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With the rapid growth of wireless devices, the communication environment gets complex. The detection of interference or
unauthorized signals can improve spectrum efficiency, which is a key technology for limited spectrum resources. Traditional
detection methods analyze the parameter characteristics of the received signal. But it is difficult to detect interference with the
same time and frequency as the original signal by those feature engineering. As a classical problem in deep learning, anomaly
detection is usually solved by supervised learning. But a more challenging situation is to detect unknown or invisible
anomalies. It means that the number of abnormal samples is insufficient and the data is highly biased toward the normal
samples. In this paper, a wireless communication interference detection algorithm based on generative adversarial network
(GAN) is proposed. In the semi-supervised learning scenario, the algorithm detects the time-frequency overlapped interference
by the reconstruction strategy. The generator adopts the encoder-decoder-encoder architecture. In the training process, the
model jointly learns the data distribution of normal samples by minimizing the distance in both the signal space and the latent
space. In the inference phase, a large distance metric implies an abnormal sample. Experiments on simulated communication
datasets show the superiority of the proposed algorithm.

1. Introduction

Wireless communications enrich life and facilitate produc-
tion. The development of information technology undoubt-
edly poses a challenge to communication security.
Electromagnetic spectrum is the transmission medium of
wireless communications, and the spectrum resources are
limited. In actual communications, different wireless services
use corresponding frequency bands. Since no more commu-
nication signals can be included in a specific frequency band,
spectrum resources get more scarce and valuable. However,
the increasing number of new users and wireless devices
makes the communication environment complex. In this
case, communication signals transmitted in the channel are
easily overlapped by interference signals with the same fre-
quency. The decoding of these received signals leads to many
errors and further affects the communication behavior. In
order to prevent this situation, it is necessary to allocate

spectrum resources reasonably and detect time-frequency
overlapped interference timely [1]. On this basis, interfer-
ence signals can also be separated for further analysis and
identification. A common and key problem to be solved in
wireless communications is the guarantee of communication
quality, so interference detection is essential.

Supervised methods of deep learning have achieved
encouraging performance in various computer vision tasks,
but they heavily rely on large labeled datasets. In some prac-
tical applications, the samples of a specific category may not
be enough to construct the model effectively. For instance, it
is often difficult to obtain a large amount of training data
that causes security threats, and the data may change with
external factors. However, the task of interference detection
is to deal with this challenging situation. In other words,
the model only trains on normal samples, then identifies
abnormal samples that are not fully available and different
from normal distribution. In addition, the receiver may be
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unknown about the operating parameters of the communi-
cation system. Therefore, the model needs to detect the
interference in the signal with limited prior information.

Many researches have proposed anomaly detection
models for different application fields [2]. As a dominant
method for unsupervised and semi-supervised problems,
generative adversarial network (GAN) [3] was initially intro-
duced by Goodfellow et al. and also applied to anomaly
detection. GAN jointly trains a pair of networks: a generator
and a discriminator. The former simulates high-dimensional
data by latent vectors to approximate the original distribu-
tion, while the latter distinguishes between generated sam-
ples and real samples. The generator is a network similar
to the decoder, and the discriminator is a typical classifica-
tion network. They compete with each other during training
to learn the features of the original data.

Inspired by GANomaly [4], an interference detection
architecture for wireless communication signals is proposed
in this paper, which includes an adversarial training frame-
work. The algorithm adopts deep learning method and
extracts features end-to-end. It is only trained on normal
samples and is suitable for learning representation from
time-series data. The received signals are directly used as
inputs to the algorithm. In the training phase, they only con-
tain a set of normal samples. Based on the reconstruction
strategy, the algorithm detects whether interference exists
in the received signal. It captures the distribution of training
data by joint learning in both signal space and latent space,
where latent space helps to learn data features and simplify
data representation. The generator works on the pipeline
of encoder-decoder-encoder. Specifically, the original signal
is mapped to a low-dimensional vector; then, the vector is
used to reconstruct the generated signal, and finally, the sig-
nal is mapped to its latent representation. In this way, the
detection effect under noisy conditions is improved. Experi-
mental results on simulated communication datasets show
that the proposed algorithm has better detection perfor-
mance for time-frequency overlapped interference. And
even in the case of low signal-to-noise ratio (SNR), the algo-
rithm is still effective.

