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Real world data aggregation and delivery in Internet of Things (IoT) technology are essential to predict and retrieve target data in
short time so that the end user feels no delay but ensures a high quality of information. In addition to habitat monitoring and
disaster management, these networks have a wide range of other uses, including security and military operations. The
processing capabilities of sensor nodes are restricted due to the fact that they have a limited battery life and hence a modest
size and processing capacity. WSNs are also susceptible to failure as a result of the limited battery power available. In WSNs,
data aggregation is practiced as an energy efficient strategy to reduce computing and transmission latency. It is because of
sensor node distribution density that shares the same data at a time data redundancy comes to exist. It is possible to reduce
redundancy by adopting a suitable machine learning algorithm while executing the data aggregation process. Researchers are
still chasing behind algorithms and modeling strategies effectively to ease the process of developing an effective and acceptable
data aggregation strategy from existing wireless sensor network (WSN) models. A three stage framework is proposed for an
efficient data aggregation mechanism, and the stages are Modified LEACH, extreme learning machines (ELM), adaptive
Kalman filter, and Bi-LSTM. This experiment result shows better performance than the existing methods.

1. Introduction

Today, the world is experiencing a tremendous use of digital
data due to which the growth in data collection and distribu-
tion processes has been rising in a rapid pace which in turn
leads to be a vital decisive factor in developing IoT system
architectures [1]. It is evident that the amount of data col-
lected from various digital communication infrastructures
gets doubled at the rate of two times a year. Several efficient
data collection models are developed to upgrade the perfor-
mance of many IoT-assisted sensing applications. The sen-
sor systems perform data acquisition which forms the first
part of data collection process to provide better services to
users. It is known that there are several numbers of sensors
deployed in wireless sensor networks to perform data collec-

tion from industrial and other natural or artificial environ-
ments. The main goal of sensor deployment is to sense
data of intent from a hostile area. As these sensing mecha-
nisms consume significant energy, different network-based
data processing mechanisms are considered to develop sen-
sor centric IoT applications. Such data aggregation tech-
niques in IoT-enabled networks conserve energy with
network longevity.

WSN finds its applications in areas such as home auto-
mation, monitoring different types of surroundings,
healthcare, and industrial control to mention a few. The
communication between constituent sensors will lie in a
short range only [2, 3], wherein the sensor nodes have lim-
ited bandwidth and other associated resources. The sensor
works on collecting signals from sources such as light,
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temperature, and heat and passes it to data conversion units
called microcontrollers. Overall communication effective-
ness of sensor nodes would be dependent on type of data
aggregation techniques employed. Data aggregation is car-
ried out with few objectives so that it reduces energy con-
sumption along with other resource utilizations. The
network lifetime would also increase when the data aggrega-
tion algorithm is carefully chosen [4]. Data aggregation is
preferred in cases where multiple sensor nodes are in opera-
tion to fetch signals on a same parameter under a high node
density scenario.

In this research work, energy minimization is carried out
in two stages such that at first, data prediction and, secondly,
a statistical prediction modeling are performed out, respec-
tively. Data prediction is done in an IoT network to predict
future data coming from all live nodes. A given IoT network
contains a sensing node known as aggregator to collect data
and broadcast it to remaining nodes. The aggregator node
sends only the required amount of data instead of sending
all received data after processing it using suitable data pre-
cipitation techniques. Besides, a sufficient data reduction is
further achieved during the second phase using a statistical
data prediction model to identify neighboring nodes which
periodically generate data.

Figure 1 portrays various applications of IoT, where data
aggregation plays a major role in a large scale. Thus, this
manuscript focuses on developing efficient data aggregation
mechanisms for IoT-enabled machines available in
industries.

2. Literature Survey

WSN is prominently used in IoT, to collect environmental
data because of its large-scale deployment, low cost, and
low-energy consumption. It is time-consuming and difficult
to reduce the amount of data gathered and transferred across
a network without affecting data integrity. Literature [5] pro-
poses a two-stage model in which the first stage is for effec-
tive data collection by unmanned aerial vehicle (UAV)
where as the next stage is NP hard maximization problem
to model the full or partial collection of data by hovering
of the UAVs.This proposed two stage model tries to maxi-
mize data collection with minimal energy consumption.

