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The popularization of electronic devices and the enrichment of external interfaces have increased the attack surface of the
automotive cyber-physical system (CPS). As a vital part of the CPS, the controller area network (CAN) is more vulnerable to
security threats due to the lack of corresponding security protection mechanisms. This kind of security problem has also
attracted extensive attention from academia and industry. Researchers have proposed numerous intrusion detection models for
the in-vehicle CAN bus, solving some security problems to a certain extent. However, vehicle manufacturers seldom disclose
the internal details of vehicle ECUs due to safety concerns. Thus, it is difficult for researchers to investigate the operation
mechanism of the bus. Meanwhile, there is a risk of personal safety in completing attack experiments on real vehicles, which
can also lead to the lack and diversification of in-vehicle network data, especially the data of attack behavior. Based on real
vehicle data, an open, adaptable, and low-risk CAN bus security testbed framework in the automotive CPS is proposed in this
study, aiming to enrich the operation data of the CAN bus and enhance the personal safety of researchers. Besides, the delay of
the testbed sending and receiving periodic and aperiodic CAN messages is theoretically explored. The results demonstrate that
the generated timestamp in the dataset is mainly associated with the timestamp of the real vehicle data and that the
transmission and collection of time series data are completed by Algorithm 1 and Algorithm 2. In the evaluation of the
security testbed, the stability of the security testbed is studied from the two indicators of delay and packet loss rate. The
experiment reveals that the testbed has a small relative delay difference and a low packet loss rate. Moreover, the DTW
algorithm is employed to calculate the distance between the real vehicle and the testbed, and the experimental results
demonstrate that the testbed is featured with high similarity and simulation.

1. Introduction

With the rapid development of technologies including the
Internet of Vehicles, new energy, and artificial intelligence,
vehicle manufacturers have configured more external inter-
faces and electronic devices for consumers, providing a more
comfortable driving and entertainment experience. Mean-
while, the security of the CPS has been more threatened
[1]. For example, hackers obtain root privileges through
Wi-Fi and tamper with the electronic control unit (ECU)
firmware on the bus [2, 3]. Therefore, the issue of vehicle
security has attracted extensive attention from academia

and industry. As one of the core components of modern
automotive electronics, the ECU exchanges information
with other ECUs through the bus protocol. Most bus proto-
cols are public, such as CAN which is currently the most
widely used bus protocol [4, 5]. However, the vehicle manu-
facturers or parts manufacturers have not disclosed the
details of the internal parameters of the ECU in order to pro-
tect intellectual property rights [3], which means that the
specific operating conditions on the bus are invisible to vehi-
cle users and that security researchers need to have strong
reverse analysis capabilities, thus bringing great difficulties
to analyze the internal working mechanism of the ECU. At
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the same time, the implementation of bus attack experi-
ments in the running state of the vehicle will result in unpre-
dictable consequences, and it will also bring personal safety
risks to researchers. Some researchers have published data-
sets of real vehicles [6, 7] that contain some common attack
behaviors, which is conducive to the study on CAN bus
security. However, in the face of complex vehicle environ-
ment, there is still a lack of rich attack types and attack
behavior data. As a result, it is of practical significance to
establish an open, adaptable, high-accuracy, and low-risk
in-vehicle bus security testbed [8], providing important sup-
port for the theoretical research and real-time detection of
vehicle CPS security [9, 10].

At present, the existing vehicle security testbeds are
mainly based on the CAN bus, and there are mainly the fol-
lowing problems: (1) The versatility is not very strong [9,
11], and the same testbed cannot be shared between different
models. (2) The security testbed is mainly constructed by
simulating the vehicle through software, which cannot accu-
rately evaluate the physical characteristics of the CAN bus
and the ECU including power consumption and current,
lacking certain authenticity. (3) The developed hybrid
testbed improves the original vehicle bus structure and envi-
ronment, but it will influence the security experiment effect
of real vehicles [12]. (4) It is difficult to restore the data cor-
relation between ECUs [13]. For example, in the homemade
prototype system, the operating rod is used as the throttle to
simulate the driver’s acceleration and deceleration, which
cannot truly represent the data correlation between the
throttle and other ECUs. These problems will affect the per-
formance evaluation of CAN bus intrusion detection
methods [10], especially the research on content awareness
and aperiodic characteristics of the CAN bus.

