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Image geolocation is an important technique for robotics and autonomous systems. The existing methods mainly extract local
features from images directly and use global descriptors, which are aggregated by these local features, to retrieve candidate
references from all references. Thus, the training efficiency is affected by the image noises and the accuracy is so limited that
the further verification is extremely time consuming. To address these issues, this work proposes an image geolocation
framework, which adds the noise filtering layer before local feature extraction. Based on this framework, an image geolocation
method based on attention mechanism front loading and feature fusion is designed. In the noise filtering layer, the proposed
method uses triplet attention to denoise images thus leading to higher training efficiency. In the feature aggregation layer, an
improved SPP (spatial pyramid pooling) is designed to extract the local factors reflected by the position relationships among
local features. Then, the local factors are incorporated with the global factors extracted by NetVLAD. The fused descriptors
contain not only the statistic of the geometric elements but also the position relationships among them. The experimental
results show that the proposed method outperforms NetVLAD in terms of the training convergence round and Recall@N
(N = 1, 5, 10, 20); especially, the convergence round of Recall@5 reduces from 25 to 10, the convergence round of Recall@10
reduces from 25 to 7, Recall@1 increases from 79.45% to 84.01%, and Recall@5 increases from 90.10% to 92.81%.

1. Introduction

Image geolocation is a technique for geolocating a scene (in
the image) or a camera based on the content of the image or
its side information. This technique has been applied to
many fields of IoT (Internet of things), such as autonomous
driving [1–4], intelligent robotics [5], and virtual reality/aug-
mented reality [6], and has received increasing attention in
recent years [7–9].

Existing image geolocation methods can mainly be clas-
sified into image geolocation methods based on 3D point
cloud [2, 10–17] and image geolocation methods based on
image retrieval [18–21]. Image geolocation methods based
on 3D point cloud use the SfM (structure from motion)
[22] to construct a 3D point cloud from multiple images
with different angles near the query (the image to be located)
and then compare the constructed 3D point cloud with the
local features of the query image point by point to obtain

the exact shooting position and the estimation of the camera
posture of the query image. Such methods have high posi-
tioning accuracy but require stronger conditions and a high
computational cost. Image geolocation methods based on
image retrieval extract the descriptors of the query and the
reference (the image with known geographic location), then
find the reference closest to the query according to the similar-
ity between descriptors, and use its geographic location to esti-
mate the location of the query. The geolocation precisions of
these methods are greatly affected by the geographic labels of
the references, but they are computationally efficient and
robust and can be extended to global geolocation, which has
received widespread attention [18–21]. Therefore, this paper
focuses on image geolocation based on image retrieval.

The key to image geolocation based on image retrieval is
the construction of image descriptors. According to different
manners of image descriptor construction, the existing
image geolocation methods based on image retrieval can be
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generally classified into two classes: (1) image geolocation
methods based on the heuristic descriptors and (2) image
geolocation methods based on deep learning.

Image geolocation methods based on the heuristic
descriptor firstly detect key points using algorithms such as
Harris [23] and MSER (maximally stable extremal regions)
[24], then aggregate or directly use SIFT (scale invariant fea-
ture transform) [25], SURF (speeded up robust features)
[26], or other local features as image descriptors [10, 13,
27–36], and finally, match the query descriptor with the ref-
erence descriptors to geolocate the query. Earlier studies on
image geolocation mainly focus on such methods. For exam-
ple, Johns and Yang [27] clustered the SIFT features of all
references, then built a feature tree, scanned the feature tree
to find the references closest to the query image, and finally
used a geometric verification method to determine the final
position. In 2012, Gálvez-López and Tardos [37] constructed
the BoVW (bag of visual words) [38] histogram of the
BRIEF [39] local features of FAST [40] key points as the
descriptor of this image and then represented it in binary
form for fast image geolocation. Cao and Snavely [10] con-
structed the BoVW [38] histogram of SIFT features of an
image as its descriptor, then clustered references by descrip-
tors, trained a model for each cluster to determine whether
the query belongs to that cluster, and finally geometrically
verified it against the references within the cluster to geolo-
cate the query. Zemene et al. [30] proposed the DSC (dom-
inant set clustering) algorithm to dynamically select the N
nearest neighbors of the query’s SIFT feature points from
the feature point set of references and then determined the
query’s geolocation based on the similarity and adjacency
relationships between feature points. The abovementioned
methods consider the similarity and position relationships
between feature points and can achieve high geolocation
accuracy, strong interpretability, and high computational
efficiency. The construction of their descriptors mainly con-
siders edges and corners in images with drastic texture
changes. But in foggy and weakly illuminated environments,
the extraction of the edge and corner features in images is
easily affected by noises, so these methods perform poorly
in such environments [41].

Deep learning-based image geolocation methods use lots
of images to train deep networks to extract features as
descriptors and then match the descriptors to geolocate the
query [20, 42–52]. These methods are easily affected by the
training data but have strong robustness, such as high adapt-
ability to the changes of brightness, color, and viewing angle
[41]. Since Sharif et al. [53] first introduced CNN (convolu-
tional neural networks) to image geolocation in 2014, this
kind of method has become the hotspot in the field of image
geolocation. For example, Sünderhauf et al. [45] trained a
network to extract images’ ROI (region of interest) features
from images as region-level descriptors and matched them
to geolocate the query. Anoosheh et al. [54] proposed
ToDayGAN, which used GAN (generative adversarial net-
work) to convert weakly illuminated images into normally
illuminated images and then extracted its dense-VLAD
[55] features as descriptors to geolocate the query. In 2016,
Arandjelovic et al. [20] proposed NetVLAD, which extracted

local features by VGG16 [56], then aggregated them as
descriptors by a hot-plugging aggregation layer similar to
VLAD (vector of locally aggregated descriptors) [57], and
finally matched descriptors to geolocate the query. NetV-
LAD [20] is a milestone work in the field of image geoloca-
tion, since it first constructs a deep hot-plugging layer to
aggregate local features as descriptors, making it possible to
optimize the aggregation parameters automatically.