The main contents and specific sections of this paper are
arranged as follows: in Section 2, the research status of inter-
ference detection in wireless communications and some
related methods are introduced. In Section 3, the scenario
of time-frequency overlapped interference and the detection
algorithm based on generative adversarial network are pro-
posed. Then, in Section 4, the experimental results verify
that the algorithm can solve the interference detection prob-
lem and achieve better detection effect. Finally, this paper is
concluded in Section 5.

2. Related Work

Anomaly detection has attracted extensive attention in vari-
ous fields for a long time, such as network intrusion [5],
video surveillance [6], financial fraud [7], and disease mon-
itoring [8]. The related research in wireless communications
is also common [9], in which interference detection and
interference source localization are particularly important.

Anti-interference technology plays an active role in wire-
less communications [10]. It has always been a promising
research direction in civil and military applications and has
got a lot of valuable research results. As a key procedure in
anti-interference, interference detection can find the exis-
tence of interference signals and provide necessary support
for anti-interference. In other words, its main task is to
detect whether the original signal is overlapped by additional
interference during transmission. Further, it can obtain the
parameters of the interference signal, such as type, power,
and frequency. Through the feedback of this information,
the anti-interference system can take corresponding mea-
sures to suppress interference signals, then reduce the bit
error rate of decoding at the receiver. In addition, spectrum
monitoring in cognitive radio is an important aspect of wire-
less communications [11], which is closely related to inter-
ference detection.

In recent years, the research on interference detection in
wireless communications has gradually increased, and some
effective methods have been proposed. Most of them analyze
signals according to domain transformation or statistical
characteristics [12]. Traditional methods use priori informa-
tion for calculation, thus face some difficulties. And the pro-
liferation of wireless devices also brings them great
challenges. In the actual wireless environment, there are
many interference signals with small power and the same
frequency as the original signal. When the original signals
are overlapped by such interference signals, their character-
istics in time domain and frequency domain just change
slightly. Therefore, the above methods are obviously difficult
to detect time-frequency overlapped interference.

With the vigorous development of deep learning, related
applications have emerged in many fields, such as speech
enhancement [13, 14] and image denoising [15–17]. Deep
learning is actually a complex neural network. The improve-
ment of its performance is attributed to the increase of net-
work layers, the optimization of network structure, and the
expansion of training data. Different from traditional
methods, deep learning is independent of artificial features.
It directly takes the original data as input for training and
automatically extracts the corresponding features. Through
the calculation of multiple neurons, the network continu-
ously adjusts the parameter values to update the output
results. As a typical representative, convolutional neural net-
work (CNN) has the outstanding advantages of sparse con-
nection and weight sharing. Compared with the fully
connected network, it simplifies the calculation process and
reduces the number of parameters. As the complexity of
the network gets decreased, the training of the network gets
accelerated. Signal processing based on deep learning
focuses on one-dimensional data with periodicity [18]. They
no longer need to analyze signal models and can be
expanded to new scenarios by collecting data samples. The
above researches not only provide a theoretical basis for
the application of deep learning in wireless communications
but also provide a factual basis for neural networks to extract
signal features.

Interference detection in wireless communications is not
exactly the same as general anomaly detection [19]. On the
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one hand, the type of interference is complex and variable.
Interference may be quite different for various wireless
applications. In this case, it is difficult to obtain the label of
the interference signal or even the interference signal itself.
It is no longer an ordinary classification problem, so super-
vised training is invalid. On the other hand, there is a lot
of noise in the wireless environment. Noise is usually irreg-
ular, so neural networks cannot learn useful features. The
existence of noise seriously affects the detection accuracy.
Therefore, classical anomaly detection methods may not be
applicable. However, interference detection in wireless com-
munications has some similarities with anomaly detection in
speech and image. In particular, both communication sig-
nals and speech signals are time-series data with correlation.
Hence, deep learning methods in speech and image can be
adopted to design interference detection algorithms, in
which communication signals can be directly used as inputs
to extract features.

Recently, some deep learning methods based on recon-
struction strategy have been applied to anomaly detection
[20–22]. Their purpose is to construct a network in the
training phase and perform the reconstruction task for nor-
mal samples. But in the test phase, the network causes poor
reconstructioneffect for abnormal samples due to the distri-
bution difference. In addition, the current research also
focuses on adversarial training [23, 24] and especially
explores the potential of generative adversarial network
[25, 26]. The initial task of GAN is to produce realistic
images. The generator attempts to generate samples similar
to the training data from the Gaussian distribution, while
the discriminator needs to decide whether the generated
samples are real or fake. Several improved methods have
been proposed to solve its problem of unstable training, such
as the use of Wasserstein loss [27].