Researchers on [6] proposed an Energy-Efficient Data
Aggregation Mechanism (EEDAM) to save energy at the
cluster level. Edge computing is used to give on-demand
trusted services to IoT devices with the least amount of
delay, and blockchain is incorporated into a cloud server
for verifying the edge in order to provide secure services to
IoT devices with the least amount of delay. In work [7],
author presents methods on how to effectively deal with
the data veracity issue that arises due to the existence of mis-
behaving nodes, outliers, missing readings, and redundancy
in the raw IoT sensor data by using a data aggregation tech-
nique. The data aggregation methodology is intended for use
with extremely uncertain raw IoT sensor data acquired by
device to device connection, as opposed to other methods.

In [8], authors presented a review paper for aggregation
which proposes LTE-WLAN aggregation (LWA) that is

implemented using a Software-Defined Networking- (SDN-
) based technique to manage aggregation across LTE and
WLAN Access Points eliminating excess connection
attempts thus serving users only with essential services.
The genetic algorithm is used to pick the best WLAN access
point. This reduces the traffic demand in licensed spectrum
and increases the UE throughput. Another paper [9]
describes several energy efficient data aggregation techniques
employed in sensor networks.

In [10], authors reported a review article which covers a
detailed analysis of methodical analysis of data aggregation
in WSN. Here, they discussed about challenges in data
aggregation and various methods and tools used. In [11], a
survey is found on various data aggregation models which
used machine learning techniques and finally, authors pro-
posed a novel priority-based data aggregation (PbDA) tech-
nique which is machine learning based on confront
emergency situations. Again, in [12], research work pro-
poses an adaptive event differential privacy (Re-ADP) sys-
tem, and all the collected sensor information at different
timings may be protected sequentially through an unlimited
stream of data in real time, without compromising perfor-
mance. They are meant to provide aggregated data to cloud
storage; it may reduce the processing load on cloud storage
servers, enhance communication efficiency, and preserve
the privacy of data sent to them.

Another unique data aggregation approach with network
clustering and an extreme learning machine (ELM) that
effectively removes unwanted and erroneous data is identi-
fied in [13]. The instability during training phase of ELM
is tackled using basis functions. All the sensed data are pre-
processed to filter noise using Kalman filter before delivering
data to a particular CH. This supports to accuracy improve-
ments. Again, an energy-efficient data aggregation strategy is
proposed in [14] in which IoT nodes encode sensor input
into a binary format before routing. Next, the data is com-
pressed at the edge node and then pumped into the IoT
cloud through the shortest route. An accurate data aggrega-
tion and prediction model improves performance of the
cloud.

An energy efficient LEACH protocol is introduced [15,
16] to improve network routing by reducing resource con-
sumption. Clustering points out an appropriate cluster head
to reschedule TDMA slots of a particular sensor node and to
balance all sensors data transmission such that each node
sends the same quantity of data. This reduces energy con-
sumption of nodes and hence increases life of the network.

The research contributions in [17] focus on theoretical
analysis of extreme learning machine (ELM) to achieve
improvements in the context of stability, efficiency, and
accuracy of WSNs. The work present in [18] aims at fast
traffic forecasting to predict vehicle count that is anticipated
in the successive time period in a traffic junction. During
uncertain signal transmissions, adaptive Kalman filters offer
reasonable prediction intervals according to empirical evi-
dence, along with a better adaptability in a variable traffic
scenario. It is inferred that during sensitivity analysis, the
adaptive Kalman filter performance is stable as its memory
capacity increases.
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In [19], a CLSTM-based model is proposed to precipitate
the nowcasting issues. It uses both input and prediction out-
put as spatiotemporal sequences. The resultant correlations
outperform FC-LSTM and operational ROVER algorithm.
Research reports in [20] used an LSTM network enhanced
with word embeddings which is already trained using a sig-
nificant number of Twitter message samples. It applied toke-
nization, word normalization, segmentation, and spell
correction to optimize the identification of the most signifi-
cant words.

Study in work [21] reveals that the research work imple-
ments aggregate sales forecasting using the deep learning
algorithm ConvLSTM, which is developed by the University
of Michigan. When looking at the sales forecasting, it might
take geographical correlations between neighboring shops
into consideration. It is discovered that the proposed ASFC
method reduces errors and improves prediction quality. It
is the goal of this effort to develop aggregate sales forecasting
using the deep learning algorithm ConvLSTM.