Based on NetVLAD [20], a number of improved
methods have been proposed [2, 18, 19, 58]. For example,
in 2020, Yu et al. [58] proposed SPE-VLAD, which divided
an image into multiple nonoverlapping blocks, then
concatenated the NetVLAD features of all blocks as descrip-
tors, and matched them to geolocate the query. In 2021, Ge
et al. [18] proposed an improved method of NetVLAD based
on self-supervised learning, which used the descriptors
obtained from NetVLAD to calculate the similarity between
images and the similarity between images subregions, and
then used the similarities to iteratively train the descriptor
extraction network for image geolocation. The descriptors
obtained by the abovementioned NetVLAD-based methods
can effectively represent the whole image and achieve excel-
lent geolocation performance. However, the global descrip-
tors used by the abovementioned methods aggregate all
local features and treat them equally, making task-
irrelevant local features interfere with image geolocation.
In addition, NetVLAD [20] represents the image with a
sum of residuals, a global statistic, ignoring the positional
relationships between local features.

To solve the problem that noisy local features tend to
affect the accuracy of geolocation, researchers filter local fea-
tures using attention mechanisms before aggregation and
obtain more effective descriptors to improve geolocation
accuracy [21, 59–65]. For example, in 2017, Kim et al. [59]
proposed the CRN (contextual reweighting network), which
upsampled filtered local features to get a weight matrix and
reweighed local features, and then aggregated them as
descriptors to geolocate the query. In 2018, Chen et al. [21]
filtered the output of multiple layers in the feature extraction
network and then constructed attention matrices to fuse the
filtered results as descriptors for image geolocation. In 2021,
Peng et al. [63] proposed SRALNet (semantic reinforced
attention learning network), which clustered local features,
and then aggregated the double-weighted residuals of local
features and corresponding cluster centers as descriptors to
geolocate the query. In 2021, Peng et al. [64] proposed
APPSVR (attentional pyramid pooling of salient visual
residuals for place recognition), which combined SRALNet
with SPP (spatial pyramid pooling) [66] to fuse local features
as descriptors for image geolocation. The abovementioned
methods suppress task-irrelevant features and enhance
task-relevant features to obtain more robust descriptors
and can achieve better geolocation performance. To solve
the problem of NetVLAD ignoring local factors, in 2021,
Hausler et al. [19] proposed patch-NetVLAD, which
retrieved candidate references using NetVLAD and reranked
them based on the similarity between local features of two
images to geolocate the query. However, on one hand,
because the abovementioned methods directly extract local
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features from the images with noisy signals, the feature
extraction networks are difficult to converge quickly. On
the other hand, because the candidate references are
retrieved from all references by the global descriptors, the
accuracy is so limited that the further verification in patch-
NetVLAD is extremely time consuming.

Therefore, this work is decided to improve the training
efficiency and accuracy of image geolocation and mainly
contains the following three contributions.

An image geolocation framework is proposed by adding
the noise filtering layer before local feature extraction. The
proposed framework consists of the noise filtering layer,
the local feature extraction layer, the feature aggregation
layer, and the descriptor matching layer.

According to the proposed framework, an image geolo-
cation method based on attention mechanism front loading
and feature fusion is designed. The noise filtering layer uses
triplet attention [67] to denoise images thus improving the
training efficiency. In the feature aggregation layer, the local
factors extracted by an improved SPP are incorporated with
the global factors extracted by NetVLAD. The fused descrip-
tors contain not only the statistic of the geometric elements
but also the position relationships among them.

SPP is improved by replacing the max grouping with
GeM [68] when the number of SPP grids is 1 × 1. The
improved SPP can extract the local factors reflected by the
position relationships among local features.

The experimental results show that the proposed
method can efficiently improve the accuracy of the model
and the efficiency of training; especially, the convergence
round of Recall@5 reduces from 25 to 10, convergence
round of Recall@10 reduces from 25 to 7, Recall@1 increases
from 79.45% to 84.01%, and Recall@5 increases from 90.10%
to 92.81%.

The rest of the paper is organized as follows: Section 2
introduces the works strongly related to this paper, Section 3
details the proposed method, Section 4 shows the experimen-
tal results and analysis, and Section 5 concludes this paper.

2. Review of VLAD and NetVLAD

NetVLAD [20] is a milestone work in the field of image
geolocation. It is derived from the classical VLAD [57]
which extracts the descriptor as follows (see Figure 1):

(1) Extract the local features of the images

(2) Cluster the local features to obtain K clusters, each of
which represents a type of feature (e.g., representing
the corners of a window)

(3) Calculate the sum of residuals between the features
in each cluster and their corresponding cluster
center, as shown in equation (1) as follows

vk = 〠
N

i=1
ak xið Þ xi − ckð Þ, ð1Þ

where a local feature is denoted by a vector xi = ðxi,1, xi,2,
⋯, xi,DÞ, D denotes the dimension of the local feature, ak
ðxiÞ is 1 if feature xi belongs to cluster k and 0 if other-
wise, N is the number of local features, ck is the center
of the kth cluster, and vk denotes the sum of residuals in
the kth cluster

(4) Concatenate all vk, k = 1, 2,⋯, K to obtain a single
vector v as the descriptor

NetVLAD improves the traditional VLAD to a hot-
plugging layer of deep networks that automatically learns
better parameters and then extracts more robust descriptors
to improve geolocation performance.

In NetVLAD, the piecewise function akðxiÞ is replaced
by a derivable form ak ðxiÞ as shown by equation (2), to
preserve the following property of akðxiÞ as much as possi-
ble, which is that when feature xi is close to the kth cluster,
the value of ak ðxiÞ is close to 1; otherwise, it is close to 0.

ak xið Þ = e−αxi−ck
2

∑k′e
−αxi−ck′2

, ð2Þ

where α is a parameter (positive constant) that controls the
decay of the response with the magnitude of the distance.
kxi − ckk2 denotes the square of the L2 norm of xi − ck,
namely, the square of the Euclidean distance between feature
xi and the center of the kth cluster. Let ωk = 2αck, bk = −αck2,
and then, equation (2) is transformed into a soft assignment
of the following form:

ak xið Þ = eω
T
κ +bk

∑k′e
ωT
k′xi+bk′

: ð3Þ

It can be seen that the expression of ak ðxiÞ is deriv-
able. Essentially, the cluster operation in VLAD is trans-
formed to find proper functions ak ðxiÞ, k = 1, 2,⋯, K ,
namely, to learn proper values of ωk and bk, which are the
parameters in k convolution kernels with the size of 1 × 1.
The final form of the NetVLAD layer is obtained by plug-
ging the soft assignment (3) into the VLAD descriptor (1)
resulting in

vk = 〠
N

i=1
ak xið Þ xi − ckð Þ: ð4Þ

In general, NetVLAD extracts the descriptor as follows
(see Figure 2):

(1) Extract local featuresX = f⋯,xi−1, xi, xi+1,⋯g using
CNN

(2) Cluster local features to K cluster centers using K
convolutions whose kernel size is 1 × 1

(3) Calculate the sum of residuals between the features
in each cluster and their corresponding cluster
center
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(4) Concatenate all residual sums into a single vector as
the descriptor

3. Proposed Image Geolocation Framework

Image geolocation primarily utilizes the content information
of images, but some task-irrelevant noises are inevitably
introduced during image acquisition and processing. How-
ever, the existing deep learning-based image geolocation
methods usually directly extract features from the query
and references, which slows the learning speed of the model
and affects the geolocation accuracy because of the interfer-
ence of noises to the extracted features. Therefore, this
section proposes an image geolocation framework by adding
a noise filtering layer before local feature extraction. The
proposed framework contains 4 superlayers as shown in
Figure 3: noise filtering layer, local feature extraction layer,
feature aggregation layer, and descriptor matching layer.

