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Mobile node localization is one of the key technologies in wireless sensor network applications. Aiming at the shortcomings of
Monte Carlo algorithm (MCL) in mobile wireless sensor network node localization in nonideal environments, such as low
accuracy and low sampling rate, in the prediction phase and filtering phase of MCL, the communication radius of the
unknown node is determined according to the size of the irregularity of the node. Perform layering, assign adaptive weights to
anchor nodes of different layers according to the area where they are located, and propose an adaptive improved Monte Carlo
algorithm. After simulation analysis, the algorithm has an average localization error of nodes under different regularity
conditions. It has dropped by about 12%, and the localization error has dropped by about 10% on average under different
speed conditions. Aiming at the shortcomings of the MCL algorithm in mobile wireless sensor mobile networks such as low
localization accuracy, large sample demand, and long localization time, the communication radius of the node is fuzzified to
reduce the sampling area of the node, and an improved Monte Carlo localization algorithm based on fuzzy theory is proposed.
The improved Monte Carlo localization algorithm, after simulation analysis, is about 50% shorter than the traditional MCL
algorithm in localization time, and the localization accuracy is up to about 30% higher than the traditional MCL algorithm.

1. Introduction

In recent years, with the widespread application of wireless
sensor networks (WSN), the localization technology of wire-
less sensor network nodes has become a hot issue of
research. At present, the static WSN localization technology
is relatively mature. Representative algorithms include cen-
troid localization algorithm [1], SPA relative positioning
algorithm [2], convex programming localization algorithm
[3], and DV-Hop localization algorithm [4, 5]. Most of these
node localization algorithms do not consider the mobility of
the nodes and can no longer meet the localization require-
ments in the actual environment. How to design a location
algorithm suitable for WSN mobile nodes has become a
hot issue in research.

For the localization of mobile nodes, some WSN
dynamic localization algorithms have been proposed by the
academic community, such as DSL localization algorithm
[6], DRL localization algorithm [7], Landscape-3D algo-

rithm [8], and MBL-MDS localization algorithm [9]. How-
ever, these algorithms generally have problems such as
large amount of calculation, high hardware requirements,
or more beacon nodes. Because the MCL method uses the
mobility of nodes to help in positioning, it provides a new
idea to solve the problem of node localization in mobile
wireless sensor networks, and more and more scholars
derive their own improvement schemes based on this algo-
rithm. For example, the Monte Carlo Box Positioning Algo-
rithm (MCB) proposed in literature [10] introduces anchor
boxes and sample boxes to reduce the sampling area; the
MSL∗ algorithm proposed in literature [11] introduces
one-hop and two-hop common nodes and anchor nodes
together position. Literature [12] combines Monte Carlo
node localization algorithm with RSSI. Literature [13] pro-
poses Monte Carlo node localization based on timing, which
uses the order of anchor node feedback signals within one-
hop to form a sampling area. Literature [14] proposed a
Monte Carlo node location algorithm based on Markov
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chain, which uses Markov chain to calculate the weight of
particles in the process of predictive filtering. Literature
[15] proposed a Monte Carlo mobile node location algo-
rithm based on Newton interpolation. Literature [16] pro-
posed wavelet transform to predict mobile node location
algorithm, using wavelet transform method to predict node
location through historical trajectory. Literature [17] com-
bined differential evolution algorithm with Monte Carlo
node localization algorithm. Literature [18] shows that the
combination of particle swarm optimization and Monte
Carlo node localization algorithm reduces the number of
invalid samples and enhances the robustness of the algo-
rithm. The above improved algorithms are all tested in an
ideal environment. The localization accuracy of nodes is
too dependent on anchor nodes, and the localization results
are not ideal when the number of anchor nodes is small.
High localization accuracy is based on a large amount of
communication energy consumption, which does not com-
ply with the WSN principle of low cost and low energy
consumption.