Research in [22] uses a new prediction approach to
develop sensor-connected IoT applications. Bi-LSTM and
1-D CNN are used to extract characteristics with distinct
features, resulting in one-step prediction. After recursively
combining previous data with new prediction findings, a
multistep prediction model is arrived that significantly
improved the performance.

An IoT system for Wireless Medical Sensor Network
(WMSN) is proposed [23] to monitor medical data trans-
mitted to central storages. The work deals with offering
highly secured data aggregation and then transmit to desired
locations. This prevents the intrusion of undestined users.
The current schemes are significantly complex due to the
use of complex product functions to generate batch keys.
Thus, it makes the systems experience high computational
complexity and large memory utilization. Authors presented

a new lightweight Secure Aggregation and Transmission
Scheme (SATS) that has a low complex EXOR logic to find
out the batch key by eliminating the tedious multiplication
steps. In addition, the work includes Aggregator Node
Receiving Message Algorithm (ARMA) for effective data
aggregation. This collective approach is found to be one of
the preferred choices for SATS to mitigate security threats,
viz., denial of service, man in the middle, and reply kind of
attacks in a given IoT-WSN scenario. Simulations in NS2
show that the proposed SATS presents a lightweight type
of data transmission minimal computations and allied com-
munication costs along with an improved memory size and
low energy consumption.

As the security of WSN data transmission is a key factor
to determine the quality of service, there are data aggrega-
tion (DA) schemes [24] framed with a suitable security
mechanism to offer safe and reliable data delivery. This pre-
sents a review of secure data aggregation (SDA) focusing
only on security threats.

This work [25] presents an energy aware and secured
data aggregation algorithm. End results show that the pro-
posed approach preserves nodal energy significantly besides
achieving a prolonged network lifetime. Data aggregation
becomes very effective in large scale of WSNs wherein a
huge volume of data is involved and out of which only a par-
ticular size is useful, whereas the remaining are said to be
redundant [26]. An increased redundancy will decrease the
system performance in the context of additional computa-
tional overhead and unnecessary transmission besides mem-
ory wastage. Data aggregation aims at data mining where
only the useful data is precipitated to ensure data transmis-
sion with better consistency, accuracy, and efficiency. Data
mining plays a pivotal role in wireless sensor networks com-
bined with Internet of Things to achieve remote data com-
munication. A new redundancy checking approach is
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Figure 1: Structure of an IoT model (source: http://www.tibco.com).
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proposed in this work that performs better redundant data
mining compared to other counterparts. Table 1 illustrates
the comparison of some existing methods.

3. Proposed Method

With the help of WSN, we have developed an effective data
aggregation technique for utilization prediction in IoT oper-
ated machines. To predict the following three stages, Modi-
fied LEACH, extreme learning machines (ELM), adaptive
Kalman filter, and Bi-LSTM are used as shown in Figure 2.

3.1. M-LEACH. The LEACH method requires few nodes to
assign as cluster heads which are more distant from the BS
than they are, in order for the process to work. The sensor
nodes transmit their sensed data to the centralized access
points. Extra transmissions are communications that squan-
der the energy of the network and are thus referred to as
such. The suggested protocol operates over a large area, sim-
ilar to that of a wide area network but simultaneously reduc-
ing the complexity of communication and the complexity of
time management. All sensor nodes are deployed into a scal-
able distributed cluster environment in accordance with the
suggested protocol, and the region is divided into various
numbers of clusters. All the clusters are assigned with fixed
cluster nodes. Any individual node should be attached with
any of the cluster available in the network. Cluster heads
are selected based on the modified LEACH algorithm. Only
CHs will communicate with base stations.

Steps to be followed in modified LEACH:

Step 1. Deployment of sensor nodes.

Step 2. Formation of cluster.

Step 3. Calculate cluster head threshold for all nodes.

Step 4. Check the threshold value. If threshold is not higher,
then the node is not a cluster head (CH) else proper selec-
tion of cluster head (CH).

Step 5. CH waits for join request messages.

Step 6. Broadcast a message from one node to all CHs.

Step 7. Modify TDMA schedule duration based on the larg-
est cluster and send its cluster members.