The noise filtering layer uses a filter to suppress the task-
irrelevant signals and enhance the task-relevant signals in
the image, which can accelerate the learning of the effective
model and improve the geolocation accuracy.

The local feature extraction layer extracts local features
from query and references. The local features can be tradi-
tional key point vector representations (such as SIFT [25]
and SURF [26]) or feature maps extracted by the encoder
of deep networks (such as VGG [56], ResNet [69], and
EfficientNet [70]). In general, local features need to reflect
the texture information, such as edges and corners, because
this information can effectively distinguish the geographic
location of the image.

The feature aggregation layer aggregates extracted local
features into descriptors to geolocate the query. The aggrega-
tion methods can be traditional methods such as VLAD and
BOVW or deep learning-based methods such as NetVLAD
and GeM. The generated descriptors are used to retrieve
images with similar content and should be robust to changes
in a viewing angle and brightness.

The descriptor matching layer calculates the similarity
between query and references to retrieve candidate references.
Then, the geographic location of the candidate reference is
regarded as the geographic location of the query. The main-
stream similarity calculation methods include Euclidean
distance, Manhattan distance, and cosine similarity.

4. Image Geolocation Based on Attention
Mechanism Front Loading and
Feature Fusion

In existing methods based on NetVLAD, the model conver-
gence speed and accuracy are interfered with by the task-
irrelevant noises in images and the positional relationships
between local features are either ignored or used in an
extremely time-consuming manner, such as the reranking
of patch-NetVLAD. Therefore, under the guidance of the
abovementioned framework, this section proposes an image
geolocation method based on attention mechanism front
loading and feature fusion, as shown in Figure 4.

In the proposed method, the encoder of VGG16 is used
in the local feature extraction layer to extract local features
and Euclidean distance is used in the descriptor matching
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Figure 1: Traditional VLAD-based global descriptor extraction process.
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Figure 2: NetVLAD-based global descriptor extraction.
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layer to calculate the similarity between query and refer-
ences, the same as NetVLAD and its improved versions such
as patch-NetVLAD, CRN, and SARE [71]. Unlike existing
image geolocation methods, triplet attention is plugged into
as a noise filtering layer, to eliminate task-irrelevant noise
while retaining task-relevant information of image contents.
In the feature aggregation layer, the local features are aggre-
gated by NetVLAD and an improved SPP; then, the aggre-
gated results are concatenated as the descriptor.

In the following 2 subsections, the noise filtering layers
and the feature aggregation layer will be described in detail.

4.1. Noise Filtering Layer Based on Triplet Attention. The
noise filtering layer uses a filter to suppress the task-
irrelevant signals in the image and enhance the task-
relevant signals, which can accelerate the learning of the
effective model and improve the geolocation accuracy.

The existing image noise filtering methods mainly use
various correlations in the image to reduce the noises and keep
the image contents. Among the existing methods for capturing
various correlations in images, the attentionmechanismmodels
the correlation among information in the channel domain,
spatial domain, or temporal domain, to effectively filter noises
and achieve excellent performance onmany tasks such as image
classification, object detection, and semantic segmentation [72].
Scholars have proposed many attention mechanisms such as
SKNet [73], SENet [74], residual attentionnetwork [75],CBAM
[76], and triplet attention [67]. Among these methods, the tri-
ple attention [67] can model correlations in both the spatial
and channel domain of images with almost no parameter
increase and can achieve excellent performance. Therefore,
the proposed noise filtering layer uses it to denoise images
before extracting local features to eliminate the influence of
noise information and improve the feature effectiveness.
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Figure 3: The proposed image geolocation framework.
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Let xG×H×W denote the input image, where G,H,W are
the number of channels, height, and width of the input
image, respectively. The specific steps of the adopted triplet
attention are as follows (see Figure 5):

(1) Perform the dimensional rotation (permutation)
operation on the input image, to obtain 2 tensors
xH×G×W and xW×H×G

(2) Perform the following operations on xG×H×W to
obtain the weighted tensors x̂G×H×W
(i) Perform max pooling and avg pooling (mean

pooling) on xG×H×W , which can obtain two ten-
sors whose size is 1 ×H ×W, and then, stack
them and get x∗2×H×W

(ii) Set a convolution whose kernel size, step value,
and padding value are 7 × 7, 1, and 3, respec-
tively, and perform it on the x∗2×H×W , which
can obtain x′∗1×H×W

(iii) Perform batch normalization and sigmoid on x
′∗1×H×W , which can obtain the weight matrix
P1×H×W , and then, perform pointwise multipli-
cation on it by the tensor xG×H×W , which can
obtain weighted tensor x̂G×H×W

(3) Perform the same steps in (2) on xH×G×W and
xW×H×G, to obtain the other 2 weighted tensors
x̂H×G×W and x̂W×H×G

(4) Inverse permute x̂H×G×W and x̂W×H×G to obtain 2
tensors x̂′G×H×W and x̂′G×H×W , and then, perform
element-wise addition and average operations on
the 3 tensors x̂G×H×W , x̂′G×H×W , and x̂′G×H×W , to
obtain the filtered tensor �xG×H×W , whose size is the
same as the input image

4.2. Feature Aggregation Layer Based on the Fusion of Global
and Local Features. In the mainstream NetVLAD, a global
statistical vector, containing the sums of residuals, is used
as the descriptor, which weakens the role of the local factor.
Recent excellent works, such as DOLG [77], DELG [78], and
patch-NetVLAD, argue that the introduction of local factors
can improve the retrieval and geolocation performance.
However, directly using local features as descriptors will
bring not only high computational complexity but also poor
robustness. Therefore, the proposed feature aggregation
layer incorporates the aggregation method in NetVLAD
and an improved SPP method to maintain the local factor.