Therefore, based on the Monte Carlo node localization
algorithm, this paper changes the size of the filter radius in
real time according to the size of the irregularity and pro-
vides the weight of the sampling particles that changes with
the irregularity. The center of the sampling circle is
improved from the estimated position of the original algo-
rithm to the sampled particle position at the last moment,
and this algorithm is applied to the WSN mobile node local-
ization and strives to solve the problem of node localization
in nonideal environments [19]. Through fuzzy theory, the
node signal energy value is fuzzified, and the filtering condi-
tions are accurate to make up for the shortcomings of MCL
localization, such as large demand for samples, low position-
ing accuracy, and long positioning time.

2. Principles of Monte Carlo Algorithm

The Monte Carlo method is based on the Bayesian filtering
method. The core idea of the algorithm is to use N weighted
discrete samples to estimate the posterior probability den-
sity, and use importance sampling to iteratively update
[20]. Including the prediction stage and the filtering stage,
the basic operation steps are as follows:

(1) Initialize the Node Position. According to the one-
hop and two-hop anchor nodes of the position node,
use the centroid method to estimate the position of
the unknown node

(2) Prediction Stage. The motion speed and direction of
the node to be determined are unknown, only the
maximum motion speed Vmax is known. Suppose
lt−1 is the position of the node at the previous
moment, then the position of the node at the current
moment is in the circle with lt−1 as the center and
Vmax as the radius, as shown in Figure 1.

Assuming that the velocity of node V satisfies uniform
distribution on ½0,Vmax�, dðlt−1, ltÞ represents the Euclidean

distance between nodes at adjacent times. Then the proba-
bility of node position estimation at time t is:

p lt lt−1jð Þ = 1/πV2
max

0

d lt−1, ltð Þ <Vmax,

d lt−1, ltð Þ ≥Vmax:

(
ð1Þ

In the formula, pðltjlt−1Þ is called the transition equation,
which is used to represent the node position distribution at
time t − 1 to predict the position distribution at time t.

(3) Filter Stage. Filter the sampled samples according to
the information of the first-hop and second-hop
anchor nodes received by the node, and filter out
the samples that do not meet the requirements. If S
is a set of one-hop anchor nodes, as shown in the
shaded area in Figure 2, T is a set of two-hop anchor
nodes, as shown in the shaded area in Figure 3, r is
the communication radius of the anchor node, l is
the sampling particle, s is a one-hop anchor node,
and dðl, sÞ is the Euclidean distance of point l, s, then
the filter condition of the node can be expressed as

filter lð Þ = ∀s ∈ S, d l, sð Þ ≤ r∧∀s ∈ T , r < d l, sð Þ ≤ 2r: ð2Þ

(4) Resampling Stage. After the filtering stage is com-
pleted, the number of remaining samples may be
very small. Generally, it is not possible to directly
sample from the posterior distribution. It is neces-
sary to use nonstrict filtering conditions, that is, the
distance between the sampling node and the one-
hop anchor node is moderately expanded to meet
the filtering requirements. The conditional particle
is called a sampled particle. When 50 sampled parti-
cles are obtained, the average of the position coordi-
nates of all sampled particles is calculated as the
estimated position of the node

3. Principle of Adaptive Improved Monte
Carlo Algorithm

Although the MCL algorithm solves the localization prob-
lem when the node moves to a certain extent, it cannot
achieve better positioning accuracy when the radio range
of the node is not ideal or the node is fast. Therefore, in this
paper, the communication radius of the unknown node is

lt–1
Vmax

Figure 1: The area where the unknown node is located.
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stratified according to the size of the irregularity, and the
anchor nodes in different layers are given corresponding
weights according to the region where they are located.
The weights of the sampling nodes are adaptively adjusted
by using an adaptive algorithm to achieve the optimal
weight. The MCL algorithm is improved from the prediction
stage and the filtering stage to improve the accuracy of
mobile node localization algorithm in wireless sensor
networks.

3.1. Prediction Stage. The MCL algorithm sampling uses
importance sampling, that is, sampling from an area with
high particle density. The basic idea is to choose a proposed
density qðxÞ to replace the real probability density pðxÞ that
is difficult to sample, then the MCL integration problem can
be transformed into:

ð
f xð Þp xð Þ =

ð
f xð Þ p xð Þ

q xð Þ q xð Þdx: ð3Þ

In the formula, pðxÞ is the actual density, qðxÞ is the
estimated density instead of pðxÞ. Suppose that the shape
of qðxÞ covers the shape of pðxÞ, that is, the definition of
qðxÞ is greater than or equal to the domain of definition
of pðxÞ.