In this paper, a CAN bus security testbed based on real
vehicle data in the automotive CPS is proposed, and the
delay between CAN messages sent from the ECU Operation
Center and received by the collector is theoretically explored.
In the specific implementation process of the platform, by
running Algorithm 1, the time series data of the vehicle is
sent from the ECU Operation Center to the ECU, and the
six designed attacks are employed to simulate the attack on
the CAN bus. By running Algorithm 2, the data is sent to
the CAN bus. Finally, the entire bus is generated to run time
series data. The stability of the security testbed is examined
through the two indicators of delay and packet loss rate.
The experimental results indicate that the platform has a
small relative delay difference and a low packet loss rate.
Furthermore, the similarity of the time series between the
real vehicle and the testbed is evaluated by the similarity
index. Meanwhile, the distance between the two is calculated
by the DTW algorithm, revealing that the testbed possesses
high simulation.

Contributions of this paper are as follows:

(1) A CAN bus security testbed framework derived from
real vehicle data is proposed. The testbed designs
and implements six common attack models, and
completes the sending and collection of CAN mes-
sages by running two algorithms, thereby ensuring

the high real-time performance of the platform and
the accuracy of the generated data

(2) In this study, the delay of sending and receiving peri-
odic and aperiodic messages on the platform is theo-
retically explored. The results show that the
generated time series data is mainly related to the
timestamp sent. At the same time, the relative delay
difference and packet loss rate are employed to
explore the stability of the overall and single-type
CAN messages of the platform. In addition, the
experimental results also verify the ability of the plat-
form in this regard

(3) The DTW algorithm is used to compare the similar-
ity of the time series between the real vehicle and the
security testbed. The experimental results demon-
strate that the two sequences have a short distance,
confirming the high simulation performance of the
platform

The remainder of this paper is organized as follows. The
background material about the CAN bus and related work
are presented in Section 2. The framework, attack scenario
and time series data generation method of the CAN bus
security testbed in the automotive CPS are illustrated in Sec-
tion 3. In Section 4, our experiment environment, evaluation
metrics and results are elaborated. Besides, conclusions are
drawn in Section 5.

2. Background

2.1. Controller Area Network. The CAN is a field bus with
high reliability, high performance, and low cost [10, 14]. It
was originally used in the vehicle electronic control network
to realize the exchange of information between vehicle ECUs
and was later extended and widely used in the field of indus-
trial control. As an important part of the entire in-vehicle
network and the automotive CPS, the CAN bus is a peer-
to-peer network [15]. Each node on the CAN bus can either
receive messages or actively send messages. When multiple
nodes send messages to the bus at the same time, the bus
adopts an arbitration mechanism to avoid conflicts. The
nodes will read the messages on the bus and compare the
bits of the arbitration field with the messages sent by them-
selves one by one. If the dominant bit is 0, it will continue to
obtain control on the bus, while if the invisible bit is 1, the
arbitration will be lost, and it will change to the receiving
state from the next bit until the bus is free to continue send-
ing messages [16].

2.2. Related Work. In the research of automotive CPS secu-
rity, the known vehicle security testbeds mainly adopt the
CAN bus protocol. In 2013, HRL and GM developed a set
of security testbeds that highly imitates real vehicles [11].
As the platform employs the same ECU as real products,
the simulation accuracy is high. Nevertheless, each vehicle
and driving environment is complex, and this platform is
not suitable for other models. In 2014, Miller and Valasek
customized a portable off-road vehicle to build a security
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testbed [9]. Although the price of the platform is not high, it
is difficult to upgrade it. Moreover, due to the connection
with real vehicles, there are certain security risks when
researchers conduct attack experiments. There are also some
software which can be used to simulate the vehicle ECU and
CAN bus, such as CANoe. However, because of vehicle
hardware with the software simulation, many physical prop-
erties, including power and current, could not be accurately
simulated and evaluated. Especially in terms of the complex-
ity of the vehicle system, software also remains stable. In
2016, Tuohy et al. proposed a hybrid testbed for the simula-
tion of in-vehicle automotive networks. The platform incor-
porates multiple in-vehicle networks and is used via
Ethernet in order to assist in the testing and development
of automotive video systems and novel Advanced Driver
Assistance System (ADAS) algorithms [12]. Although the
testbed retains the in-vehicle network, this method changes
the structure and environment of the original in-vehicle net-
work, which will influence the effect of security testing.