SPP not only can maintain position relationships among
local features but can also pool the input feature maps with
different sizes, while having high computational efficiency.
Its effectiveness has been proven in many retrieval tasks
[68, 77–79]. SPP grids a feature map into equally nonover-
lapping parts and performs max pooling for every part.
But in the original SPP, the importance difference among
feature maps is ignored, which is proven useful by GeM
for image retrieval and geolocation tasks [68, 77–79]. When
the SPP grid number is 1 × 1, the pooing operation is similar
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Match
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Noise filtering
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Figure 4: Image geolocation method based on attention mechanism front loading and feature fusion.
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to GeM, which can reflect the importance of different feature
maps. Additionally, GeM has a simple and effective calcula-
tion method. Thus, in the proposed method, SPP is
improved by replacing the max grouping with GeM when
the number of SPP grids is 1 × 1.

Let xg×h×w denote the input feature maps, where g, h,w
denotes the number of feature maps, height, and width of
each feature map, respectively. The feature maps play the
role of local features. As shown in Figure 6, the outputs of
improved SPP and NetVLAD are concatenated as the final
descriptor. The detailed steps are described as follows.

(1) Use NetVLAD to aggregate the input feature maps as
output f 0

(2) Perform GeM pooling on all feature maps to obtain
f 1 by

f 1 = f 11,⋯, f 1k,⋯, f 1g
h iT

, f 1k =
1
Xkj j 〠x∈Xk

xpk

 !1/pk
, ð5Þ

where pk is the learnable parameter, which could also be
adjusted manually, and f 1k is the pooling result of the kth fea-
ture map calculated by equation (4)

(3) Perform the following operations on xg×h×w to

obtain the pooling result f L, L = 2, 3, 4

(i) Divide each feature map in xg×h×w into L × L
equally nonoverlapping feature submaps. When
the height h (or width w) is not an integral mul-
tiple of L, the feature maps should be 0 padded
until the height (or width) is the minimal inte-
gral multiple of L not less than h (or w)

(ii) Perform max pooling on each feature submap,
arrange L × L max pooling results of L × L
feature submaps as a column vector, and then,
concatenate g column vectors obtained from g

feature submaps as a vector f Lwith the length
of ðg × L × LÞ

(4) Finally, concatenate f 0, f 1, f 2, f 3, f 4 and perform
PCA on the concatenated feature to obtain the final
descriptor

5. Experimental Results and Analysis

5.1. Experimental Setup. The proposed method was evalu-
ated in the following setup as shown in Table 1. In the noise
filtering layer, the learnable parameters of triplet attention
were set as the corresponding line in Table 1. The feature
extraction layer retained the NetVLAD setting, which used
a partially pretrained VGG16 encoder to extract local
features. That is, the last “ReLU & MaxPooling” of VGG16
pretrained on ImageNet was removed and other parts of it
were used. Then, only the parameters of the last three con-
volutional layers were fine-tuned while other parameters
were kept unchanged during training. In the feature aggre-
gation layer, the parameters of SPP improved by GeM,
pk, k = 1, 2,⋯, 512 were set as 3.0. In the descriptor match-
ing layer, Faiss [80] was used to accelerate the feature
matching process. The training procedure used query
image q, positive reference p, and 10 negative references
fn1, n2,⋯,n10g to form 10 triplets fq, p, n1g, fq, p, n2g,⋯,
fq, p, n10g, then used triplet loss to calculate loss, and used
SGD to optimize the model.

The experimental dataset Pittsburgh 30K [81] contains
51840 Google Street View images captured at different
times in the same year, which well simulates the real-
application scenario. This dataset was roughly equally
divided into 3 parts as train, validation, and test sets, and
the number of queries and references contained in each part
is shown in Table 2.

5.1.1. Evaluation Metrics. The performance of the pro-
posed method was compared with the classical NetV-
LAD method in terms of Recall@N and the number of
convergence rounds.
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5.1.2. Recall@N . The Recall@N [81] of M queries is calcu-
lated in the manner described by the following formula.

Recall@N =
∑M

j=1min ∑N
i=1αj ri,j

� �
, 1

� �

M
, ð6Þ

αj ri,j
� �

=
0, if dis qj, ri,j

� �
> 25m,

1, if dis qj, ri,j
� �

≤ 25m:

8><
>:

ð7Þ

If the distance between the jth query image qj and the ith
closet reference ri,j is less than 25m, the output of αjðri,jÞ is 1
and otherwise 0. Taking query qj as an example, R = fri,jji
= 1,⋯,N denotes top N closet references of qj, if the dis-

tances between the R and qj are all greater than 25m, then,

the output of ∑N
i=1αjðri,jÞ is 0, and the output of min ð∑N

i=1
αjðri,jÞ, 1Þ is also 0. Conversely, if the distance between any

element of R and qj is less than 25m, the output of min
ð∑N

i=1αjðri,jÞ, 1Þ is 1.
Equations (5) and (7) mean that if one of the first N can-

didate locations of the query is correct, then, the geolocation
result is considered correct. And the Recall@N value is the
percentage of correctly geolocated queries.

5.1.3. Training Convergence Round. Let AE ∈ ð0, 1Þ denote
the Recall@N of the Eth round of training epoch E. If max
ðAE+1, AE+2,⋯,AE+10Þ − AE ≤ 0:0005, then, the convergence
round is considered as E. The lower the value of E, the
higher the training efficiency of the model.

5.2. Effectiveness Test of the Noise Filtering Layer. The 1st
and 6th rows of Table 3 show the Recall@1, Recall@5,
Recall@10, and Recall@20 of the original NetVLAD and
the version improved by adding the noise filtering layer
before local feature extraction. It can be seen that compared
with the original NetVLAD, the improved version gets better
accuracy. If performing PCA on the aggregated feature, the
superiority of adding noise filtering layer is more significant,
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Figure 6: The proposed feature aggregation layer. The upper dashed box (a) represents the process of NetVLAD, and the lower dashed box
(b) represents the process of SPP+GeM.

Table 1: Experimental setup.

