
algorithm when the sparsity k is known. The comparison
of the algorithms in the real case is shown in Figure 3, where
the number of measurements m increases from 400 to 2400.
It can be seen from Figure 3 that the recovery performance
of the SPSAF algorithm is significantly higher than the other
two algorithms, showing excellent recovery ability. In addi-
tion, it is worth noting that compared with Figures 1 and
3, it can be found that the recovery performance of the
SPSAF algorithm significantly improved when the sparse
prior is known.

Figure 4 depicts the success rate of signal recovery in the
complex case. We set the distribution of the number of mea-
surements m from 800 to 2800, where the prior sparsity k
= 30 is known. It can be seen from Figure 4 that the SPSAF
algorithm is significantly better than the other two algo-
rithms. Moreover, by comparing Figures 2 and 4, we find
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that the recovery degree of the algorithm has been slightly
improved when the sparsity k is known.

Figure 5 depicts the relationship between the success rate
of signal recovery and the sparsity k in the real case, where
the step size parameters of each algorithm take the optimal
value. It can be seen that with the increasing sparsity k, the
SPSAF algorithm can still accurately restore the signal at
the sparsity k = 50 and can still maintain a success rate of
more than 95% at k = 100. In comparison, the success rates
of the CRAF algorithm and SPARTA algorithm with the
same sparsity are reduced to about 80%.

4.3. Comparison of Convergence Consumption. This section
compares the SPSAF algorithm with other algorithms in
terms of convergence speed and time cost. We adopt the real
Gaussian model when the number of measurements is m =
1600 or the complex Gaussian model when m = 2800,
respectively. The prior sparsity of all models is k = 30, and
the relative error of the algorithm is less than 10−15 which
is regarded as an accurate recovery. The convergence curves
in the real or complex case are shown in Figures 6 and 7. It
can be seen from these figures that the number of iterations
required for the convergence of the SPSAF algorithm is sig-
nificantly less than that of the other two algorithms.

On the other hand, Table 1 compares convergence speed
and time cost under the noise-free Gaussian model, where
the coarse font is the current optimal value. It can be seen
from the results that the convergence speed and time cost
of the SPSAF algorithm are better than those of other algo-
rithms in both real and complex cases, which show excellent
performance.

4.4. Noise Robustness. In order to prove the stability of the
SPSAF algorithm in the presence of additional noise, we plot
the relative mean square error (MSE) as a function of the
signal-to-noise ratio (SNR) value in dB. Amplitude measure-
ments with noise can be expressed as

ψi = aTi x
�� �� + ηi, ð35Þ

where the size of ηi ~N ð0, σ2IÞ is given by

SNR∶ = 10 log10 〠
m

i=1

aTi x
�� ��2
mσ2

: ð36Þ

In this section, we adopt m = 1600 real-valued Gaussian
model with sparse prior k = 30. Figure 8 depicts the relation-
ship between the average relative error of the three algo-
rithms when σ2 = 3. It can be seen that the SPSAF
algorithm provides the most accurate estimation under the
noise addition.

We also describe the relative error as a function of SNR
with different m/n to verify the stability of the SPSAF algo-
rithm. Figure 9 depicts the experimental results. We use a
real-valued Gaussian model with sparse prior k = 30, where
SNR is between 5dB and 50dB. It can be seen that the
SPSAF algorithm decreases approximately linearly with the
increase of SNR in both real and complex cases, which

proves that the proposed SPSAF algorithm is stable in noisy
environments.

5. Conclusion

In this paper, we proposed the SPSAF algorithm to solve the
problems of sparse phase retrieval. The proposed SPSAF
algorithm is an amplitude-based nonconvex sparse smooth-
ing phase retrieval algorithm divided into two stages: initial-
ization and gradient refinement. The complexity of our
algorithm is reduced by smoothing the phase retrieval loss
function to avoid the truncation or weighting of the gradi-
ent. The SPSAF algorithm first estimates the support of the
original signal by a reasonable rule, obtains the initial esti-
mation by a carefully designed initialization method based
on the support, and finally obtains the sparse estimation by
a gradient descent method based on the hard threshold.
Numerical experiments show that the SPSAF algorithm has
significantly improved recovery performance and speed
compared with the existing typical algorithms and has good
robustness.
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