Step 8. Sensor nodes send sensed data to its CH.

Step 9. Data aggregation on CH.

Step 10. Sent the data to extreme learning machines (ELM).

3.2. Extreme Learning Machines (ELM). The LEACH output
is fed into an ELM to eliminate excess and error prone data.
As illustrated in Figure 3, the ELM is a feed forward neural
network with two stages of learning. The projection stage
is nontrainable, and the input weights are chosen at random.
No iterative calculation is required. This feature reduces
computing time for training the model, but random selec-
tion of biases and weights causes prediction instability. To
overcome ELM’s flaw, a Mahalanobis distance-based radial
basis function (MDRBF) is suggested to be integrated with
ELM’s network.

The following is the formula for the ELM network with k
hidden nodes:

αj cð Þ = 〠
k

j=1
f 1 wj:c
À Á

+ bi, ð2Þ

where w is theweight and b is the bias.

d cið Þ = 〠
k

j=1
wj′αj

� �
+ bj′,

Xw′ = d,

ð3Þ

X =

α w1c1 + α1ð Þ ⋯ α wnc1 + αkð Þ
⋮ ⋱ ⋮

α w1cn + bkð Þ ⋯ α wncn + bkð Þ

2
664

3
775,

X ⟶ output of the hidden layers:

ð4Þ

The following equation is solved by least-square fitting:

F =min Xwj′− yji
� �

: ð5Þ

3.3. Adaptive Kalman Filter (AKF). In the field of data
fusion, AKF is one of the most often utilized approaches.
It decreases the amount of noise in the data and provides
an accurate approximation of the state vector containing

TD TrainingDatað Þ = cj, dj

À ÁÈ É
, j = 1, 2, 3,⋯, nð Þ, where cj ⟶ input data, dj ⟶ target data: ð1Þ
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Table 1: Reference comparison table.

Author
details

Journal details Observation

Li et al. [5]
IEEE Transactions on Mobile

Computing (2021)

Approximation of data collection from sensor nodes fully and partially and heuristic
approach maximization of collected data with NP-hard problem are used. Proposed

methods proved promising results.

Sanyal and
Zhang [7]

IEEE Access (2018)
Data veracity problem is addressed. Generated true sensor data matrix and proved

higher efficiency in the presence of noise and outliers.

Huo et al.
[12]

Wireless Communications and
Mobile Computing (2018)

A real-time stream data aggregation framework with adaptive-event differential
privacy is proposed. Authors used privacy protection and smart grouping based on K

-means clustering. Results shown outperform the existing works.

Anbalagan
et al. [8]

Future Generation Computer
Systems (2020)

Alternate complementary network is utilized. Results proved that LWA-SA aggregates
data with minimal latency and selects an optimal AP as prescribed in the GA-based

EWS algorithm.
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Figure 2: Three stages of data aggregation and prediction.
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Figure 3: Structure of ELM network.

5Wireless Communications and Mobile Computing



X

X

X

tanh

tanh

z (t-1)

h (t-1)

i (t)

h (t)

z (t)
+

𝛿 𝛿 𝛿

Figure 4: Structure of one cell.

Outputs

Activation
layer

Backward
layer

Forward
layer

Inputs

LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM

yt-1

xt-1 xt xt+1 xr

yt yt+1 yr

Figure 5: Structure of Bi-LSTM.

50

51

52

54

8

9

10

11

12

13 14

15
16

17
18

19

21
20

22

23

25 24

27

2628

29

30

31

32

33

34

35

1

2
3

37

3638
4142

43
44

45

46

48

47

49

40

39

7

5 6

4

Office Office

Conference

Storage

Quiet Phone

LAB

Server

Kitchen

ELEC Copy

53

Figure 6: Sensor arrangement (courtesy: Intel Lab Berkeley).

6 Wireless Communications and Mobile Computing



Figure 7: Experimental setup.

Figure 8: OPNET-network environment setup.
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valuable information. It has been widely used for a variety
of applications, including estimate, tracking, and sensor
fusion.