Layers/others Setup

Noise filtering layer Triplet attention, conv kernel size 7 × 7, stride 1, padding length 3

Feature extract layer The same VGG16 as it is in NetVLAD, only fine-tune the last 3 conv layers

Feature aggregation layer NetVLAD & SPP improved by GeM, pk = 3:0, SPP’s L = 1, 2, 3, 4
Descriptor matching layer European distance implemented by Faiss

Training strategies Loss function triplet loss, optimizer SGD with momentum = 0:9
Experiment platform Ubuntu20.04, CUDA 11.0, PyTorch 1.7.1, Faiss 1.7.1.

Table 2: The experimental dataset splits.

Parts Number of queries Number of references

Train 7416 10000

Valid 7608 10000

Test 6816 10000
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as shown in the 2nd, 3rd, 4th, 5th, 7th, 8th, 9th, and 10th
rows of Table 3. The reason should be that the noise filtering
layer effectively filters the noises irrelevant to the image
geolocation task.

Grad-CAM (gradient-weighted class activation map-
ping) [82] was used to visualize the comparison of the
images before and after the noise filter layer on the R, G, B
components of them, as shown in Figure 7. It can be seen
that the edges and corners attract more attention after filter-
ing and the focused effective areas are more abundant. The
reason should be that in the original NetVLAD, due to the
noises, the model may not be able to distinguish the local
features in these areas from them in the noisy areas, result-
ing in the loss of local features important to the image
geolocation. But adding the noise filtering layer suppresses
the inference of noises in advances, which makes the effec-
tive areas attract more attention and the model easier to
learn high-quality local features.

Figure 8 shows the training procedure of origin NetV-
LAD and the version improved by adding the noise filtering
layer before local feature extraction. It can be seen that the
improved version outperforms the origin NetVLAD in terms
of the training convergence round, especially on Recall@10
and Recall@20. The reason may be that image denoising
by triplet attention can eliminate the inference of noises,
make the model focus on important areas, and then acceler-
ate the learning of features.

The experimental results show that the noise filtering
layer is effective in improving the image geolocation
performance.

5.3. Effectiveness Test of the Proposed Method. The last 5
rows of Table 3 show the Recall@1, Recall@5, Recall@10,
and Recall@20 of the proposed method, which improved
by adding the noise filtering layer before local feature extrac-

tion and incorporating local factor into the aggregation
layer. Experimental results show that the proposed method
has a significant improvement in geolocation accuracy,
especially, when PCA is used to reduce the dimensionality
of the final descriptor. The performance improvement
maybe because the proposed feature aggregation layer
reduces the task-irrelevant components in the features by
combining NetVLAD with SPP (improved by GeM) and
performing PCA. The NetVLAD is used to compute the
global factors, and the SPP improved by GeM is used to
compute the local factors, which reflect the position rela-
tionships of local features.

Moreover, the computational efficiency also has been
improved by PCA. That is, the computational efficiency
and geolocation performance have both been improved by
the proposed method.

Figure 9 shows an image geolocation example of the
original NetVLAD method and the proposed method. It
can be seen that the geometric elements in the references
retrieved by the original NetVLAD have stronger similarities
to those of the query and the geometric elements in the ref-
erences retrieved by the proposed method not only have
stronger similarity to them of the query but also own similar
position relationships to them of the query. And the pro-
posed method gets a more accurate image geolocation result.
This is because the original NetVLAD only extracts the
global factors, but the proposed method extracts both the
global factors and the local factors, which reflect the position
relationships among the geometric elements.

Furthermore, it can be seen in Figure 8 that the proposed
method still remains the advantage of the version improved
by adding a noise filtering layer in terms of training conver-
gence rounds.

In a word, the proposed method outperforms classical
NetVLAD in both geolocation accuracy and training speed.

Table 3: The performance comparisons between the proposed method and NetVLAD on the Pitts 30k [81].

Noise filtering layer Feature aggregation layer PCA Dimension R@1 R@5 R@10 R@20

× NetVLAD × 32768 79.45 90.10 92.77 95.19

× NetVLAD √ 512 77.52 89.41 92.59 95.39

× NetVLAD √ 1024 78.92 90.10 92.87 95.48

× NetVLAD √ 2048 79.55 90.42 92.97 95.38

× NetVLAD √ 4096 79.50 90.23 92.9 95.19

√ NetVLAD × 32768 80.99 91.09 93.57 95.48

√ NetVLAD √ 512 80.34 91.37 93.97 95.76

√ NetVLAD √ 1024 81.24 91.61 94.07 95.77

√ NetVLAD √ 2048 81.41 91.62 93.85 95.85

√ NetVLAD √ 4096 81.29 91.37 93.63 95.6

√ NetVLAD+ SPP+GeM × 48128 83.67 92.36 94.16 95.77

√ NetVLAD+ SPP+GeM √ 512 82.88 92.39 94.91 96.24

√ NetVLAD+ SPP+GeM √ 1024 83.73 92.81 94.91 96.20

√ NetVLAD+ SPP+GeM √ 2048 84.01 92.78 94.81 96.11

√ NetVLAD+ SPP+GeM √ 4096 83.92 92.62 94.5 95.95

“×” means that the operation corresponding to the column name is not applied to the model, and “√” means the opposite. “Dimension” denotes the
dimension of the final descriptor; “R@N” denotes Recall@N .
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(a) (b) (c)

(d) (e)

Figure 7: The Grad-CAM visualizations for the original NetVLAD and the version adding noise filtering layer. (a) The original image, (b)
the R, G, B components of the original image, (c) the heat map of the original NetVLAD, (d) the R, G, B components of the image after the
noise filtering layer, and (e) the heat map of the version improved by adding the noise filtering layer.
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6. Conclusions

In this work, we have proposed a novel image geolocation
framework by adding the noise filtering layer before feature
extraction. Based on this framework, an image geolocation
method based on attention mechanism front loading and
feature fusion has been designed. Unlike original NetVLAD,
our method uses triplet attention to denoise images and gets
more effective descriptors by considering not only global
factors but also local factors reflected by the relationships
of local features extracted by an improved SPP. Experimen-
tal results show that our proposed method outperforms the
original NetVLAD in terms of Recall@N(N = 1, 5, 10, 20)
and training convergence round.

Research works such as DELG and PatchNetVLAD
show that the accuracy can be further improved by geomet-
ric verification. However, the verification procedure is
extremely time consuming and its time complexity is closely
related to the number of references under the same recall
rate, viz., the value of N in Recall@N . Therefore, in future
works, we will combine the proposed method with geomet-
ric verification, to reduce the time complexity and improve
the accuracy of methods, such as DELG and patch-
NetVLAD. Furthermore, we will try to extend the proposed
method to other fields related to image retrieval.

