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Wi-Fi networks rely on channel estimation to ensure their performance. The computational complexity and dependability of fifth
generation telecommunication networks have significantly improved using supervised learning. In this paper, we develop a
channel estimation model that uses a machine learning approach and the study uses multipath channel simulations for the
estimation of channel state information (CSI) over arbitrary transceiver antennas. The simulation is conducted to test the
efficacy of the model against various machine learning channel estimation models. The results of simulation show that the
proposed model obtains increased channel estimation quality than other methods. Further, the bit error rate is recorded low
among other methods using the machine learning model. Thus, it is seen that the proposed method achieves a reduced
mismatch rate of 1:26 × 10−1:5 than other methodson Doppler frequency during channel estimation, where the mismatch rate
is higher in existing methods.

1. Introduction

In the current mobile communication systems, more devices
are connected at the base stations, and the volume of data
traffic is predicted to grow rapidly as well [1]. Because of
the large number of devices and applications, infrastructure
management has become increasingly challenging [2].

Low-power connectivity is necessary for the Internet of
Things (IoT), whereas higher speeds of mobile communica-
tion are required for trains travelling at speeds of up to 300

kilometres per hour, and fiber-like broadband access is
required for users at home [3]. A number of technologies
are presented to support the aforementioned goals [4]. In
antenna beamforming, MIMO, use of custom-tailored, and
virtualized network functions (VNFs), adequately provi-
sioned network slices are only a few examples of these tech-
nologies [5].

It is feasible to use some data-based technologies to man-
age 5G networks, which would be advantageous. Dynamic
mobile traffic analysis, for example, can be used to forecast
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the position of the user when it comes to handover proce-
dures [4, 5]. Another example is the allocation of network
slices, which takes into account the state of the network
and the availability of resources [6]. Each of these scenarios
is built on the foundation of data analysis. Depending on the
source, some predictions regarding future behaviour are
based on historical data, while others are based on present
conditions and are designed to assist in decision-making. It
is possible to overcome these types of challenges with the
use of machine learning techniques [7–9].

The algorithms are only capable of handling raw natural
data in their current form. Building a machine learning or
pattern recognition system requires substantial domain
expertise and rigorous engineering across many decades,
which is why the design of a feature extractor is so impor-
tant. The data can then be translated into a suitable repre-
sentation for the learning system when this stage has been
completed [7].

The use of two alternative sparsifying basis in a hybrid
feedback compression approach for a slowly variable propa-
gation environment can help to achieve a better balance
between the feedback load and the CSI recovery perfor-
mance. CSI recovery performance because massive MIMO
is likely to be deployed in mmWave frequency ranges in cel-
lular networks; the use of a compressive sensing-based
approach may not be feasible, because the occurrence of
strong spatial correlation is not likely to occur at high carrier
frequencies. The beamforming-based solution, on the other
hand, is probably more practical due to the restricted num-
ber of propagation channels available, which allows the user
to concentrate on only a few angular beams for CSI mea-
surements and reporting, which is probably more practical.
This study discusses the downlink estimation that utilizes a
machine learning approach to maintain the trade-off
between the resource and energy consumption. This does
not require CSI feedback from the users, which is extremely
efficient in terms of resource and power savings on the user
end.

In this paper, we develop a novel channel estimation
model that uses machine learning approach, namely, back
propogation neural network (BPNN), and the study uses
multipath channel simulations for the estimation of channel
state information (CSI) over arbitrary transceiver antennas.

2. Background

The problem of estimation of CSI is considered persistent in
wireless systems. The next section [4] discusses the quality of
communications links. This brief explanation will use these
characteristics to determine how a signal travels from its
source to its intended destination. Transmissions can be tai-
lored to the current channel conditions depending on the
CSI in order to improve overall communication perfor-
mance. The CSI has an impact on a variety of things, includ-
ing radio resources, modulation, and coding schemes.

Traditional CSI estimation methods [10] sometimes
necessitate the use of high-performance computation [11].
As a result, machine learning models are now being used
by numerous writers in their CSI estimation work, which is

a significant advancement. Five papers on machine
learning-based CSI estimation were identified as a result of
our thorough review.

