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Detecting increasing anomalous signals is critical to effective spectrum management due to the complexity of the use of
electromagnetic spectrum. The anomaly recognition approach based on autoencoder (AE) heavily relies on the assumption
that the reconstruction error of normal signals is generally lower than that of abnormal signals. Unfortunately, such an
assumption does not necessarily hold due to the excessive generalization ability of the AE. The memory-augmented
autoencoder model (MemAE) has been recently proposed to address this issue by introducing memory modules. Still, the
standard MemAE model performs poorly on complex image datasets, and its performance for abnormal communication
signals recognition is unknown. Therefore, we propose an image enhancement and improved memory-augmented autoencoder
model (IIMemAE) to recognize abnormal communication signals. Specifically, we consider two key factors, i.e., the existence of
redundant information in the time-frequency spectrogram and the low recognition accuracy of normal signals of the standard
MemAE model. We introduce an image enhancement module and an anomaly determination module compared with the
standard MemAE model. The proposed IIMemAE model can address the issue that the performance of anomaly recognition
may be degraded due to the imbalanced communication signals in the real world. The simulation results show that IIMemAE
can effectively recognize synthetic abnormal communication signals even at low signal-to-noise ratio (SNR) and jamming-to-
signal ratio (JSR) conditions and outperform the standard MemAE model. Besides, the parametric Pauta criterion proposed
can balance the recognition accuracy of normal and abnormal signals to meet the need for diverse recognition tasks.

1. Introduction

The electromagnetic spectrum is one of our most critical,
widely used, and limited natural resources [1, 2]. With the
advent of new wireless communication technologies, spec-
trum usage has become very complex, leading to radio wave
congestion and other jamming issues [3]. Wireless spectrum
anomalies may occur due to spectrum abuse or jamming. To
effectively regulate the radio spectrum and improve the
quality of service for wireless communications, it is crucial
to analyze and detect anomalous behaviors in the electro-
magnetic spectrum.

Various communication antijamming technologies [4–6]
and anomaly identification technologies [7, 8] have emerged

to ensure the reliable transmission of information. In the
wireless communication networks, the authors in [9] pro-
pose to detect interference by comparing the predicted
packet delivery rate with the actual packet delivery rate.
The authors in [10] focus on improving network perfor-
mance under active jamming attacks to achieve jamming
suppression. For spectrum anomaly identification, the char-
acteristics of the communication signals can be exploited, as
commonly done in the existing literature, such as [11–13].
The work in [11] proposes a cross-layer framework, which
enables to detection of anomalous spectrum usage attacks
(ASUA) in radio ad hoc networks by collecting the physical
and network layer information. The authors in [12] propose
a spectrum anomalous usage detection method using the
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spatial distribution characteristics of the received signal
strength. A typical spectrum is proposed based on feature
extraction and a clustering algorithm to analyze spectral data
in the broadcast bands [13].

However, these methods in [11–13] based on feature
extraction could be of high computational complexity and
consume lots of manpower and time [14]. In recent years,
deep learning (DL) has achieved excellent performance in
the radio field, such as interference identification [15] and
spectrum anomaly detection [16]. A supervised learning-
based scheme for signal detection and localization is pro-
posed in [17], where a classification model is built by manu-
ally labeling each training sample. However, due to the
complex electromagnetic spectrum situation and the unpre-
dictable characteristics of anomalous signals, it is signifi-
cantly difficult to collect and label a sufficient number of
abnormal signals. Furthermore, communication signals in
real-world systems are generally imbalanced. Abnormal
communication signals can take many forms from the pres-
ence of unwanted signals in licensed bands to the absence of
expected signals [18], which makes there are more abnormal
signals than normal signals. Therefore, the performance of
anomaly recognition methods based on supervised learning
may be greatly degraded [19].