In summary, the existing research strongly supports the
prospect of GAN for interference detection in wireless com-
munications. In this paper, an interference detection algo-
rithm based on generative adversarial network is proposed.
The generator is designed as the structure of encoder-
decoder-encoder, so as to jointly learn the feature represen-
tation in the signal and latent space.

3. Proposed Approach

3.1. Problem Description. The problem of anomaly detection
is defined as follows: given a dataset, it contains a large num-
ber of normal samples for training and a relatively small
number of abnormal samples for testing. In the training
phase, the model learns the data distribution of normal sam-
ples and optimizes its parameters. In the test phase, the
model determines whether the input sample is abnormal
by calculating the anomaly score. Since the model is aimed
at minimizing the anomaly score, a large value indicates that
the input sample may be abnormal. The anomaly score is
universal to detect invisible anomalies different from normal
distribution. Therefore, it is necessary to train a semi-
supervised algorithm for anomaly detection, where the data
is highly biased toward a specific category. Then, the exis-

tence of abnormal samples is determined by thresholding
the anomaly score.

For interference detection in wireless communications,
the situation considered in this paper is that the interference
signal and the transmitted signal are the same in time and
frequency. Traditional methods analyze the statistical infor-
mation of received signals, such as spectrum and power. But
in the actual wireless environment, the parameters of the
interference signal may be unknown. So these spectrum
analysis methods may fail to detect such time-frequency
overlapped interference. Especially when the SNR is low,
the interference signal may be submerged in noise and the
original signal due to the small power. So it is difficult to
judge the existence of the interference signal through the
change of power. In addition, the characteristics of the inter-
ference signal in the time domain and frequency domain
may be similar to those of the original signal, which also
makes detection difficult. All the detection of interference
signals mentioned in this paper is based on this relatively
difficult situation.

3.2. Model Establishment. In order to solve the above prob-
lems, an interference detection algorithm based on genera-
tive adversarial network is proposed in this paper. As a
generative model that has been widely used in the field of
image and speech, GAN contains two components: genera-
tor G and discriminator D. G generates data, while D mea-
sures the difference between the generated data and the
labeled data then provides feedback. They compete and
cooperate with each other to jointly control the output of
the model.

min
G

max
D

VGAN D, Gð Þ = Ex∼pX
log D xð Þ½ � + Ez∼pZ

log 1 −D G zð Þð Þð Þ½ �:

ð1Þ

The proposed algorithm adopts the reconstruction strat-
egy to deal with the time-frequency overlapped interference
in wireless signals. It can effectively learn the correlation of
time-series data and accurately extract the features of trans-
mitted signals. The algorithm can avoid the influence of
noise and achieve better detection effect even in the case of
low SNR. Figure 1 depicts the overall architecture of the pro-
posed model, which includes three subnetworks.

The first one is an autoencoder, which acts as the gener-
ator G of the model. The encoder GE learns the compressed
representation of the input signal, while the decoder GD
reconstructs the input signal. Specifically, GE consists of con-
volution, batch normalization, and leaky ReLU activation.
The input signal x forward-passes through GE and obtains
the bottleneck feature z. GD adopts the structure of generator
in deep convolutional generative adversarial network
(DCGAN), which consists of transposed convolution, batch
normalization, ReLU activation, and tanh activation. The
latent vector z forward-passes through GD and expands to
the generated signal x′. The dimension of each layer in the
network is gradually changed, and the length of the output
signal is equal to that of the input signal. In a word, the gen-
erator reconstructs the signal x into x′ by z.
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The second one is the encoder E, which compresses the
signal x′ reconstructed by G. Compared with GE, it has the
same structure but different parameters. E compresses x′
to obtain its feature representation z′, which has the same
dimension as z for consistency comparison.

The third one is the discriminator D, whose goal is to
classify x and x′ as real or fake. It adopts the structure of dis-
criminator in DCGAN.

3.3. Network Training. Theoretically, when an abnormal sig-
nal forward-passes in the generator G, GD fails to complete
the reconstruction through the latent vector mapped by GE.
Because G is only modeled based on normal samples during
training, its parameters are not suitable to generate abnormal
samples. For the same reason, the reconstructed abnormal
sample also causes the encoder E to produce a feature repre-
sentation different from that of the normal sample. When
such dissimilarity occurs in the latent space, the model clas-
sifies the input signal as abnormal signal. As shown in
Figure 2, three loss functions are established to optimize the
subnetworks.