Three models in [11–13] proposed a machine learning-
based technique for MIMO systems, each of which was
based on machine learning. MIMO systems employ an array
of antennas for both the transmitter and the receiver, result-
ing in more efficient transmission and reception. If we com-
pare it to LTE, this is an extremely important 5G technology
because of the huge reductions in spectral and energy con-
sumption it delivers [14]. It should be noted that while
MIMO is utilized in LTE, massive MIMO is employed in
5G, which makes use of extremely large antenna
configurations.

In [11], they use MIMO system which helps to avoid
Doppler rate estimation and thereby avoid Doppler rate esti-
mation. Carrier channels, in which the estimation of Dopp-
ler rate varies between the packets, make the computation
difficult to perform the optimal operations. The MIMO fad-
ing channels with varying Doppler rates were learned and
estimated using machine learning models, which were
applied to the problem.

Using a combination of machine learning and overlay
coding techniques, the authors of [12] demonstrated chan-
nel state CSI feedback. CSI estimation at the downlink and
identification of user data in base stations are the key goals
of this research project. The authors in [13] describe an eval-
uation of the employment of machine learning models to
estimate CSI in three different use cases. Xu et al. [13] also
reported on this research. The first scenario involved the
use of machine learning models to estimate the angular
power spectrum; the other two scenarios involved static esti-
mates based on machine learning and its version, which took
into account temporal variation, i.e., the machine learning
model is recommended for estimating in-band CSI across
time. According to Albataineh et al. [4], one method of pre-
dicting the quality of an Internet radiolink transmission is to
take into account elements. A machine learning model is
used to replace the traditional methods of CSI estimation,
equalization, and demapping [15, 16].

3. Proposed Method

A transmitter and receiver are depicted in Figure 1 as part of
a MIMO-OFDM system in this section. Since the 5G chan-
nel profile is modeled after the NTNR MIMO channel
model.

3.1. 5G Channel Model. The 3GPP standard defines the 5G
model, where the Doppler shiftinginduces time-selective
and frequency fading. The TDL-C model with Rayleigh fad-
ing distribution is used in frequency range between 0.25 and
100GHz.

The MATLAB 5G toolbox is used to simulate the instan-
taneous channels in this propagation channel models. The
TDL-C profile shown is used for 5G and beyond channels
showing the gain of channel. The gain changes from 12 to
47 dB in more detail. Because the mobile communication
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frequency is of 4GHz in this case, where the channel profile
is not sparse.

3.2. Transmitter. The modulation block as in Figure 1 (trans-
mitter block) is used to encode and map binary data on the
transmitter side using quadrature amplitude modulation
(QAM). There are T time slots, and the symbols (QAM)
are concatenated to xðtÞ ∈ CN at time t:

x tð Þ = x1 tð Þ, x2 tð Þ,⋯,xN tð Þ½ �, ð1Þ

where N is the symbols of modulation. Data is decoded as
vectors NT that correspond to the antennas NT and it is
given as below:

xi tð Þ = xi tð Þ, xi +NT tð Þ, xi + 2NT tð Þ,⋯½ �: ð2Þ

This is accomplished by first converting the data from
the transmitter and reception antennas in a parallel form,
and finally, the pilot signals are inserted with the data into
each layer for use in channel estimation. To translate signals
from frequency domain, we use what we call an IFFT to
transform

Xa tð Þ = IFFT xa tð Þf g: ð3Þ

The signal vector xaðtÞ contains a pilot embedded in the
data xiðtÞ. By inserting the CP insertion block, a cyclic prefix
(CP) of length NG is then used to alleviate intersymbol inter-
ference (ISI). The transmitted signal, indicated by xgaðtÞ, is

expressed in the time domain by adding the cyclic prefix:

Xga tð Þ� �
n
=

Xa tð Þj jNFFT+n
n = −NG,⋯,−1,

Xa tð Þj jn n = 0, 1,⋯,NFFT,

(

ð4Þ

where NFFT is the size of FFT.
That is, in order to make the signal in this symbol longer,

the cyclic prefix at the end of each XgaðtÞ sample is utilized
to prefix the beginning of this symbol.