At the BLACK HAT EUROPE 2018 conference, the
Toyota Information Technology Center team proposed an
adaptable portable security testbed PASTA [9] which turns
the vehicle into a mini car with real vehicle functions
through proportional scaling, using 4 ECUs and 1 console
module to conduct the attack test of the operating system,
without the need to complete the attack test in the real com-
plex environment, lowering the risk of completing the exper-

iment on the real vehicle. In addition, researchers can
flexibly customize their own security technology through
this platform, and the ECU has programmable capabilities.
Meanwhile, some internal operations of PASTA are realized
in the following three ways: (1) Displaying the ECU status
on the monitor; (2) moving the model car through physical
operation; and (3) the software simulator reads CAN mes-
sages and visualizes the behavior of the vehicle to the com-
puter. However, there still exists a certain gap between the
platform and the complexity of the real vehicle, and the cor-
relation of CAN data generated between ECUs also lacks
authenticity and rationality. Moreover, the device is still
immature, causing some inconvenience to users.

3. Methodology

In this section, firstly, the framework of the CAN bus secu-
rity testbed in the automotive CPS is presented. Then, the
attack scenarios and the method of time series data genera-
tion for the security testbed are introduced.

3.1. Framework Overview. Figure 1 shows the proposed CAN
bus security testbed framework based on real vehicle data.
The platform inputs the time series data of each ECU of
the real vehicle into the ECU Operation Center, which sim-
ulates the start of the vehicle and sends the corresponding
data to the relevant ECUs based on the time series

INPUT: listR real time series dataset, listA attack time series data to CAN Shields
OUTPUT: listT messages received and precessed by CAN Shields from ECU Operating Center
1: /∗ECU Operating Center sends real messages to CAN Shields according to a specified dataset∗/
2: function SENDMSG(list)
3: list P ⟵ list
4: i⟵ 0
5: while i < lenðlistPÞ do
6: t⟵ current time
7: if t == listp½i�:ts then
8: /∗ECU Operating Center sends real messages to CAN Shields ∗/
9: ui ⟵ delay for CAN Shield to process the CAN message
10: listP½i�:ts⟵ listP½i�:ts + ui
11: listT. add ðlistP½I�Þ
12: i⟵ i + 1
13: end if
14: end while
15: return listT
16: end function
17: /∗ If real public dataset is not null,ECU Operating Center starts a new thread to send CAN messages∗/
18: if len ðlistRÞ > 0 then
19: Thread t1⟵ Thread(SENDMSG(listR))
20: t1.start( )
21: end if
22: /∗ If attack dataset is not null, ECU Operating Center starts a new thread to send CAN messaged∗/
23: if len(list A)>0 then
24: Thread t2⟵ Thread (SENDMSG(listA))
25: t2.start( )
26: end if
27: return listT

Algorithm 1: ECU Operating Center sends times series data to CAN Shields.
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relationship. However, the ECU sends the CAN messages
to the CAN bus in line with the CAN protocol. Besides,
there are many interfaces for data interaction with the
outside world on the entire security testbed including
OBD-II, Bluetooth, and Wi-Fi, which not only facilitates
the data exchange between the vehicle and the outside
world, but also increases the risk of the vehicle being
attacked. Hackers can connect to telematics devices
through wireless communication channel and subsequently
invade the CAN bus. Therefore, the platform is designed
with multiple attack models to study in-vehicle bus secu-
rity. In addition, the collector module on the security
testbed extracts the running data on the CAN bus to form
the testbed dataset of the platform that is adopted for sub-
sequent data analysis, attack detection and attack
prediction.

The platform simulates an ECU through an Arduino
board loaded with CAN Shield. The ECU has programmable
capabilities and can recognize commands sent by the ECU
Operation Center and perform related operations, for
instance, sending CAN messages to the CAN bus and per-
forming spoofing attacks.

3.2. Attack Scenarios. According to the current common
vehicle CAN bus attacks [13, 17, 18], the platform imple-
ments 6 types of attacks, respectively, fuzzy attack, replay
attack, spoofing attack, suspend attack, DoS attack, and mas-
querade attack. The specific description is presented below.