Data Availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

We thank Hao Li for helpful discussions. This work is
supported by the National Natural Science Foundation of
China (Grant nos. 61872448, 61772549, and U1804263)
and Science and Technology Research Project of Henan
Province (no. 222102210075), China.

References

[1] C. Lassance, Y. Latif, R. Garg, V. Gripon, and I. Reid,
“Improved visual localization via graph filtering,” Journal of
Imaging, vol. 7, no. 2, p. 20, 2021.

[2] P. E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk, “From
coarse to fine: robust hierarchical localization at large scale,”
in In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 12708–12717, Long
Beach, CA, USA, 2019.

[3] L. Heng, B. Choi, Z. Cui et al., “Project autovision: localization
and 3d scene perception for an autonomous vehicle with a
multi-camera system,” in In International Conference on
Robotics and Automation (ICRA), pp. 4695–4702, Montreal,
QC, Canada, 2019.

[4] S. Zahedian, K. F. Sadabadi, and A. Nohekhan, “Localization of
autonomous vehicles: proof of concept for a computer vision
approach,” in In ITS America Annual Meeting, Washington,
D.C, 2019.

[5] N. Pion, M. Humenberger, G. Csurka, Y. Cabon, and T. Sattler,
“Benchmarking image retrieval for visual localization,” in In
International Conference on 3D Vision (3DV), pp. 483–494,
London, UK, 2020.

[6] R. Castle, G. Klein, and D.W.Murray, “Video-rate localization
in multiple maps for wearable augmented reality,” in In 12th
IEEE International Symposium on Wearable Computers,
pp. 15–22, Pittsburgh, PA, USA, 2008.

[7] N. Piasco, D. Sidibé, C. Demonceaux, and V. Gouet-Brunet, “A
survey on visual-based localization: on the benefit of heteroge-
neous data,” Pattern Recognition, vol. 74, pp. 90–109, 2018.

[8] X. Xin, J. Jiang, and Y. Zou, “A review of visual-based localiza-
tion,” in In Proceedings of the International Conference on
Robotics, Intelligent Control and Artificial Intelligence,
pp. 94–105, Shanghai, China, 2019.

[9] S. Lowry, N. Sunderhauf, P. Newman et al., “Visual place rec-
ognition: a survey,” IEEE Transactions on Robotics, vol. 32,
no. 1, pp. 1–19, 2016.

[10] S. Cao and N. Snavely, “Graph-based discriminative learning
for location recognition,” in In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pp. 700–707, Portland, OR, USA, 2013.

[11] H. Taira, M. Okutomi, T. Sattler et al., “InLoc: indoor visual
localization with dense matching and view synthesis,” in In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition(CVPR), pp. 7199–7209, Salt Lake City,
UT, USA, 2018.

[12] H. Germain, G. Bourmaud, and V. Lepetit, “Sparse-to-dense
hypercolumn mtching for long-term visual localization,” in

Noise Filter +
NetVLAD &

SPP+GeM

Origin
NetVLAD 

Figure 9: An example of geolocation results.

13Wireless Communications and Mobile Computing



In 2019 International Conference on 3D Vision (3DV),
pp. 513–523, Québec, Canada, 2019.

[13] W. Zhang and J. Kosecka, “Image based localization in urban
environments,” in In Third International Symposium on 3D
Data Processing, Visualization, and Transmission (3DPVT'06),
pp. 33–40, Chapel Hill, USA, 2006.

[14] Z. Laskar, I. Melekhov, S. Kalia, and J. Kannala, “Camera relo-
calization by computing pairwise relative poses using convolu-
tional neural network,” in In Proceedings of the IEEE
International Conference on Computer Vision Workshops
(ICCV), pp. 920–929, Venice, Italy, 2017.

[15] V. Balntas, S. Li, and V. Prisacariu, “Relocnet: continuous met-
ric learning relocalisation using neural nets,” in In Proceedings
of the European Conference on Computer Vision (ECCV),
pp. 782–799, Munich, Germany, 2018.

[16] M. DIng, Z. Wang, J. Sun, J. Shi, and P. Luo, “CamNet: coarse-
to-fine retrieval for camera re-localization,” in In Proceedings
of the IEEE International Conference on Computer Vision,
pp. 2871–2880, Seoul, Korea (South), 2019.

[17] T. Sattler, A. Torii, J. Sivic et al., “Are large-ccale 3D models
really necessary for accurate visual localization?,” in In Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition(CVPR), pp. 6175–6184, Honolulu, HI, USA,
2017.

[18] Y. Ge, H. Wang, F. Zhu, R. Zhao, and H. Li, “Self-supervising
fine-grained region similarities for large-scale image localiza-
tion,” in In European Conference on Computer Vision (ECCV),
pp. 369–386, Glasgow, UK, 2020.

[19] S. Hausler, S. Garg, M. Xu, M. Milford, and T. Fischer, “Patch-
NetVLAD: multi-scale fusion of locally-global descriptors for
place recognition,” in In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 14141–
14152, Nashville, TN, USA, June 2021.

[20] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic,
“NetVLAD: CNN architecture for weakly supervised place rec-
ognition,” in In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 5297–
5307, Las Vegas, NV, USA, June 2016.

[21] Z. Chen, L. Liu, I. Sa, Z. Ge, and M. Chli, “Learning context
flexible attention model for long-term visual place recogni-
tion,” IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 4015–4022, 2018.

[22] J. L. Schonberger and J. M. Frahm, “Structure-from-motion
revisited,” in In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 4104–
4113, Las Vegas, NV, USA, June 2016.

[23] C. Harris and M. Stephens, “A combined corner and edge
detector,” In Alvey Vision Conference, vol. 15, no. 50, 1988.

[24] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-
baseline stereo frommaximally stable extremal regions,” Image
and Vision Computing, vol. 22, no. 10, pp. 761–767, 2004.

[25] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol. 60,
no. 2, pp. 91–110, 2004.

[26] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: speeded up
robust features,” in In European Conference on Computer
Vision (ECCV), pp. 404–417, Graz, Austria, 2006.

[27] E. Johns and G.-Z. Yang, “From images to scenes: compressing
an image cluster into a single scene model for place recogni-
tion,” in In International Conference on Computer Vision
(ICCV), pp. 874–881, Barcelona, Spain, Jan. 2011.

[28] D. Mishkin, M. Perdoch, and J. Matas, “Place recognition with
WxBS retrieval,” in CVPR Workshop on Visual Place Recogni-
tion in Changing Environments, Czech Technical University in
Prague, 2015.