Importance sampling in the MCL algorithm uses the
weighting of multiple independent samples qðxÞ to approxi-
mate

f̂ =
1
Np

〠
Np

i=1
w X ið Þ
� �

f X ið Þ
� �

: ð4Þ

In the formula, Np is the number of sampling particles,

wðXðiÞÞ = pðXðiÞÞ/qðXðiÞÞ is the weight, since the normaliza-

tion of pðxÞ is unknown, in order to make ∑
Np

i=1wðXðiÞÞ = 1,

f̂ =
1/Np

À Á
∑

Np

i=1w X ið ÞÀ Á
f X ið ÞÀ Á

1/Np

À Á
∑

Np

j=1w X jð ÞÀ Á = 〠
Np

i=1
w
~

X ið Þ
� �

f X ið Þ
� �

: ð5Þ

In the formula, w~ ðXðiÞÞ is a normalized weight whose
variance is

Var f̂
h i

=
1
Np

Varq f Xð Þw Xð Þ½ �

=
1
Np

ð
f Xð Þp xð Þð Þ2

q xð Þ

 !" #
dX −

1
Np

Ep f Xð Þ½ �À Á2
:

ð6Þ

In order to improve the positioning accuracy, the vari-
ance value needs to be reduced. It can be seen from formula
(6) that when the shapes of qðxÞ and pðxÞ are more similar,
the variance is smaller and the precision is higher. MCL
algorithm is that the estimated position of the node at the
above moment is sampled by the center. This algorithm uses
the sampling point at the above moment as the center to
sample, so that the shape of qðxÞ and pðxÞ is more similar
so as to improve the positioning accuracy.

3.2. Filtering Phase. The premise of the MCL algorithm is an
ideal environment, that is, the wireless ranges of unknown
nodes and anchor nodes are fixed values,
DOI ðDegree of IrregularÞ = 0, It means that the radio range
is the same value in different locations, different transmis-
sion directions, and different transmission times [21]. How-
ever, in the actual environment, the value of the radio range
is different in all directions, that is, DOI > 0, and the radio
range of the node is not an ideal circle. The schematic dia-
gram is shown in Figure 4.

In the figure, the dotted line represents the radio range
when DOI = 0, and the solid line represents the radio range
when DOI = 0:015, where the communication radius is r =
100m.

Since DOI > 0 in the actual environment, as shown in
Figure 5, point A is a jump anchor node, point B and point
C are sampling points after the prediction stage, the dotted
circle b is the ideal radio range, and the irregular solid line
is the actual anchor node radio range. The improved algo-
rithm modifies the filtering condition according to the influ-
ence of DOI on communication radius, which is expressed
as formula (7). where S is the set of one-hop anchor nodes,
T is the set of two-hop anchor nodes, r is the communication
radius, l is the sampling particle, s is the anchor node, dðl, sÞ is
the Euclidean distance between point l and point s, for the
sampling of one-hop anchor node particle, the distance d
ðl, sÞ between the sampled particle and the anchor node
is less than the sum of the radius r and r∗doi of the
anchor node, as shown in the circle a in Figure 5, the cir-
cle c is the inscribed circle of the wireless range of the
actual anchor node, indicating that there must be a jump
anchor A collection of points within the range of node A.

S
r

Figure 2: One-hop anchor node filtering area diagram.

r
2r

T

Figure 3: Two-hop anchor node filtering area diagram.
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f ilter lð Þ = ∀s ∈ S, d l, sð Þ ≤ r + r∗doi∧∀s ∈ T , r − doi∗r < d l, sð Þ
≤ 2r + doi∗r:

ð7Þ

It can be seen from the adaptive filtering conditions
that the improved MCL algorithm considers that the
anchor nodes in different regions will affect the size of
the positioning error. When the sampling nodes are in
the sampling regions with different wireless ranges of the
anchor nodes, the impact on the unknown nodes is differ-
ent. In Figure 5, point C is definitely within the wireless

range of the anchor node, and the weight is set to 1; while
point B is not necessarily within the range of the anchor
node due to the influence of irregularity, and its impact
on unknown nodes and nodes to be positioned, unlike
point C. Based on this, the algorithm adjusts the sample
weights of the sampled particles. Considering the change
of the filtering conditions, if the weights of all particles
are the same, it is not in line with the actual situation,
so the corresponding weights are assigned to the sampled
particles that meet different filtering conditions. When
the sampling point absolutely satisfies the wireless range
of the node, that is, in the circle c, the weight is set to
1. When the condition after the relaxation of the restric-
tion is satisfied, that is, between the circle a and the circle
c, the weight of the node changes with the DOI. However,
since the area between the circle a and the circle c is pos-
itively correlated with the DOI of the node, in order to
simplify, this algorithm defines the weight of the sampling
point between the circle a and the circle c as doi∗r/r, then
the comprehensive weight condition of the node is set as
follows:

Weight =
1
0

doi∗r/rð Þ

∀s ∈ S, d l, sð Þ ≤ r − r∗doi∧∀s ∈ T ,

r + doi∗r ≤ d l, sð Þ ≤ 2r − doi∗r

else,
∀s ∈ S, r − r∗doi < d l, sð Þ < r + r∗doi∧,

∀s ∈ T, s‐doi∗r < d l, sð Þ < r + doi∗r∨,

2r‐doi∗r < d l, sð Þ < 2r + doi∗r:

8>>>>>>>>>><
>>>>>>>>>>:

ð8Þ

This algorithm takes the influence of irregularity into
account, and the sampling particles in different regions
have different influences on node positioning. Therefore,
the adaptive filtering and adaptive weight improvement
in the filtering stage just make up for the defects of the
original algorithm and improve the positioning accuracy.

4. Simulation Analysis

Under the MCL-simulator, setting the WSN area size to
500∗500m, the total number of nodes to 320, including 32
anchor nodes, the communication radius of the anchor node
and the unknown node are both 50 m, the speed of the
anchor node Vs ∈ ½Smin, Smax�, and Smin and Smax represent
the minimum and maximum speeds of the anchor nodes,
respectively; the speeds V ∈ ½Vmin, Vmax�, Vmin and Vmax of
the nodes represent the minimum and maximum speeds of
the nodes, respectively. 10 experiments are carried out for
each algorithm, and the node moves 80 steps in each round,
and finally the average value of the 80 positioning errors is
obtained. The node has the ability to judge whether a node
is within the communication range, but has no ranging abil-
ity. It has the ability to perceive its own speed, but does not
have the ability to perceive the direction of movement, the
positioning error uses the Euclidean distance between the
estimated position and the actual position. It is expressed
as the ratio of the communication radius. Figure 6 is the
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Figure 4: Schematic diagram of the influence of DOI value.
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Figure 5: Distribution of sampling points at DOI > 0.
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positioning error graph of the MCL algorithm and the adap-
tive MCL algorithm (N-MCL), and the CRMCL and
PRMCL algorithm in literature [18] under different DOIs,
where the maximum speed of the anchor node and the
unknown node is 50m/s.

It can be seen from Figure 6 that as the DOI increases,
the radio propagation model of the node becomes more
and more irregular, but the positioning accuracy of the
new-MCL is always better than that of the MCL, and the
average positioning error decreases by about 12%. With
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Figure 6: Comparison of node positioning errors under different DOIs.
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the gradual increase of DOI, the positioning errors of the
four algorithms all increase to a certain extent, but the posi-
tioning error of the N-MCL algorithm is smaller than other
algorithms, and the positioning accuracy of N-MCL is high-
est when the irregularity is 0.1.

Figure 7 shows the comparison of the average position-
ing error curves of new-MCL and MCL with the increase
of Vmax. Assuming that the maximum velocity of the
unknown node and the anchor node is the same, both are
Vmax, and the actual velocity of the two is evenly distributed
in interval ½0, Vmax�. It can be seen from the figure that with
the gradual increase of Vmax, the positioning error of N-
MCL gradually decreases. When Vmax is more than 30m/s,
the positioning error of the algorithm is the lowest, and
the average positioning error is reduced by about 10% com-
pared with the MCL algorithm.