3.2.1. Fuzzy Attack. In order to learn the correspondence
between ECU and CAN ID or the meaning of CAN message
fields, the attacker randomly injects CAN ID and payload

INPUT: list messages processed by CAN Shield, type attack type, t1attack start timestamp, t2 attack end timestamp
OUTPUT: list’ messages collected from the CAN bus
1: /∗Get the delay caused by CAN bus conflict when a CAN Shield sends messages to the CAN bus∗/
2: function GETCONLICTDELAY(msg)
3: c⟵ 0
4: flag ⟵has any conlict on CAN bus when sending msg?
5: if flag== TRUE then
6: /∗Self-delayed because other messages with smalle CANIDs are sent to the CAN bus at the same tim ∗/
7: c⟵ delay
8: end if
9: return c
10: end function
11: listP ⟵ list
12: list’ ⟵ null / ∗ Store in-vehicle messages collected from CAN Bus ∗/
13: i, j⟵ 0
14: flag ⟵ FALSE
15: while i < lenðlistPÞ do
16: t⟵ listP½i�:ts
17: if current time== t then
18: if t < t1 and t < t2 then
19: if listP[i].source==attack and (type==masquerade or type ≠ suspend) then
20: flag⟵ TRUE
21: else
22: flag ⟵ FALSE
23: end if
24: else
25: flag ⟵ TRUE
26: end if
27: if flag ==TRUE then
28: /∗Update timestamp for the conflict delay∗/
29: listP[i].ts ⟵GETCONFLICTDELAY
30: list’.add(listP[i])
31: /∗Consider network delay∗/
32: di ⟵ delay for network transmission
33: list’[j].ts ⟵+di
34: j⟵ j + 1
35: end if
36: i⟵ i + 1
37: end if
38: end while
39: return list’

Algorithm 2: Generate in-vehicle dataset collected from the CAN bus.
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into the CAN bus and understands the CAN bus structure and
ECU behavior patterns by observing the changes of the vehicle
and ECU. According to the different injection content, fuzzy
attack is categorized into fuzzy CAN ID attack and fuzzy pay-
load attack. The fuzzy CAN ID attack is to observe the changes
of the vehicle ECU by injecting an unknown CAN ID (gener-
ally below 0×700) externally when the correspondence
between the CAN ID and the ECU is uncertain. However,
fuzzy payload attack means that the attacker has determined
the corresponding relationship between CAN ID and ECU,
but does not know the specific field meaning of the payload.
Therefore, he or she will familiarize with the function of an
ECU by injecting the content of the modified payload of the
ECU. In this testbed framework, the hacker simulates a fuzzy
attack on the CAN bus by sending control commands and
specified data to the ECU Operation Center.

3.2.2. Relay Attack. If the attacker is not sure about the func-
tion of the CAN ID and the semantics of the payload, they
will listen to the CAN bus, capture the data fragment, and
then directly inject the CAN data frame into the current
time point. In this scenario, both the real ECU and the
ECU impersonated by the attacker are sending data frames,
while the attacker does not know the internal semantics of
the specific data frame. Therefore, the flooding method is
often adopted in order to force the CAN bus between the
injected data frame and the original data frame. Further-
more, there are ECU data frames, while the former is
selected for transmission. For example, the injected data
frames are sent to the CAN bus 10-100 times faster than
the original CAN data frames [13]. The hacker simulates a
replay attack on the CAN bus by sending control commands
and specified data to the ECU Operation Center of the
testbed.

3.2.3. Spoof Attack. If the attacker determines the semantics
of the payload, the modified data frame will be injected into
the current CAN bus for attacking, which is called fabrica-
tion [19]. The attack will show that there will be two ECUs
with the same CAN ID on the bus sending normal data
frames. For example, the attacker injects 100 km/h vehicle
speed data, causing the vehicle speed on the dashboard to
change from 40km/h to 100 km/h. As attackers often align
the injection speed with the fake data frame, it is challenging
for security detection to identify which is a normal data
frame. In this scenario, hackers implement spoofing attacks
by sending control commands and specified data to the
Operation Center to simulate a spoofed ECU.

3.2.4. Suspension Attack. The attacker intrudes into the ECU
in some way and suspends its work for a period of time, such
as causing the steering wheel ECU to interrupt for 5 seconds
to send data frames through malicious code injection. As
ECU pauses cause changes in bus traffic and the interruption
of such messages, this kind of attack is often easier to imple-
ment in intrusion detection, whether by analyzing the time
interval of CAN messages [20], information entropy,
machine learning [21], or other methods [22]. In this sce-
nario, the attacker temporarily suspends the target ECU by
sending control commands and specified data to the Opera-
tion Center, thus completing the ECU suspending attack.