3.3. Receiver. It is initially eliminated from each antenna
received signal using the removal of cyclic prefix in order
to obtain vectors of length NFFT from each antenna
(Figure 1 receiver block). For channel estimation, the pilot
signal from frequency domain is extracted. In addition to
calculating the channel, a layer demapping module equalizes
and concatenates incoming signals from all receiver anten-
nas. A specific demodulation strategy, based on the trans-
mitter approach, is utilized to decode the signal. At this
stage, the complete binary data sequence from the MIMO-
OFDM model is acquired.

The mapping of pilot signals in accordance with the pilot
structure. Pilots in 5G networks are organized in a comb-like
pattern across the antennae. Symbols in the time and fre-
quency domains, Dt and Df , respectively, are evenly spaced.
Different use scenarios for a 5G system specify the values of
Dt and Df . Pilot signals are organized into an alternating
pattern among transmission antennas.

4. Machine Learning Channel Estimation

Traditional estimation approaches can be used to estimate
the propagation channels between transmitters and receivers
in wireless communication systems that need coherent
detection. Using machine learning frameworks to improve
channel estimation mistakes is motivated in this part by pre-
senting two widely used channel estimation approaches.

Error convergence is a critical issue in supervised learn-
ing, i.e., the reduction of the difference between the intended
and computed unit values. We determine a set of weights
that are as accurate as possible. Less mean square (LMS)
convergence has been used in many different learning
paradigms.

E wð Þ = E xα, yα, y xα,wð Þf g: ð5Þ

Both the transfer function and weights for the units
influence the behaviour of a BPNN.

f að Þ = 1
1 + exp −að Þð Þ : ð6Þ

Signals are generated constantly but not linearly for sig-
moid devices. Sigmoid units have a closer similarity to neu-
rones than threshold units but should be taken as
approximations.

It is necessary to change the unit weights in a neural net-
work so that the difference between the expected output is
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Figure 1: MIMO-OFDM with the BPNN Model.
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minimized. An erroneous derivative of the weights is calcu-
lated by the neural network (EW). The error must be calcu-
lated in the following manner: as weight is increased or
decreased, the error must be calculated in the following
manner. The EW can be determined using the back propa-
gation methodology.

In order to comprehend the back propagation algorithm,
it is best if all network units are linear. For each EW, the pro-
cess begins by calculating a unit EA (changing error rate). It
is the difference between what you actually get and what you
want to get. The weights connect one hidden unit with other
hidden units and output units must be identified in order to
construct an EA.

The study then multiplies weights by EAs by output
units and sum of the products. There is a total equal to this
value for each concealed unit that was selected. When all the
EAs in one layer have been computed, we can proceed to cal-
culate the EAs for next neural layers, where the progressing
from layer takes place in opposite direction of activity prop-
agation. Back propagation is the name given to this process.
Once the EA has been computed, EA and EW can be com-
puted for each incoming connection of a unit. It is the result
of a combination of the EA and incoming activity.

5. Results and Discussions

Here, we compare our proposed machine learning-based
channel predictions to existing approaches to the 5G chan-
nel profile and evaluate their effectiveness. This was a simu-
lation of a MIMO-OFDM system that included the
characteristics necessary to model the 5G network.

All of the proposed estimation are implemented on an
Intel i5 CPU running at 2.90GHz with 16GB of memory.
It is used for Monte Carlo simulations in MATLAB 2021a.
BER and MSE vs. SNR were used as a comparison tool to
evaluate the performance, and the results were compared
to conventional estimation.

Figure 2 shows the BER performance of the scenarios
under consideration using the various channel estimation
approaches. There is a strong correlation between the BER
performance and the MSE performance of the estimators
under study. In both instances, DBN performance of BER
is marginally lower than MLP. As a result of this, the loss
function is designed to decrease channel estimation errors
rather than the bit error rate.