Step for AKF is given below:

Step 1. Find the prior state estimation error covariance

Ŝ
−
k k−1j = b∅ Ŝ

+
K−1 K−1j ,

Ĝ
−
k k−1j =∅Ĝ

+
K−1 K−1j ∅T + Rk,

ð6Þ

G−
kjk−1 : Prior State Estimation error covariance:

Step 2. Compute the errors

Ek = Zk − YT
k Ŝ

−
k k−1j , ð7Þ

Ek : Obseravtion of errors:

Step 3. Update observation process covariance matrix Ck

Ê =
1
M

〠
M

i=1
Ek−i+1,

Ê : Average observation errors,

Ck =
1
M

〠
M

i=1
Ek−i+1 − Ê
À Á

Ek−i+1 − Ê
À ÁT −

M − 1
M

Yk−i+1Ĝ
−
k−i+1 k−ij YT

k−i+1

� �
,

ð8Þ

where M is the AKF memory size.

Step 4. Compute the gain of the AKF

KGk =
Ĝ
−
k k−1j Zk

ZT
k Ĝ

−
k k−1j Zk + Ck

, ð9Þ

KGk : Kalman gain at time k:

Figure 9: Accuracy.
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Step 5. Estimate the posterior state and its covariance error

Ŝ
+
k kj = Ŝ

−
k k−1j + KGkEk,

Ĝ
+
k kj = 1 − KGkY

T
k

À Á
Ĝ
−
k k−1j ,

ð10Þ

G+
kjk : Posterior State Estimation error covariance:

Step 6. State estimation error computation

bt = Ŝ
+
k kj −∅Ŝ

+
k−1 k−1j , ð11Þ

bt : system state estimation errors:

Step 7. Update state process covariance matrix Qk

b̂ = 1
M

〠
M

i=1
bk−i+1,

b̂ : average system state estimation errors,
ð12Þ

Qk =
1
M

〠
M

i=1
bk−i+1 − b̂

� �
bk−i+1 − b̂

� �T
−
M − 1
M

∅k−i+1Ĝ
+
k−i k−ij ∅T

k−i+1 − Ĝ
+
k−i+1 k−i+1j

� �
:

ð13Þ
3.4. Bidirectional LTSM. RNN is a type of conventional
LSTM approach with its module contains a singular neu-
ronal structure to represent the human brain. In LSTM,
the module is made up of cells that each have three gates.
These two modules are organized into a chain structure.
The three gates of a cell are named as input, hidden,
and output, respectively, as illustrated in the following
Figure 4.

The mathematical models for these gates mentioned are
as follows. The input is defined as

x tð Þ = δ Wii tð Þ +Vih t − 1ð Þ + aið Þ, ð14Þ

in which hðt − 1Þ denotes previous gate, i ðtÞ is the cur-
rent input cell, δ is the sigmoid function, and Wi andVi are -
theweights of the input gates.

g tð Þ = δ Wf i tð Þ +V f h t − 1ð Þ + af
À Á

, ð15Þ

where g ðtÞ is the forget gate in the cell, and Wf andV f are -
theweights of the forget gates.

~z tð Þ = tanh Wci tð Þ +Vch t − 1ð Þ + acð Þ, ð16Þ

where z ̃ðtÞ will update thememory unit, whichwill upda-
te the alternate information.

z tð Þ = g tð Þ ∗ z t − 1ð Þ + x tð Þ ∗ ~z tð Þ, ð17Þ

where z ðtÞ will update the cell.
Information from the forgotten gate is merged with the

updated information which results in a new state, where
Wc andVc are weights of forgotten gates and updated infor-
mation, respectively, ∗ is the Hadamard product, and a new
alternative state is

Output tð Þ = δ Wox tð Þ + Voh t − 1ð Þ + aoð Þ, ð18Þ

h tð Þ = output tð Þ ∗ tanh z tð Þð Þ, ð19Þ
where Wo andVo are theweights of the output gate.

Here, equations (18) and (19) are used to calculate the
output gate.

Table 2: Accuracy in %.