3.2.5. DoS Attack. The attacker causes the CAN bus crash by
flooding the bus with a large number of random data frames
in a short amount of time [7]. Since the CAN bus determines
the sending of frames through the CAN ID priority arbitra-
tion mechanism, the attacker can choose to send the CAN
ID with high priority for attacking, aiming to initially check
the attack effect. Sometimes, the highest priority data frame
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Figure 1: The framework of the CAN bus security testbed based on real vehicle datasets in the automotive CPS.
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0 × 000 is used to interfere with the sending and receiving of
all ECUs on the CAN bus, thereby threatening the driving
safety of vehicles. As DoS attacks easily lead to changes in
traffic and CAN ID sequences, this kind of attack is often
easier to implement in intrusion detection. In this frame-
work, the attacker sends a large number of messages to the
CAN bus by sending control commands and specified data
in order to achieve the effect of DoS attack.

3.2.6. Masquerade Attack. The attacker is already familiar
with the function of the CAN ID and the semantics of
CAN payload, and he/she can perform various operations
(such as suspend) on the relevant ECU in some way [18].
Subsequently, the attacker uses the ECU to send disguised
CAN data. For example, the characteristics of the frame
(periodic and aperiodic) include sending a well-designed
attack data frame at an interval of 500ms and simulta-
neously suspending the normal ECU. In addition,
masqueraded ECU could also inject data frames at an inter-
val of 500ms. This kind of precision attack through seman-
tics and camouflage is relatively difficult to detect. It is still
very difficult to implement such an attack in a real vehicle.
However, in this testbed framework, an attacker can simulta-
neously suspend a specified ECU and easily start a new ECU
by sending a control command to perform a camouflage
attack.

In addition to the above attacks, based on the openness
and adaptability of the platform, researchers can add more
attack scenarios as needed.

3.3. The Time Series Data Generation Method

3.3.1. Delay Analysis. The time series dataset generated by
the security testbed in non-attack and attack environments
needs to have low latency. Otherwise, it cannot better simu-
late the real vehicle environment. As a result, the delay of
generating time series data by the security testbed is theoret-
ically explored.

Supposing that there are two ECUs on the CAN bus,
represented by A and R, respectively, and the ECU Opera-
tion Center is denoted by E, Mi as the i-th CAN message
sent by A, and si as the real timestamp of the message. Then,
E sends the message to A according to the timestamp si, and
A sends the message to the CAN bus. In this way, the send-
ing scenario of real vehicle CAN messages is simulated.

To calculate the timestamp when R receives the message
sent by A, ui denotes the delay of A receiving and processing
the message sent from E, and ci represents the delay of A
sending due to bus arbitration failure, while di refers to the
network delay of CAN bus transmission messages. Then,
the timestamp when R receives the message is Trx,i, as
expressed below:

Trx,i = si + ui + ci + di + ni, ð1Þ

where ni is the noise quantized by timestamp R [18], which
is different from the ECU clock used in literature [10]. Since
E distributes data through the A unified network clock, the
clock shift of A is 0.

As ΔTrx,i denotes the timestamp interval between the
i-1th and i-th messages received by R, it is expressed as
follows:

ΔTrx,i = Δsi+Δui+Δci+Δdi+Δni, ð2Þ

where ΔX represents the interval of X between the i-1th
and i messages. Since the data length of each type of
CAN messages of A is fixed, E½Δdi� = 0 [10]. However,
when the zero-mean Gaussian noise distribution is satis-
fied, E½Δni� = 0 [18]. In addition, as the lengths of each
ECU and the ECU Operation Center are basically the
same, as well as the control commands and programs pro-
grammed inside, the timestamp interval can be ignored
when they receive the Operation Center E, whereas there
may exist differences between ECUs due to different char-
acteristics. For different processing times, E½Δui� ≠ 0. At
the same time, ci judges the time conflict on the CAN
bus based on the timestamp si and the delay ui. Although
E½Δui� ≠ 0, Δui is almost negligible compared with Δsi,
indicating that the probability of arbitration collision is
very small on the platform. Therefore, E½Δci� = 0. Based
on the above analysis, the expected value δrx of the time-
stamp interval between the two messages before and after
R reception can be expressed as follows:

δrx = E ΔTrx,i½ � = E Δsi+Δui+Δci+Δdi+Δni½ �
= E Δsi½ � + E Δui+Δci+Δdi+Δni½ � ≈ E Δsi½ � + E Δui½ �: ð3Þ

When A sends a message with a periodicity of T, E½Δsi�
= T. Thus, δrx can be denoted as follows:

δrx = E ΔTrx,i½ � ≈ T + E Δui½ �: ð4Þ

Since the delay ui of the ECU processing the message itself
is very small, basically within 1ms, E½Δui�will become smaller,
and the minimum periodic message interval observed from
the public dataset is not less than 10ms. Hence, E½Δui� is con-
sidered negligible compared to the periodic time T.