More recently, the unsupervised autoencoder (AE)
learning model has emerged and has been adopted for
anomaly detection with imbalanced data [20–25]. In net-
work intrusion detection systems, the authors in [21] pro-
pose to employ a multimodal deep autoencoder (DAE) to
detect abnormal traffic in the network and forward the
anomaly to an attack classifier for classification. The authors
in [22] use an ensemble of autoencoders to propose an
online network traffic anomaly detection approach that can
detect various attacks with performance comparable to
offline anomaly detectors. In the anomaly recognition task,
the AE is trained by minimizing the reconstruction error
of normal signals, for which the reconstruction error is used
as the anomaly metric. In [23], a deep autoencoder network
is applied to detect the anomalies by reconstructing the
spectrogram of the received signal. An unsupervised anom-
aly identification method based on the convolutional
autoencoder (CAE) is studied in [24] to identify radio
frequency interference. The authors in [25] propose a varia-
tional autoencoder- (VAE-) based spectral anomaly detec-
tion method for unlicensed bands, where the percentile
(PER) score is introduced as a new measure of anomaly.
Note that, the effectiveness of these AE models for anomaly
recognition heavily relies on the assumption that the recon-
struction error of normal signals is generally lower than that
of abnormal signals.

However, this assumption does not necessarily hold as the
abnormal signals may also be reconstructed well by the AE
due to its strong generalization ability [26–28]. For example,
if abnormal and normal signals share some common compo-
sitional features, a “strong” AE may also reconstruct the
anomalies well. Thus, the reconstruction errors of the normal
signals and some abnormal signals could be close to each
other. Further, as there are generally no training samples of
abnormal signals, it is impossible to predict the reconstruction

results of abnormal signals. To address this issue, introduces a
memory-augmented autoencoder (MemAE) to enlarge the
reconstruction error of anomalous samples, thereby improv-
ing anomaly detection performance. However, the MemAE
model does not achieve satisfactory performance for the
anomaly recognition with complex image datasets (e.g.,
CIFAR-10), and its performance remains unknown for the
datasets with abnormal communication signals. Moreover,
the reconstruction error is used as the only criterion in [29]
to determine whether a signal sample is normal or not. This,
however, does not fully exploit the statistics (e.g., the mean
and the variance) of the reconstruction error, which may be
applied to define a more appropriate detection metric.

In this paper, we propose an unsupervised abnormal sig-
nal recognition algorithm based on image enhancement and
improved memory-augmented autoencoder (IIMemAE).
The main contributions can be described as follows:

(i) We consider an abnormal signal recognition model
based on unsupervised learning. To the best of our
knowledge, this work is the first attempt to apply
the MemAE model in abnormal communication
signals recognition

(ii) We propose an abnormal signal recognition algo-
rithm based on image enhancement and improved
memory-augmented autoencoder (IIMemAE). Spe-
cifically, we introduce an image enhancement
module and an anomaly determination module to
the standard MemAE model. Instead of using the
reconstruction error directly, a parametric Pauta
criterion is proposed to measure the anomaly of
the reconstruction error of the signal

(iii) We evaluate the performance of various aspects of
the IIMemAE model to verify its effectiveness and
stability. The simulation results show that the aver-
age AUC (area under curve) value of the proposed
method is greater than 80% even when the SNR is
2 dB and is close to 70% at the JSR is -5 dB. Com-
pared to the standard MemAE model, the proposed
IIMemAE model achieves better and more stable
recognition performance, especially under low
SNR and JSR conditions. Additionally, simulation
results demonstrate that the anomaly determination
module based on the parametric Pauta criterion
proposed can balance the recognition accuracy of
normal and abnormal signals and meet the need
for different recognition tasks

The remainder of this paper is organized as follows.
Section 2 introduces an abnormal signal recognition system
model based on unsupervised learning. The function of each
module of the IIMemAE model is presented in Section 3.
Section 4 presents and analyzes the simulation results. Sec-
tion 5 concludes the paper.