Figure 8 shows the node movement in 50 steps, and the
number of nodes that cannot be positioned in each step. It
can be seen from Figure 8 that the number of nodes that
cannot be located by the improved algorithm is lower than
that of the other three algorithms. After 46 times, the num-
ber of improved localizability is about 100%. The average
number of nodes that cannot be located for 50 times is as
follows: that the number of nodes that cannot be located
by MCL is about 7.67, the number of nodes that cannot be
located by CRMCL algorithm is about 3.26, the number of
nodes that cannot be located by PRMCL algorithm is about
2.85, and the number of nodes that cannot be located by N-
MCL algorithm is 2.33. The network coverage rate of the
MCL algorithm is 97.36%, and the network coverage rate
of the new-MCL algorithm is 99.19%. This is due to the
relaxation of the filtering conditions, which increases the
number of sampling particles that satisfy the conditions
under the same sampling times, thereby increasing the num-
ber of locatable nodes.

5. Improved Monte Carlo Algorithm Based on
Fuzzy Theory

Although the MCL algorithm has high positioning accuracy
and computational efficiency for dynamic wireless sensor
networks with limited node energy and low anchor node
density, the value of the posterior probability density in the
sample prediction area is small, and positioning requires a
large number of samples. A sufficiently good positioning
accuracy can be obtained. The nodes are sampled in a circle
with the maximum speed as the radius each time, and the
positioning time is long. Therefore, an MCL algorithm based
on fuzzy theory is proposed, which makes up for the
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deficiencies of MCL by fuzzing the node signal energy value
and making the filtering conditions more precise.

5.1. Algorithm Principle. Fuzzy theory is based on fuzzy sets
and is the best way to solve problems with ambiguous bound-
aries. For a fuzzy set, in addition to the ordinary membership
values that belong to 0 and do not belong to 1, the elements in
the set are assigned to any value between 0-1 to represent the
degree of membership [22]. Li et al. generalized that the char-
acteristic function of classical sets can only take two numbers 0
and 1, and generalized it to all numbers in the closed interval
of 0 and 1 [23]. And such characteristic function is called
membership function μðxÞ, μðxÞ ∈ ½0, 1�, and the set deter-
mined by μðxÞ is called the fuzzy set on E. The membership
function represents the degree to which A belongs to E. In this
way, all intermediate values between “belongs to” and “does
not belong to” can be represented.

The processing of fuzzy logic has been applied to robot
localization [24], which redefines the classical set theory
and makes it have nonstrict set boundaries. The so-called
fuzzy sets use membership functions to describe a certain
set element. Whether the feature belongs to the fuzzy set.
An element can belong to one or two fuzzy sets at the same
time [25]. Unlike traditional numbers that can only repre-
sent a single value, a fuzzy number can represent multiple
values or an indeterminate relationship. RSSI is roughly pro-
portional to the distance between the unknown node and the
anchor node, and the triangular membership function is
simple and easy to understand, so this algorithm uses the
most common membership function such as formula (9):

μ xð Þ =

0 if x < a,

x − að Þ/ b − að Þ if a ≤ x ≤ b,

c − xð Þ/ c − bð Þ if b ≤ x ≤ c,

0 if x > c,

8>>>>><
>>>>>:

ð9Þ

where ða, b, cÞ is a triangular geometry, as shown in Figure 9,
W set can be represented by ð−90,−70,−50Þ and Mby ð−70,
−50,−30Þ, for example, a certain value RSSI = −55dBm has

a membership degree of 0.25 inW and a membership degree
of 0.75 in M.