When A sends an aperiodic message, δrx is equal to
Expression (4). Although E½Δsi� is not a constant, from the
public dataset, the interval of aperiodic messages is much
larger than 10ms. Thus, compared with E½Δsi�, E½Δui� can
be neglected.

Therefore, whether the time series data generated by the
security testbed proposed in this paper is a periodic or ape-
riodic message, it is mainly associated with the timestamp
si sent by the real dataset. When i is equal to 1, the time-
stamp of the first CAN message received by R is s1 + u1 +
c1 + d1 + n1, and the real dataset received is s1. This is the
difference between the two, that is, the entire time series
dataset of the platform is offset backward from the real time
series dataset. In fact, the value is so small that it can be
almost negligible.

3.3.2. Time Series Data Generation Algorithm. In order to
effectively lower the delay of CAN messages, the ECU Oper-
ation Center employs the multithread parallel transmission
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mode to ensure that each ECU CAN sends data to the CAN
bus according to the timestamp of the dataset. Algorithm 1
presents the method that the ECU Operation Center sends
time series data to the ECU.

When there is only public real data in the dataset, Algo-
rithm 1 is employed to verify the effectiveness of the security
testbed and real vehicle experiments in order to ensure that
the delay rate and packet loss rate can be kept low. When
there is attack data, or when the bus is attacked, the dataset
generated by the platform can be applied as an important
basis for investigating the security of the CAN bus, especially
the changing state of the CAN ID sequence on the bus at the
moment of the attack.

In this study, Algorithm 2 is adopted to obtain the time
series data on the CAN bus. The ECU can perform processes
according to the instructions and data of the Operation Cen-
ter. When there is an attack instruction, it sends the corre-
sponding attack data. Since arbitration conflict may occur
when sending a CAN message, the delay of arbitration fail-
ure should be considered in the actual sending time. Fur-
thermore, Algorithm 2 provides the process of the security
testbed, finally generating the time series dataset.

4. Experiments

In this section, firstly, the experiment setup and the compo-
nent of the CAN bus security testbed in the automotive CPS
are presented. Then, three evaluation criteria of delay, packet
loss rate, and similarity are introduced. Finally, the experi-
mental results are explored in detail.

4.1. Experiment Setup. Up to now, it is known that there are
few public CAN bus attack datasets and most of the public
data concerning security research, including normal behav-
iors and common attack behaviors come from the literature
[6, 7]. The real dataset currently studied comes from the lit-
erature [6], and it will be used as the basic data support for
the security testbed.

The security testbed of this paper is composed of the
ECU Operation Center, the CAN bus, the CAN node, the
collector, and various connecting lines. Figure 2 shows the
prototype of the platform, while Table 1 describes its main
components and corresponding specifications. The CAN
bus is simulated by a breadboard, and the CAN node con-
sists of an Arduino UNO board and a SeeedStudio CAN
Shield to simulate the sending and receiving of CAN mes-
sages. The ECU Operation Center is implemented by a com-
puter program, which transmits data and control commands
to the CAN node in line with the CAN ID classification and
timestamp, while the collector collects the messages on the
CAN bus in real time through the Arduino program.

4.2. Evaluation Metrics. The performance of the security
testbed is evaluated from two dimensions of stability and
effectiveness. For the stability of the security testbed, two
commonly used network performance evaluation indicators,
namely, delay and packet loss rate, are adopted. For the
effectiveness of the time series data generated by the plat-

form, the time series similarity is adopted for performing
comparative analysis. The specific description is as follows.

4.2.1. Delay. Delay is an important indicator that must be
considered in the study of platform performance [23]. It
refers to the security testbed causing the message to be
delayed in time during the process of CAN message trans-
mission, due to various reasons containing sending process-
ing, network transmission, bus arbitration, ECU processing,
and receiving processing. Since the real dataset only has the
time to receive the CAN message on the bus, and does not
know the sending time of the message, this study takes the
time interval from the first message to the last message
received by the collector within a certain period of time as
the delay. In the current work, the delay is divided into the
overall delay and the delay of a single type of CAN message.

The overall delay is the time interval between the collec-
tor receiving the first message and the last message within a
certain period of time. The specific definition is as follows.