[29] J. Hays and A. A. Efros, “Large-scale image geolocalization,” in
Multimodal Location Estimation of Videos and Images Estim
Videos Images, J. Choi and G. Friedland, Eds., pp. 41–62,
Springer, Cham, 2015.

[30] E. Zemene, Y. T. Tesfaye, H. Idrees, A. Prati, M. Pelillo, and
M. Shah, “Large-scale image geo-localization using dominant
sets,” IEEE Transactions on Pattern Analysis and Machine
Intelligence(TPAMI), vol. 41, pp. 148–161, 2019.

[31] S. Ardeshir, A. R. Zamir, A. Torroella, and M. Shah, “GIS-
assisted object detection and geospatial localization,” in In
European Conference on Computer Vision (ECCV), pp. 602–
617, Zurich, Switzerland, 2014.

[32] D. Robertson and R. Cipolla, “An image-based system for
urban navigation,” in In Proceedings of the 15th British
Machine Vision Conference (BMVC), pp. 819–828, London,
U.K, Sep. 2004.

[33] G. Schindler, M. Brown, and R. Szeliski, “City-scale loca-
tion recognition,” in In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pp. 1–7, Minneapolis, MN, USA, 2007.

[34] J. Hays and A. A. Efros, “IM2GPS: Estimating geographic
information from a single image,” in In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1–8,
Anchorage, AK, USA, June 2008.

[35] M. Cummins and P. Newman, “FAB-MAP: probabilistic local-
ization and mapping in the space of appearance,” The Interna-
tional Journal of Robotics Research (IJRA), vol. 27, no. 6,
pp. 647–665, 2008.

[36] A. R. Zamir and M. Shah, “Accurate image localization based
on Google Maps Street View,” in In European Conference on
Computer Vision (ECCV), pp. 255–268, Crete, Greece, 2010.

[37] D. Gálvez-López and J. D. Tardos, “Bags of binary words for
fast place recognition in image sequences,” IEEE Transactions
on Robotics, vol. 28, no. 5, pp. 1188–1197, 2012.

[38] J. Sivic and A. Zisserman, “Video Google: a text retrieval
approach to object matching in videos,” in In Proceedings of
IEEE International Conference on Computer Vision(ICCV),
pp. 1470–1477, Nice, France, 2003.

[39] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: binary
robust independent elementary features,” in In European Con-
ference on Computer Vision (ECCV), pp. 778–792, Heraklion,
Crete, Greece, 2010.

[40] E. Rosten and T. Drummond, “Machine learning for high-
speed corner detection,” in In European Conference on Com-
puter Vision (ECCV), pp. 430–443, Graz, Austria, 2006.

[41] C. Masone and B. Caputo, “A survey on deep visual place rec-
ognition,” IEEE Access, vol. 9, pp. 19516–19547, 2021.

[42] A. Gordo, J. Almazan, J. Revaud, and D. Larlus, “End-to-end
learning of deep visual representations for image retrieval,”
International Journal of Computer Vision(IJCV), vol. 124,
no. 2, pp. 237–254, 2017.

[43] Y. Gong, L. Wang, R. Guo, and S. Lazebnik, “Multi-scale
orderless pooling of deep convolutional activation features,”
in In European Conference on Computer Vision (ECCV),
pp. 392–407, Zurich, Switzerland, Sep. 2014.

[44] G. Tolias, R. Sicre, and H. Jégou, “Particular object retrieval
with integral max-pooling of CNN activations,” in In

14 Wireless Communications and Mobile Computing



International Conference on Learning Representations(ICLR),
pp. 1–12, San Juan, Puerto Rico, May 2016.

[45] N. Sünderhauf, S. Shirazi, A. Jacobson et al., “Place recognition
with convnet landmarks: viewpoint-robust, condition-robust,
training-free,” Robotics: Science and Systems XI, vol. 11,
pp. 1–10, 2015.

[46] Z. Chen, O. Lam, A. Jacobson, andM. Milford, “Convolutional
neural network-based place recognition,” in In Proceedings of
the 16th Australasian Conference on Robotics and Automation
(ARAA), pp. 1–8, Melbourne, Australia, 2014.

[47] Z. Chen, F. Maffra, I. Sa, and M. Chli, “Only look once, mining
distinctive landmarks from ConvNet for visual place recogni-
tion,” in In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 9–16, Vancouver, BC, Canada,
Sep. 2017.

[48] P. Neubert and P. Protzel, “Local region detector + CNN based
landmarks for practical place recognition in changing environ-
ments,” in In 2015 European conference on Mobile robots
(ECMR), pp. 1–6, Lincoln, UK, Sep. 2015.

[49] P. Panphattarasap and A. Calway, “Visual place recognition
using landmark distribution descriptors,” in In Asian Con-
ference on Computer Vision (ACCV), pp. 487–502, Taipei,
Taiwan, 2017.

[50] N. Sunderhauf, S. Shirazi, F. Dayoub, B. Upcroft, and
M. Milford, “On the performance of ConvNet features for
place recognition,” in In IEEE/RSJ international conference
on intelligent robots and systems (IROS), pp. 4297–4304,
Hamburg, Germany, 2015.

[51] Y. Hou, H. Zhang, and S. Zhou, “Convolutional neural
network-based image representation for visual loop closure
detection,” in In IEEE International Conference on Information
and Automation, pp. 2238–2245, Lijiang, China, Aug. 2015.

[52] H. Jégou and O. Chum, “Negative evidences and co-
occurences in image retrieval: the benefit of PCA and whiten-
ing,” in In European Conference on Computer Vision (ECCV),
pp. 774–787, Florence, Italy, Oct. 2012.

[53] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson,
“CNN features off-the-shelf: an astounding baseline for recog-
nition,” in In Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, pp. 806–813,
Columbus, OH, USA, June 2014.

[54] A. Anoosheh, T. Sattler, R. Timofte, M. Pollefeys, and L. Van
Gool, “Night-to-day image translation for retrieval-based
localization,” in In International Conference on Robotics and
Automation (ICRA), pp. 5958–5964, Montreal, QC, Canada,
Aug. 2019.

[55] A. Torii, R. Arandjelovi, S. Masatoshi, and O. Tomas, “24/7
place recognition by view synthesis,” in In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1808–1817, Boston, MA, USA, June. 2015.

[56] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in In Proceedings of
International Conference on Learning Representations, pp. 1–
14, San Diego, CA, USA, May. 2015.