The first one is encoding loss. It can guide the model to
encode the generated signal from the normal signal. It min-
imizes the distance between the bottleneck feature z of the
original signal and the encoding feature z′ of the generated
signal. But for abnormal signals, it fails to do so in the
latent space.

Lenc = Ex~pX GE xð Þ − E G xð Þð Þk k2: ð2Þ

The second one is reconstruction loss. It can optimize
G according to the context information of the input data,
then force it to generate an approximately real signal. The
distance between the original signal and the generated sig-
nal reflects the effect of G. Since the L1 metric has been
proven to produce fewer fuzzy results, it is selected to cal-
culate the distance.

Lrec = Ex~pX x −G xð Þk k1: ð3Þ

The third one is feature matching loss. Following the
trend of current methods, feature matching loss is applied
to adversarial learning in the model, which is proved to
reduce the instability of GAN in training. Different from
the original method, G is updated based on the internal
representation of D, rather than the final output of D.
The feature matching loss makes it possible for the gener-
ated samples to deceive the discriminator. It is calculated
according to the distance between the feature representa-
tion of the original sample and the generated sample.

Lfea = Ex~pX f xð Þ − f G xð Þð Þk k2: ð4Þ

In general, the objective function of the generation
phase is defined as the following equation, where λ and
μ are hyperparameters that balance the three parts.

LG = Lenc + λLrec + μLfea: ð5Þ

As described above, G and E are optimized according
to the encoding of normal samples during training. So in
this paper, the anomaly score is defined as the following
form. It is expected to be large if x is an abnormal sample.

S xð Þ = GE xð Þ − E G xð Þð Þk k2: ð6Þ

4. Experiment

4.1. Setup. In order to evaluate the proposed interference
detection algorithm, a set of simulated communication data
is used in the experiment. The normal samples in the dataset
are divided into two parts. The training set consists of 80%
normal samples, while the test set consists of the remaining
20% combined with all abnormal samples. The total number
of normal samples and abnormal samples is 10000 and 2000,
respectively. During the experiment, the original signal and
interference signal are modulated by BPSK, QPSK, 8PSK,
16QAM, and 32QAM. Three typical scenarios are set to rep-
resent the general situation, which are QPSK-BPSK,
16QAM-BPSK, and 16QAM-QPSK. In QPSK-BPSK sce-
nario, the QPSK modulation signal is used as the original

x GE GD

…
z

x'

… …

E

z'

…

D

Real/fake

Figure 1: Architecture of the proposed model.
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signal, while the BPSK modulation signal is used as the
interference signal with the same frequency. In 16QAM-
BPSK and 16QAM-QPSK scenarios, the generality of the
proposed algorithm for different original signals and differ-
ent interference signals is comprehensively verified. More-
over, the original signals in normal samples and abnormal
samples are different, so as to reflect the adaptability of the
algorithm. All signals are downsampled at 2 MHz. And each
sample is adjusted to a fixed length of 512 sampling points.

The following figures depict the transmitted signal and
the corresponding received signal when noise or interference
exists in the channel, where the SNR is 2 dB. It is a 16QAM-
QPSK scenario, in which a 16QAM modulation signal is
overlapped by a QPSK modulation signal with the same fre-
quency. Figure 3 depicts the original transmitted signal with-
out noise and interference. Figure 4 depicts the normal
received signal that contains only noise. Figure 5 depicts

the abnormal received signal, which contains both noise
and interference with the same frequency as the transmitted
signal. Since the overlapped interference is not obvious in
the mixture of noise and original signal, it is difficult to judge
whether the interference exists by observing the waveform.
The proposed algorithm directly takes the received signal
as input to obtain the detection results without prior knowl-
edge of the communication system, which makes it superior
to traditional methods.

The adversarial training in the proposed model is based
on the standard DCGAN without using additional skills to
improve the training process. The model adopts Adam opti-
mizer. The initial learning rate is set to 0.0002. The momen-
tums are set to 0.5 and 0.999, respectively. The discriminator
is optimized based on the binary cross entropy loss, and the
generator is updated based on the equations mentioned
above. The model is trained for 10 epochs on the simulated

z

Lenc

z'

x x'
GE

GD E

Lrec

f
Lfea

D

Real/fake

Figure 2: Loss functions of the proposed model.
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Figure 4: Normal received signal.
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Table 1: AUC values for different SNR in QPSK-BPSK scenario.