Time stamp
11 : 07 am to 12 : 07 pm (60 minutes divided into each 6 minutes)

Average
1 2 3 4 5 6 7 8 9 10

EEDP [5] 97.105 97.635 97.14 96.59 96.39 96.2 98.005 96.46 96.135 97.26 96.892

IDAD2DC [7] 94.965 94.295 93.76 94.79 94.675 94.83 94.305 95.175 94.6 96.04 94.7435

READP [12] 96.195 94.7 95.835 96.085 96.03 96.225 95.52 95.8 95.895 94.585 95.687

SDNAELWA [8] 95.91 96.15 96.715 96.55 97.055 95.77 96.415 97.305 97.195 97.27 96.6335

MLELMAKF 98.18 98.395 97.79 98.125 98.54 97.925 97.93 98.32 97.6 97.725 98.053
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Figure 10: Error rate.
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The input data is processed by both forward and backward
layers using activation functions, and the final output is cre-
ated as a result of this processing as illustrated in Figure 5.

4. Experiment Setup

This work uses the Intel Indoor dataset [27] which com-
prises four types of data that are acquired using 54 nodes

from Intel Research Lab, Berkeley, as shown in Figure 6.
The data is divided in to four categories, viz., temperature,
humidity, light, and voltage, respectively.

Mica2Dot types of sensors are used in this setup. The
sensor board collects timely topological data along with tem-
perature, light, humidity, and voltage information in every
31 seconds such that on one sensor per 31 seconds, the data
was gathered from a tiny database developed on a TinyOS.

Table 3: Error rate (%).

Time stamp 1 2 3 4 5 6 7 8 9 10 Average

EEDP [5] 2.895 2.365 2.86 3.41 3.61 3.8 1.995 3.54 3.865 2.74 3.108

IDAD2DC [7] 5.035 5.705 6.24 5.21 5.325 5.17 5.695 4.825 5.4 3.96 5.2565

READP [12] 3.805 5.3 4.165 3.915 3.97 3.775 4.48 4.2 4.105 5.415 4.313

SDNAELWA [8] 4.09 3.85 3.285 3.45 2.945 4.23 3.585 2.695 2.805 2.73 3.3665

MLELMAKF 1.82 1.605 2.21 1.875 1.46 2.075 2.07 1.68 2.4 2.275 1.947

Figure 11: Precision.
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This dataset contains almost 2.3 million recorded values
received from sensor outputs. Compressed file size is 34MB,
whereas the uncompressed file has 150MB size. Dataset is
divided and taken into account for every 6minutes. The model
will analyze and provide results for every one hour. Figures 7
and 8 show the network environment setup in OPNET.

5. Results and Discussion

In this work, the following performance metrics are analyzed
and proved that the propose method is the better one when
compared with existing works which are EEDP, IDAD2DC,
READP, and SDNAELWA.

Table 4: Precision (%).

Time stamp 1 2 3 4 5 6 7 8 9 10 Average

EEDP [5] 96.25 97.84 96.96 96.93 96.22 96.04 97.97 96.01 96.01 98.04 96.827

IDAD2DC [7] 93.88 95.14 93.37 95.4 95.37 95.43 94.35 94.85 94.07 95.85 94.771

READP [12] 96.43 94.87 96.1 96.21 96.69 96.03 95.04 96.81 96.96 94.62 95.976

SDNAELWA [8] 96.03 95.68 95.28 96.1 95.96 95.76 95.43 96.95 96.58 97.17 96.094

MLELMAKF 97.62 97.46 97.4 97.31 98.02 97.48 97.97 98.44 97.31 97.41 97.642

Figure 12: Sensitivity.
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Figure 9 and Table 2 show the percentage of accuracy
calculated from the given method and is compared with
other existing methods. The average accuracy percentage of
the proposed MLELMAKF method is 98.053. The average
percentage difference of the proposed method (MLEL-
MAKF) is improved by 1.19%, 3.43%, 2.44%, and 1.45 than
the existing methods like EEDP, IDAD2DC, READP, and
SDNAELWA, respectively.

Figure 10 and Table 3 show the percentage of error rate
of the proposed method with the comparison of the four
existing methods. The average error rate percentage of the
proposed method is 1.947. The average percentage difference
of the proposed method (MLELMAKF) is improved by
45.93%, 91.88%, 75.59%, and 53.42% than the existing
methods like EEDP, IDAD2DC, READP, and SDNAELWA,
respectively.

Table 5: Sensitivity (%).