[57] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating
local descriptors into a compact image representation,” in In
Proceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 3304–3311, San Francisco, CA,
USA, June. 2010.

[58] J. Yu, C. Zhu, J. Zhang, Q. Huang, and D. Tao, “Spatial
pyramid-enhanced NetVLAD with weighted triplet loss for

place recognition,” IEEE Transactions On Neural Networks
And Learning Systems, vol. 31, no. 2, pp. 661–674, 2020.

[59] H. J. Kim, E. Dunn, and J.-M. Frahm, “Learned contextual fea-
ture reweighting for image geo-localization,” in In IEEE Con-
ference on Computer Vision and Pattern Recognition(CVPR),
pp. 3251–3260, Honolulu, HI, USA, July 2017.

[60] G. Tolias, Y. Avrithis, and H. Jégou, “Image search with selec-
tive match kernels: aggregation across single and multiple
images,” International Journal of Computer Vision, vol. 116,
pp. 247–261, 2016.

[61] J. Mao, X. Hu, X. He, L. Zhang, L. Wu, and M. J. Milford,
“Learning to fuse multiscale features for visual place recogni-
tion,” IEEE Access, vol. 7, pp. 5723–5735, 2018.

[62] A. Khaliq, S. Ehsan, M. Milford, and K. McDonald-Maier,
“Camal: context-aware multi-scale attention framework for
lightweight visual place recognition,” 2019, http://arxiv.org/
abs/1909.08153.

[63] G. Peng, Y. Yue, J. Zhang, Z. Wu, X. Tang, and D. Wang,
“Semantic reinforced attention learning for visual place recog-
nition,” in In International Conference on Robotics and Auto-
mation (ICRA), pp. 13415–13422, Xi'an, China, June 2021.

[64] G. Peng, J. Zhang, H. Li, and D. Wang, “Attentional pyramid
pooling of salient visual residuals for place recognition,” in
In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 885–894, Montreal, QC, Canada,
Oct. 2021.

[65] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han, “Large-
scale image retrieval with attentive deep local features,” in In
Proceedings of IEEE International Conference on Computer
Vision (ICCV), pp. 3476–3485, Venice, Italy, Oct. 2017.

[66] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling
in deep convolutional networks for visual recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), vol. 37, no. 9, pp. 1904–1916, 2015.

[67] D. Misra, T. Nalamada, A. U. Arasanipalai, and Q. Hou,
“Rotate to attend: convolutional triplet attention module,” in
In IEEE Winter Conference on Applications of Computer
Vision (WACV), pp. 3139–3148, Waikoloa, HI, USA, Jan.
2021.

[68] V. Christlein, L. Spranger, M. Seuret, A. Nicolaou, P. Král, and
A. Maier, “Deep generalized max pooling,” in In International
conference on document analysis and recognition (ICDAR),
pp. 1090–1096, Sydney, NSW, Australia, Sep. 2019.

[69] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 770–
778, Las Vegas, NV, USA, June 2016.

[70] M. Tan and Q. Le, “Efficientnet: rethinking model scaling for
convolutional neural networks,” In International Conference
on Machine Learning (ICML), vol. 97, pp. 6105–6114, 2019.

[71] L. Liu, H. Li, and Y. Dai, “Stochastic attraction-repulsion
embedding for large scale image localization,” in In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 2570–2579, Seoul, Korea (South), Nov.
2018.

[72] M. H. Guo, T. X. Xu, J. J. Liu et al., “Attention mechanisms in
computer vision: a survey,” http://arxiv.org/abs/2111.07624.

[73] X. Li, W. Wang, X. Hu, and J. Yang, “Selective kernel net-
works,” in In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition(CVPR), pp. 510–519,
Long Beach, CA, USA, June. 2019.

15Wireless Communications and Mobile Computing

http://arxiv.org/abs/1909.08153
http://arxiv.org/abs/1909.08153
http://arxiv.org/abs/2111.07624


[74] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
in In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 7132–7141, Salt Lake City,
UT, USA, Dec. 2018.

[75] F. Wang, M. Jiang, C. Qian et al., “Residual attention network
for image classification,” in In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pp. 3156–3164, Honolulu, HI, USA, July 2017.

[76] S. Woo, J. Park, J. Y. Lee, and I. S. Kweon, “CBAM: convolu-
tional block attention module,” in In Proceedings of European
Conference on Computer Vision (ECCV), pp. 3–19, Munich,
Germany, Sep. 2018.

[77] M. Yang, D. He, M. Fan et al., “DOLG: single-stage image
retrieval with Deep orthogonal fusion of local and global fea-
tures,” in In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), pp. 11772–11781,
Montreal, QC, Canada, Oct. 2021.

[78] B. Cao, A. Araujo, and J. Sim, “Unifying deep local and global
features for image search,” in In European Conference on Com-
puter Vision (ECCV), pp. 726–743, Glasgow, UK, Aug. 2020.

[79] Q. Zhou, T. Sattler, M. Pollefeys, and L. Leal-Taixe, “To learn
or not to learn: visual localization from essential matrices,” in
In International Conference on Robotics and Automation
(ICRA), pp. 3319–3326, Paris, France, Aug. 2020.

[80] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity
search with GPUs,” 2017, http://arxiv.org/abs/1702.08734.

[81] A. Torii, J. Sivic, T. Pajdla, and M. Okutomi, “Visual place rec-
ognition with repetitive structures,” in In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 883–890, Portland, OR, USA, June 2013.

[82] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh,
and D. Batra, “Grad-cam: visual explanations from deep net-
works via gradient-based localization,” in In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 618–626, Venice, Italy, Oct. 2017.

16 Wireless Communications and Mobile Computing

http://arxiv.org/abs/1702.08734

	Image Geolocation Method Based on Attention Mechanism Front Loading and Feature Fusion
	1. Introduction
	2. Review of VLAD and NetVLAD
	3. Proposed Image Geolocation Framework
	4. Image Geolocation Based on Attention Mechanism Front Loading and Feature Fusion
	4.1. Noise Filtering Layer Based on Triplet Attention
	4.2. Feature Aggregation Layer Based on the Fusion of Global and Local Features

	5. Experimental Results and Analysis
	5.1. Experimental Setup
	5.1.1. Evaluation Metrics
	5.1.2. Recall@N
	5.1.3. Training Convergence Round

	5.2. Effectiveness Test of the Noise Filtering Layer
	5.3. Effectiveness Test of the Proposed Method

	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