Definition 1. During time T , if the timestamp of the collector
receiving the first message is Ts and that of receiving the last
message is Te, the overall delay ΔT can be defined as

ΔT = Te − Ts: ð5Þ

The delay of a single type of CAN message is the time
interval from the first to the last message of the type received
by the collector within a certain period of time. The specific
definition is as follows.

Figure 2: CAN bus security testbed prototype.

Table 1: Components of the CAN bus security testbed in the
automotive CPS.

Component Specification

ECU operation center
CAN node (ECU)
CAN bus
Collector
Actual vehicle

Windows Server 2012 R2
Arduino Uno (ATmega328)

CAN-BUS shield V1.2
500Kbps

Arduino Uno (ATmega328)
CAN-BUS shield V1.2
Toyota Camry 2010
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Definition 2. During time T , if the collector receives the first
message with message ID i, the timestamp is Ti

s, and the
timestamp of the last message received is Ti

e. Next, the delay
of ID message ΔTi is defined as

ΔTi = Ti
e − Ti

s: ð6Þ

To better evaluate the performance of the platform, [24]
is taken as the reference for using the relative delay differ-
ence index. The relative delay difference in this paper refers
to the distance between the message delay generated by the
platform and the real vehicle message delay in a unit time
interval relative to the message delay of the real vehicle.
The specific definition is depicted below.

Definition 3. If the delay of real vehicle messages is recorded
as ΔT1 and that of platform messages is considered ΔT2, the
relative delay difference Δ~T is defined as

Δ~T = ΔT2−ΔT1
ΔT1

: ð7Þ

4.2.2. Packet Loss Rate. During the process of sending CAN
messages from the ECU Operation Center to the collector
obtaining messages from the CAN bus, the message loss is
called packet loss [25, 26] due to various reasons including
transmission processing, network transmission delay, bus
arbitration waiting, ECU processing, and receiving process-
ing. The end-to-end packet loss rate refers to the percentage
of the total number of messages lost in the process of trans-
mitting messages from the sender to the receiver within the
specified time interval to the total number of sent messages.
In this paper, it is called the packet loss rate, and the metric
is defined as follows.

Definition 4. For the sending and receiving ends of CAN
messages, within the time T , if the total number of messages
sent by the sender is recorded as Ns, and that of messages
not received by the receiver is denoted as Ns, then the packet
loss rate R is defined as

PLR =
Nf

Ns
: ð8Þ

When the platform simulates a non-attack scenario, T in
this paper represents the running time of a real dataset, and
Ns denotes the total number of messages in the real dataset.
When the platform simulates an attack scenario, T and Ns
need to be added to the attack time and the number of attack
messages, respectively.

4.2.3. Time Series Similarity. To evaluate the effectiveness of
the time series data generated by the platform, the similarity
between the time series data generated by the platform and
the real data should be compared. Since packet loss is inev-
itable in a strong real-time environment, the time series
lengths of the two are often different. Therefore, the similar-
ity cannot be well reflected by calculating the Euclidean dis-

tance. Moreover, the current commonly used method aims
to use dynamic time wrapping (DWT) [27, 28] to solve the
existing problem. Apart from that, in this paper, the algo-
rithm in [28] is adopted as the time series similarity calcula-
tion standard.

Supposing that there are two sequences R and C, the for-
mer is a certain type of CAN sequence in the real dataset,
and the latter is the same type of CAN sequence generated
by the platform, represented by Rm = fr1, r2,⋯, rm−1, rmg
and Cn = fc1, c2,⋯, cn−1, cng, respectively, where m is the
sequence length of R and n refers to the sequence length of
C: In terms of the steps of the DWT algorithm, it is first to
calculate the distance matrix of each element of the two
sequences R and C and then to find a path with the shortest
distance sum from the upper left corner to the lower right
corner of the matrix. In addition, it indicates that the shorter
the path is, the higher the similarity of the two sequences is
while the lower the similarity is.

Through time warping, the point at a certain time of
sequence C corresponds to the point at multiple continuous
moments of sequence R in order to achieve the goal of the
minimum distance sum. Figure 3 displays an example of cal-
culating the similarity of two time series R and C. By adopt-
ing the DTWmethod, the sum of the shortest distance of the
two series can be obtained as 1.