Notations: Matrices and vectors are in bold capital and
bold lower cases, respectively. Number fields are in black-
board bold. The notations j∙j, k∙k1, and k∙k2 represent abso-
lute value, ℓ1-norm, and ℓ2-norm, respectively.
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2. System Model

As shown in Figure 1, we consider an abnormal signal recog-
nition model in a wireless communication system. In addi-
tion to legitimate signals, there may be malicious or illegal
signals in the signals received by the receiver in this system
model. Then, the anomaly recognition module on the
receiver accomplishes the reconstruction and anomaly rec-
ognition of the signal received.

We consider two ways to define abnormal signals. One is
for unauthorized signals, that is, signals sent from illegal
transmitters without the authorization of radio regulatory
agencies. The other is an authorized signal, which suffered
external malicious jamming or failures that occur on the
receiver during transmission. In specific, for nonstationary
signals, abnormal signals can be described as the following:

(i) The signal is legal, but the parameters such as the
bandwidth and the center frequency of the signal
are not within the specified range

(ii) This is one synthetic anomaly, where legal signals
coexist with jamming signals and the jamming signal
parameters are legal

The primary task of abnormal communication signals
recognition is to identify whether the received signal is nor-
mal or abnormal. In this paper, we focus on the second type
of anomaly (the abnormal signal recognition for the first
type is left to future work.), and the abnormal signal is mod-
eled as follows:

S1 tð Þ = S0 tð Þ + Sj tð Þ, ð1Þ

where S0ðtÞ denotes the normal signal received and SjðtÞ
denotes the jamming.

The jamming-to-signal ratio (JSR) can be expressed as
follows [30]:

JSR = 10 log10
Pj

Ps
, ð2Þ

where Pj and Ps denote the jamming power and the signal
power, respectively.

The problem of abnormal signal recognition can be for-
mulated as a binary hypothesis test:

H0 : r tð Þ = S0 tð ÞC0 tð Þ + n tð Þ,
H1 : r tð Þ = S1 tð ÞC1 tð Þ + n tð Þ,

ð3Þ

where rðtÞ denotes the received signal, C0ðtÞ and C1ðtÞ
represent the channel of the normal signal and the chan-
nel of the abnormal signal, respectively, and nðtÞ is the
additive Gaussian white noise with zero mean and vari-
ance σ2. The null hypothesis H0 represents the absence
of abnormal signals in the communication system opera-
tion, and the alternative hypothesis H1 represents the
presence of abnormal signals.

The variation of a signal in the time and frequency
domains is the most crucial feature in spectrum usage.
Time-frequency analysis can extract the characteristic infor-
mation of communication signals at a specific time and fre-
quency, accurately reflecting the relationship between the
signal frequency and the time change. Therefore, the smooth
pseudo Wigner-Ville distribution (SPWVD) [31] is per-
formed to obtain a two-dimensional time-frequency spectro-
gram of the received signal as follows:

Wx t, fð Þ =
ð
g u − tð Þ

ð
h τð Þs t + τ

2
� �

s ∗ t −
τ

2
� �

e−j2πf tdτdu,

ð4Þ

where gðu − tÞ and hðτÞ are real symmetric window func-
tions and s∗ denotes the conjugate of s. In particular, gðu
− tÞ allows cross-terms oscillating parallel to the time axis
to perform smoothing (i.e., time smoothing), and hðτÞ
allows smoothing of cross-terms oscillating parallel to the
frequency axis (i.e., frequency smoothing). Since smoothing
is performed in both the time and frequency domains, the
cross-interference terms of multicomponent signals can be
well suppressed.

3. IIMemAE-Based Abnormal Signal
Recognition Algorithm

In this section, we introduce the structure of IIMemAE and
its implementation in abnormal signal recognition.