The coordinate position of the node can be represented by
ðX, YÞ, whereX and Y are both fuzzy numbers. Divide the sig-
nal strength RSSI into three levels: “H,” “M,” and “L.” Suppose
the unknown node S has n one-hop anchor nodes. The
coordinates of node S represent SðX, YÞ.The coordinates
of the N one-hop anchor nodes are represented as A1ðx1,
y1Þ, A2ðx2, y2Þ,⋯,Anðxn, ynÞ, respectively. Then the coordi-
nates of the nodes can be expressed as:

F1 = X − x1ð Þ2 + Y − y1ð Þ2 −D2
1 = 0,

F2 = X − x2ð Þ2 + Y − y2ð Þ2 −D2
2 = 0,

⋯

Fn = X − xnð Þ2 + Y − ynð Þ2 −D2
n = 0:

ð10Þ

Equation (10) defines a nonlinear equation to describe the
distance relationship between unknown nodes and anchor
nodes. Where X, Y , and Dkðk = 1⋯ nÞ are the fuzzy numbers
and ðxk, ykÞðk = 1⋯ nÞ is the exact number, the result mini-
mizes the squared difference of this series of equations.

Fuzzy theory makes quantitative, systematic, and hierar-
chical analysis of nonquantitative events [26]. This method
can simplify complex problems, and this paper applies it to
the wireless sensor network mobile node location algorithm.
The propagation area of nodes in mobile node positioning is
divided into several levels, and an orderly hierarchical model
is established between the levels according to the affiliation.
The judgment of certain objective facts in each layer reflects
the importance of each layer in a quantitative form.

5.2. Algorithm Description

(1) Initialize the Node Position. According to the one-
hop and two-hop anchor nodes of the position node,
use the centroid method to estimate the position of
the unknown node.

(2) Sampling Stage. First, establish fuzzy rules Rulei: “If
RSSI is W, then DIST is L”; Rulej: “If RSSI is M, then
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0
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Figure 10: RSSI determines its area according to corresponding rules.
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DIST is M”. When the anchor node receives the
exact value of RSSIsent by the unknown node, it con-
verts it into a fuzzy number of the distance between
the anchor node and the unknown node. As shown
in Figure 10, when RSSI is −62dBm, the membership
function μðRSSIÞ,W andM have different degrees of
membership, which are mapped to the fuzzy sets M
and L of the distance through the corresponding
fuzzy rules Rulei and Rulej, respectively. Where Pi

and Pj are the centroid of the trapezoidal region
formed after RSSI is mapped to DIST .

For the value of RSSI, the range of its abstraction is
narrowed by fuzzy rules, such as −62dBmis in the ring 18
and 28 away from the anchor node DIST . Then compare
whether 18 and 28 belong to the same fuzzy number of DI
ST , if not, take the fuzzy number with the larger member-
ship degree. As shown in the figure, −62dBm corresponds

A B

D

C

Anchor 1

Anchor 2

Node

Figure 11: Determination of sampling range.
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Figure 12: OMNET++ simulation program diagram.
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to the “L” of DIST in Anchor1. Then, the area composed of
multiple one-hop anchor nodes is ABCD, and sampling is
performed in this area, as shown in Figure 11.

(3) Filtering Stage. The limit condition of one-hop anchor
node is to judge the distance between the node and the
anchor node according to the corresponding fuzzy

number of DIST . For example, DIST with an anchor
node is L, then the distance between the node and
the anchor node is in ½1/3r, r�, where r is the commu-
nication radius of the anchor node. In this way, the
area where the particles are located is limited, so that
the positioning time of the node is shorter, the accu-
racy is higher, and the algorithm is more complete.
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5.3. Motion Model of Mobile Nodes. The mobile model is also
an important factor affecting mobile node localization in
WSN. In this paper, the random model of moving waypoint
is used. Assume that the speed of the mobile node at time t is
viðtÞ, the direction angle is θiðtÞ, the coordinate is ðxiðtÞ, yiðtÞÞ,
and XiðtÞ is the time interval from time t − 1 to time t. The
position of the current node is estimated according to the

movement speed and state of the node at the last moment.
The formula is expressed as follows:

Xi tð Þ = Xi t−1ð Þ + vi t−1ð Þ ∗ ΔT ∗
cos θi i−1ð Þ

sin θi i−1ð Þ

" #
,

vi tð Þ =wvi t−1ð Þ + C1 rand:

8>><
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Figure 15: Simulation at time v = 50m/s.
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Among them, w is the inertia weight, which can adjust
the search ability of the algorithm, q is the acceleration con-
stant, rand is the directional random motion setting of the
node, and is a random number between ½0, 1�.