Time stamp 1 2 3 4 5 6 7 8 9 10 Average

EEDP [5] 97.9245 97.4405 97.3103 96.2753 96.5483 96.3483 98.0386 96.8819 96.2506 96.5341 96.9552

IDAD2DC [7] 95.9624 93.5589 94.104 94.2501 94.0625 94.2984 94.2652 95.4706 95.0778 96.2156 94.7266

READP [12] 95.9789 94.5485 95.5934 95.9701 95.4303 96.406 95.9612 94.8932 94.9378 94.5538 95.4273

SDNAELWA [8] 95.8001 96.5879 98.0953 96.9728 98.1086 95.7792 97.3478 97.6433 97.7827 97.3647 97.1482

MLELMAKF 98.7257 99.3172 98.1657 98.9224 99.0501 98.3554 97.8917 98.2043 97.8777 98.0276 98.4538

Figure 13: Specificity.
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Figure 11 and Table 4 show the precision comparisons as
percentage. The average precision percentage of the proposed
method is 98.053. The average percentage difference of the
proposed method (MLELMAKF) is improved by 0.838%,
2.98%, 1.72%, and 1.59% than the existingmethods like EEDP,
IDAD2DC, READP, and SDNAELWA, respectively.

Figure 12 and Table 5 show the percentage of sensitivity
of the proposed method with the comparison of the four
existing methods. The average sensitivity percentage of pro-
posed method is 98.053. The average percentage difference
of the proposed method (MLELMAKF) is improved by
1.53%, 3.85%, 3.12%, and 1.33% than the existing methods

Table 6: Specificity (%).

Time stamp 1 2 3 4 5 6 7 8 9 10 Average

EEDP [5] 96.313 97.8311 96.9709 96.909 96.2328 96.0526 97.9714 96.0456 96.02 98.0089 96.8355

IDAD2DC [7] 94.01 95.0565 93.4213 95.3432 95.3047 95.3745 94.3449 94.8833 94.1322 95.8657 94.7736

READP [12] 96.4131 94.8525 96.0792 96.2005 96.6457 96.0454 95.0872 96.7442 96.8938 94.6162 95.9578

SDNAELWA [8] 96.0204 95.7202 95.4117 96.1348 96.0466 95.7608 95.5183 96.9715 96.6216 97.1756 96.1382

MLELMAKF 97.6464 97.5066 97.4201 97.3531 98.0404 97.5022 97.9684 98.4362 97.3255 97.4262 97.6625

Figure 14: F-score.

13Wireless Communications and Mobile Computing



like EEDP, IDAD2DC, READP, and SDNAELWA,
respectively.

Figure 13 and Table 6 show the percentage of specificity
of the proposed method with the comparison of the four
existing methods. The average specificity percentage of the
proposed method is 97.66. The average percentage difference
of the proposed method (MLELMAKF) is improved by

0.85%, 3.00%, 1.76%, and 1.57% than the existing methods
like EEDP, IDAD2DC, READP, and SDNAELWA,
respectively.

Figure 14 and Table 7 show the percent F-score compar-
isons. The average specificity percentage of the proposed
method is 98.04. The average percentage difference of the
proposed method (MLELMAKF) is improved by 1.18%,

Table 7: F-score (%).

Time stamp 1 2 3 4 5 6 7 8 9 10 Average

EEDP [5] 97.08 97.6398 97.1349 96.6016 96.3839 96.1939 98.0043 96.444 96.1302 97.2812 96.8894

IDAD2DC [7] 94.9098 94.3428 93.7356 94.8216 94.7118 94.8608 94.3076 95.1593 94.5712 96.0325 94.7453

READP [12] 96.2039 94.709 95.846 96.0899 96.056 96.2176 95.4984 95.842 95.9383 94.5869 95.6988

SDNAELWA [8] 95.9149 96.1318 96.6672 96.5344 97.0224 95.7696 96.3793 97.2954 97.1776 97.2673 96.616

MLELMAKF 98.1697 98.3799 97.7813 98.1096 98.5324 97.9157 97.9308 98.322 97.593 97.7178 98.0452

Figure 15: Throughput.
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3.42%, 2.42%, and 1.46% than the existing methods like
EEDP, IDAD2DC, READP, and SDNAELWA, respectively.

Figure 15 and Table 8 show the throughput comparisons
with four existing methods from which it is inferred that the
proposed method delivers 1358kbps packets which is far better

compared to the values 84, 218,187, and 126 of their respective
EEDP, IDAD2DC, READP, and SDNAELWA counterparts.