4.3. Result Analysis

4.3.1. Delay Analysis. In this paper, the security testbed is
tested 50 times, and the results are averaged. Since there
are many CAN messages on the CAN bus, Table 2 lists the
delay of common CAN messages in the platform and real
datasets.

As shown in the table, the total relative delay difference
of the platform is approximately 0.8%, suggesting that all

5

4

3

2

1

0

5

4

3

2

1

0

Real vehicle CAN sequence (R): 1-2-3-4-4-4-3-2

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Testbed CAN sequence (C): 1-2-4-4-4-3-2

Figure 3: DTW similarity calculation example of two time series.
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messages are sent 0.8% later than the real vehicle. In addi-
tion, it can also be observed from a single type of CAN mes-
sage that the relative delay difference of periodic and high-
frequency messages is generally larger. For example, mes-
sages with CAN ID 0B2, 2C4, and 025 have a relative delay
difference of periodic and low-frequency messages. In gen-
eral, for smaller messages including the message with CAN
ID 3B4, the relative delay difference of aperiodic messages
will be smaller, such as the message with CAN ID 398. How-

ever, it is found that some messages are different, such as
CAN ID 0B0 and 610, whose sending frequency is high,
and relative delay difference is low. From the experimental
process, it can be known that the situation is also related
to the message type. For example, 0B2 and 0B0 belong to
the wheels of the vehicle and are sent at the same frequency
and almost simultaneously. Therefore, the 0B0 message with
higher priority may block the sending of the 0B2 message,
causing more long delay.

Table 2: Delay results in the testbed and the real vehicle.

CAN ID Description Rate Real vehicle delay (ms) Testbed delay (ms) Relative delay difference (%)

All
0B0
0B2
610
025
224
2C1
2C4
398
3B4

All CAN messages
Speed of wheels 1 and 2
Speed of wheels 3 and 4

Vehicle speed
Steering angle
Brake pedal
Throttle

Engine speed
Fuel
PRND

—
0.01
0.01
0.5
0.01
0.32
0.99
0.02

Aperiodic
Aperiodic

74352
74352
74353
73481
74352
74322
74324
74333
73081
72921

74970
74509
74943
73555
74929
74440
74970
74935
73108
72990

0.80
0.21
0.80
0.10
0.78
0.18
0.87
0.81
0.04
0.09

0

20

40

60

80

100

120

140

0 20
Dist = 0.0000

40 60 80 100 120 140

Figure 4: DTW similarity distance of CAN ID 610 between the real vehicle and the testbed.
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4.3.2. Similarity Analysis. In this paper, the similarity of the
two time series between the real vehicle and the testbed is
calculated according to the above DTW algorithm. In the
following, the messages with lower frequency (CAN ID
610) and higher messages (CAN ID 0B0) as representatives
are investigated.

Figure 4 shows all regular paths and the shortest paths
with CAN ID 610. Obviously, the shortest distance of the
two time series is 0, and the path becomes a diagonal line,
indicating that the two are exactly the same. From the exper-
imental results, it is also demonstrated that the two
sequences are basically the same and the similarity is almost
the same. Therefore, the packet loss rate is extremely low.

5. Conclusion

With the intelligent, networked, and electronic modern
automobiles, the environment of the automotive CPS has
become more complex, and the in-vehicle network, espe-
cially the CAN, has been threatened. Numerous scholars
investigate the security issues of in-vehicle networks through
software simulation and real vehicle experiments. In this
paper, a CAN bus security testbed based on real vehicle data
is proposed in order to help researchers build an open,
adaptable, and low-risk infrastructure. To confirm the per-
formance of the security testbed, firstly, the delay of CAN
message sending and receiving is theoretically explored,
demonstrating that the delay is mainly associated with the
timestamp of real vehicle message sending from two aspects
of periodicity and aperiodicity. Secondly, Algorithm 1 and
Algorithm 2 are designed to complete the sending and
receiving of platform messages and realize the simulation
of six common attack behaviors. Finally, the security testbed
is discussed in detail through relative delay difference, packet
loss rate, and similarity. The experimental results demon-
strate that the platform is featured by high stability and
simulation.

In the next step, we plan to further study the latency of
platform messaging, especially to improve the similarity
between frequently sent messages and real vehicle time series
data. Meanwhile, the attack model will be further enhanced,
and the effectiveness of the attack model in this security
testbed will be further confirmed.

Data Availability

The data used to support the findings of the study are available
at the Colorado State University (https://www.engr.colostate
.edu/~jdaily/tucrrc/ToyotaCAN.html).
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