Tables 1 and 2 illustrates the effect of pilot density on the
robustness of BPNN estimators as shown. The performance
of the three machine learning estimators remained constant
when the pilot density fell, regardless of the SNR. As a result,
we may conclude that the BPNN models are resistant to var-
iable pilot densities.

The proposed machine learning models are tested for the
impact of the maximum Doppler frequency. As the maxi-
mum Doppler frequency grew, the machine learning model
performance degraded. As the Doppler frequency grew, the
channel changed more frequently. We can also see from
the figure that the BPNN model performance fell more
severely than the other models. However, it still outper-

formed the DBN and MLP models in terms of performance
which is discussed in Table 3.

On the ground, we used Doppler frequency variation as
a way to test the neural network sensitivity to changes in
the receiver velocity. The proposed models were also exam-
ined for accuracy in prediction when the Doppler frequency
between training and testing was out of whack. In this sim-
ulation, a uniform distribution was used to randomly
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Figure 2: BER vs. SNR.

Table 1: Influence of pilot densityin terms of the minimum mean
square error during channel estimation by machine learning.

SNR (dB)
MMSE (dB)

DBN MLP Proposed BPNN

-5 1:32 × 10−0:5 1:24 × 10−0:75 0:78 × 10−1:8

0 1:76 × 10−0:74 1:31 × 10−0:98 0:85 × 10−2:28

5 1:84 × 10−0:9 1:39 × 10−1:12 0:89 × 10−2:78

10 1:98 × 10−1:15 1:47 × 10−1:51 0:93 × 10−3:11

15 2:18 × 10−1:24 1:53 × 10−1:92 0:98 × 10−3:29

20 2:41 × 10−1:32 1:63 × 10−2:02 1:03 × 10−3:5

Table 2: Influence of pilot density in terms of mean square error
during channel estimation by machine learning.

SNR (dB)
MMSE (dB)

DBN MLP Proposed BPNN

-5 5:28 × 10−0:5 4:93 × 10−0:75 3:09 × 10−1:8

0 6:99 × 10−0:74 5:20 × 10−0:98 3:39 × 10−2:3

5 7:34 × 10−0:9 5:55 × 10−1:12 3:56 × 10−2:8

10 7:88 × 10−1:15 5:84 × 10−1:51 3:70 × 10−3:12

15 8:69 × 10−1:24 6:08 × 10−2:00 3:90 × 10−3:32

20 9:62 × 10−1:32 6:50 × 10−2:69 4:12 × 10−3:51
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disperse values in the testing stage, while we preserved them
in the training stage. Table 4 shows the results.

In spite of the mismatch in Doppler frequency, all of the
machine learning channel estimate models performed well,
as shown in Table 4. When SNR is set to 20 dB, only the
BPNN model performance suffers marginally. Even with
channel mismatching, all of the BPNN model than DBN
and MLP. Based on the results, BPNN is sensitive on Dopp-
ler frequency than DBN and MLP.

Due to the time-varying channel features, BPNN has
greater impact on Doppler frequency than on MLP and
DBN. However, the three presented models are still more
efficient than conventional approaches because they are
more resistant to variations in the Doppler frequency.

6. Conclusions

In this paper, a channel estimation model is conducted using
BPNN and the study uses multipath channel simulations for
the estimation of CSI over arbitrary transceiver antennas.
The simulation is conducted to test the efficacy of the model
against various machine learning channel estimation
models. The results of simulation show that the proposed
model obtains increased channel estimation quality than
other methods. Further, the bit error rate is recorded low
among other methods using the machine learning model.
Because of its capacity to utilize the temporal and frequency
correlation across channels, BPNN showed the biggest
reduction in channel estimation error among the proposed
channel estimation. Furthermore, the BPNN channel esti-

mation algorithms showed excellent resilience to changes
in pilot density and Doppler frequency. In future, the appli-
cation of noise modeling can be varied to check the efficacy
of the model under different rugged scenarios.

Data Availability

The datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable
request.
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