Methods -16 -14 -12 -10 -8 -6 -4 -2 0 2

IAE 0.517 0.583 0.639 0.672 0.742 0.819 0.869 0.934 0.956 0.968

IGAN 0.566 0.612 0.649 0.692 0.765 0.814 0.865 0.893 0.909 0.920

Proposed 0.569 0.623 0.659 0.709 0.781 0.831 0.874 0.900 0.911 0.934

Table 2: AUC values for different SNR in 16QAM-BPSK scenario.

Methods -16 -14 -12 -10 -8 -6 -4 -2 0 2

IAE 0.549 0.567 0.618 0.718 0.763 0.848 0.886 0.896 0.920 0.929

IGAN 0.577 0.599 0.615 0.715 0.768 0.824 0.887 0.917 0.937 0.943

Proposed 0.594 0.645 0.673 0.758 0.811 0.855 0.900 0.920 0.940 0.947

Table 3: AUC values for different SNR in 16QAM-QPSK scenario.

Methods -16 -14 -12 -10 -8 -6 -4 -2 0 2

IAE 0.506 0.554 0.639 0.698 0.771 0.820 0.881 0.909 0.920 0.929

IGAN 0.547 0.612 0.639 0.723 0.776 0.839 0.891 0.920 0.935 0.952

Proposed 0.559 0.628 0.650 0.746 0.802 0.858 0.901 0.923 0.940 0.955
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Figure 6: AP trends for different SNR in QPSK-BPSK scenario.
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Figure 5: Abnormal received signal.
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dataset. All these parameters are determined by a large
number of experiments to make the model produce good
results.

4.2. Results. In order to investigate the detection perfor-
mance of the proposed algorithm for time-frequency over-
lapped interference, one method based on improved
autoencoder (IAE) [28] and another method based on
improved generative adversarial network (IGAN) [29] are
compared in this paper, which are commonly used for
anomaly detection in deep learning.

Due to the particularity of interference detection, the
area under curve (AUC) for receiver operating characteristic
(ROC) is calculated in the experiment. ROC curve reflects
the trade-off between true positive rate (TPR) and false pos-
itive rate (FPR). Each point on the curve represents the TPR-
FPR value corresponding to different thresholds. Tables 1–3
list the experimental results obtained in three scenarios, so as
to visually display the detection performance of the three
models under different SNR conditions. It can be seen that
the proposed algorithm provides higher AUC compared
with other methods. Especially in the case of low SNR, the
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Figure 7: AP trends for different SNR in 16QAM-BPSK scenario.
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Figure 8: AP trends for different SNR in 16QAM-QPSK scenario.
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detection effect is also improved. In QPSK-BPSK scenario,
the difference between the original signal and the interfer-
ence signal is relatively small, but the proposed algorithm
is still feasible.

Besides, the average precision (AP) is also used as an
evaluation measure, the higher the better. Figures 6–8 show
that the proposed algorithm achieves efficiency improve-
ment among all methods. It can be concluded that the model
fails to generate abnormal samples. Moreover, the distance
in both signal space and latent space provides sufficient sup-
port for the algorithm to resist serious noise and detect sud-
den interference.

In summary, the above experimental results indicate that
the proposed algorithm has generalization ability and per-
forms better than other competitive methods for interfer-
ence detection.

5. Conclusion

In wireless communications, signals are always affected by
noise and interference during transmission, which leads to
large errors in the decoding phase at the receiver. In order
to improve communication quality, interference detection
is an essential process. It is an important research direction
to design an interference detection algorithm suitable for
various communication scenarios. In other fields, the
research on anomaly detection has made great progress.
Interference detection in wireless communications can be
regarded as a special anomaly detection, which identifies
whether interference exists in the signal. In addition, deep
learning has been proved to have strong feature extraction
ability. Inspired by the combination of anomaly detection
and deep learning, a wireless communication interference
detection algorithm based on generative adversarial network
is proposed in this paper. It uses the reconstruction strategy
to detect time-frequency overlapped interference. The model
optimizes the parameters in the way of adversarial training,
and the generator adopts the structure of encoder-decoder-
encoder. It can overcome the influence of noise and improve
the detection accuracy in the case of low SNR. The experi-
mental results on the simulated communication dataset
show that the proposed algorithm performs better than the
competitive methods based on deep learning and effectively
solves the problem of interference detection.
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