Figure 16 and Table 9 show that the latency of the pro-
posed method is very low when compared to other existing
methods.

Table 8: Throughput (kbps).

Time stamp 1 2 3 4 5 6 7 8 9 10 Average

EEDP [5] 1272 1251 1280 1292 1254 1288 1272 1287 1264 1280 1274

IDAD2DC [7] 1124 1107 1148 1148 1153 1131 1146 1123 1167 1152 1139.9

READP [12] 1179 1159 1189 1168 1171 1151 1165 1154 1213 1153 1170.2

SDNAELWA [8] 1253 1239 1204 1246 1249 1226 1236 1246 1213 1205 1231.7

MLELMAKF 1342 1354 1361 1375 1366 1344 1362 1369 1353 1354 1358

Figure 16: Latency.

15Wireless Communications and Mobile Computing



Table 9: Latency (ms).

Time stamp 1 2 3 4 5 6 7 8 9 10 Average

EEDP [5] 44 52 44 40 53 46 48 45 54 47 47.3

IDAD2DC [7] 98 97 91 93 85 89 88 98 78 82 89.9

READP [12] 79 89 74 77 77 88 80 88 70 85 80.7

SDNAELWA [8] 50 58 68 56 58 60 55 60 67 69 60.1

MLELMAKF 25 24 15 16 13 21 12 14 15 21 17.6

Figure 17: End-to-end delay.
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Table 10: End to-end delay (ms).

Time stamp 1 2 3 4 5 6 7 8 9 10 Average

EEDP [5] 234 272 262 216 269 255 276 260 274 263 258.1

IDAD2DC [7] 495 509 471 477 469 475 444 518 423 447 472.8

READP [12] 410 453 376 397 412 470 427 458 383 450 423.6

SDNAELWA [8] 260 329 381 303 309 324 298 335 369 371 327.9

MLELMAKF 169 152 103 102 75 113 64 113 83 114 108.8

Figure 18: Average processing time.
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Table 11: Average processing time (ms).

Time stamp 1 2 3 4 5 6 7 8 9 10 Average

EEDP [5] 567 599 590 522 586 586 606 583 611 583 583.3

IDAD2DC [7] 881 885 847 835 833 826 796 880 761 814 835.8

READP [12] 754 816 712 762 750 844 795 820 716 800 776.9

SDNAELWA [8] 585 673 730 647 638 660 635 680 703 708 665.9

MLELMAKF 471 465 403 405 363 410 352 391 362 424 404.6

Figure 19: Average energy consumption.
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Both Figure 17 and Table 10 show that the end-to-end
delay is very low comparatively.

Figure 18 and Table 11 reveal that the average processing
time is found to be very low when compared with four of the
existing methods.

Figure 19 and Table 12 show that average energy con-
sumption is significantly reduced when compared with the
existing methods.

6. Conclusion

We conclude that the proposed approach significantly con-
tributes to the development of efficient neural network
architecture to perform data aggregation and prediction
from the IoT enabled services in an industrial background
which employs a typical wireless sensor network. After com-
parisons across the four existing methods, the proposed pre-
diction model exhibits a significant performance
improvement across all metrics of a neural network due to
the inclusion of the three steps, viz., ELM-based redundancy
removal, AKF-based noise removal, and Bi-LSTM-based
prediction, respectively. The proposed approach MLEL-
MAKF has an average accuracy rate of 98.053% which pos-
itively differs by 1.19%, 3.43%, 2.44%, and 1.45% compared
to current methods, viz., EEDP, IDAD2DC, READP, and
SDNAELWA, respectively. Additionally, other performance
metrics such as average latency, end-to-end delay, average
processing time, and average energy consumption and
throughput are obtained as 17.6ms, 114ms, 404ms, and
1570.9nJ and 1358 kbps, respectively. It is evident from
Results that the proposed data aggregation scheme outper-
forms existing EEDP, IDAD2DC, READP, and
SDNAELWA methods significantly. This research can be
taken to next levels by adding up the number of layers in
ELM and Bi-LSTM stages such that the prediction accuracy
of both redundant and error data becomes better with con-
siderable reduction in the number of computations.

Data Availability

The data used to support the finding of this research are
accessed from http://db.csail.mit.edu/labdata/labdata.html.
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