The steps of the model are described as follows:

(1) All nodes are randomly deployed in the wireless sen-
sor network area, and then each node arbitrarily
selects a point within the speed range as the
destination

(2) The node moves randomly and at a constant speed
within the interval at any speed ½Vmin, Vmax� less
than or equal to the maximum speed

(3) After reaching the destination, the mobile node stops
for T time, and then reselects the movement speed
and destination, and starts to move

Repeat steps (2) and (3) until the simulation ends. The
block diagram of the simulation program composed of
OMNET++ is shown in Figure 12.

5.4. Simulation Results. The simulation experiment using
OMNET++ (Objective Modular Network Tested in C++)
and the sensor nodes are randomly placed in a square area
of 500m∗500m, and there are no obstacles in the area.
The irregularity of node communication is 0, and the com-
munication radius of the nodes is 100m. The maximum
speed of the nodes and the anchor nodes are Vmax, the
movement speed of the nodes and the anchor nodes are
arbitrarily selected in ½0,Vmax�, and the movement of the
nodes adopts the Random Waypoint model. For the conve-
nience of the experiment, the study sets a total of 20 nodes,
including 18 anchor nodes and 2 nodes. The effect of the
maximum speed of the node on the distance error is shown
in Figure 13.

The speed of the node has a great influence on the posi-
tioning accuracy. First, the increase of the speed of the node
leads to the increase of the distribution area of possible posi-
tions at the next moment. Secondly, the increase of the speed
of the node also enables the node to detect more location
information of the anchor node, filter out impossible posi-
tions, and assist positioning. Figure 13 shows that with the
increasing of the speed of the node, the positioning error is
increasing too. The distance error of the MCL algorithm,
CRMCL algorithm, and PRMCL algorithm was generally
increasing with the increasing of the speed; for the N-MCL
algorithm, the distance error is minimized while the node
speed is maximum at 40m/s. When the speed of the node
continues to increase and is greater than 50m/s, due to the
serious particle degradation problem, a sufficient number
of samples cannot be collected, and the positioning accuracy
decreases.

In addition to the positioning accuracy, the time
required for positioning is also an important indicator to
measure the quality of a positioning algorithm. Figure 14
reflects the influence of the maximum speed on the position-
ing time, indicating that the time spent by N-MCL on posi-
tioning is less than the other three algorithms. With the

increase of the node moving speed, the positioning time of
MCL algorithm and CRMCL algorithm increases, while the
PRMCL algorithm and N-MCL algorithm basically changed
a little. When the maximum speed is 50m/s, the time taken
by the two algorithms reaches the minimum.

Experiments show that the N-MCL achieves the best
localization effect when the speed is between 45-50m/s.
Figure 15 shows the simulation diagram of the 30-round
positioning of the node when the speed is v = 50m/s, which
is the distance error of each round of positioning and the
required time. It can be seen from the figure that N-MCL
algorithm is superior to MCL algorithm, CRMCL algorithm,
and PRMCL algorithm in positioning accuracy and posi-
tioning time. According to statistics, the positioning time
of N-MCL algorithm is shortened about 50% compared with
the traditional MCL algorithm, and the positioning accuracy
is improved about 30% compared with the traditional MCL
algorithm.

6. Conclusion

This paper aims at the shortcomings of the MCL algorithm’s
poor positioning accuracy in nonideal environments, and
the filtering stages were improved. In the prediction stage,
the sampling point at the previous moment is used as the
center of the circle for sampling, and the filtering stage adap-
tively changes the weight of the sampled particles in different
regions according to different DOIs, thereby improving the
positioning accuracy and network coverage of WSN nodes
in nonideal environments. Finally, in view of the shortcom-
ings of the Monte Carlo algorithm (MCL) in the mobile
node positioning, the demand for samples is large, the posi-
tioning accuracy is not high, and the positioning time is
long. An improved Monte Carlo mobile node positioning
algorithm based on fuzzy theory is proposed. The algorithm
improves the positioning accuracy and shortens the time
required for positioning by introducing fuzzy rules in the
sampling and filtering stages of nodes.
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