3.1. Overview. As shown in Figure 2, the proposed IIMemAE
model consists of five main components: an image enhance-
ment module, an encoder, a decoder, a memory enhance-
ment module, and an anomaly determination module. In
specific, the image enhancement module first improves the
contrast of the time-frequency spectrogram of the signal.
The encoder encodes the time-frequency spectrogram of
the signal and generates query terms. The memory enhance-
ment module includes addressing operations for recording
normal signal patterns and retrieving the memory items,
which are then passed to the decoder for reconstruction.
The IIMemAE model does not decode directly through the
decoder like standard autoencoders. Instead, the encoded
results are used as query terms to retrieve normal signal pat-
terns in memory enhancement modules and update memory
terms through attention-based addressing operations.

Finally, the query result is inputted into the decoder for
reconstruction. In the training process, the IIMemAE model
proposed is trained by minimizing the reconstruction error
and the entropy loss of the query weight of memory items.
In the test phase, the model performs reconstruction using
only a limited number of normal signal patterns recorded
in memory. The anomaly determination module quantifies
the abnormality degree of the signal according to a paramet-
ric Pauta criterion.

3.2. Image Enhancement Algorithm. The time-frequency
grayscale image converted from a communication signal
has low contrast, and low-contrast images result from a lack
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of dynamic range in the imaging pixels, which may induce
the model to extract incorrect features and false matches
[32]. By contrast stretching, the effect of redundant pixels
in image features is reduced. Hence, we introduce an image
enhancement module and apply the classical image grayscale
transformation to the time-frequency grayscale image. The
basic principle of the image grayscale transformation is to
map the gray value of the original grayscale image to a spec-
ified range of grayscale values of the output image. By satu-
rating parts of the time-frequency grayscale image at the
lowest and highest grayscales, the contrast of the output
image can be improved. In this paper, the grayscale transfor-
mation of a time-frequency spectrogram can be expressed as
follows:

ô = r o, p1 p2½ �, q1 q2½ �ð Þ, p1 < p2, q1 < q2, ð5Þ

where o denotes the original image, ô denotes the image after
grayscale transformation, and rð∙Þ denotes the grayscale trans-
formation function. The values of points ðp1, q1Þ and ðp2, q2Þ
control the shape of the transformation function. In trans-
forming the grayscale of the original image o to the new image

ô, the grayscale value of the pixels in owhose grayscale value is
lower than p1 is assigned as q1 in ô. Similarly, the gray value of
the pixel in f whose gray value is higher than p2 is also
assigned as q2 when it is transformed to ô.

For the gray value p of any pixel in the original image,
the gray value p̂ of the corresponding pixel in the new image
is obtained after transformation. For example, the transfor-
mation processing can be given as follows:

p̂ =

255p1, p < p1,
q2 − ql
p2 − p1

× p − p1ð Þ × 255 + 255q1, p1 < p < p2,

255p2, p < p2:

8>>><
>>>:

ð6Þ

3.3. Encoder and Decoder. The encoder and the decoder
generally have a symmetrical structure. The input time-
frequency spectrogram dataset sample space is represented
as X. When an input x ∈X is given, the encoder converts
it into an encoded z ∈ℤ in the low-dimensional feature
space. The decoder is trained to reverse map a latent
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Figure 1: Abnormal signal recognition model structure.
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Figure 2: Diagram of the proposed IIMemAE.
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representation ẑ ∈ℤ to the domain X. The above process
can be expressed as follows:

z = f e x ; θeð Þ, ð7Þ

x̂ = f d ẑ ; θdð Þ, ð8Þ
where θe and θd denote the parameters of the encoder and
the decoder, respectively. Here, z is used as a query to
retrieve the relevant items in memory. Then, these items z
are collected and fed to the decoder. Note that, for the stan-
dard AE model, z is set to be z [33].

3.4. Memory Enhancement Module. The memory enhance-
ment module is designed as a matrix M ∈ℝN×C , including
N real-valued vectors of dimensions C. The dimension C
of each memory item is the same as the dimension of the
encoder encoding result z. The hyperparameter N defines
the maximum capacity of memory.

ẑ = wM = 〠
N

i=1
wimi, ð9Þ

where z is obtained by soft addressing of weight vector w
∈ℝ1×N and memoryM. w = ½wi�i=1,2,⋯,N is a row vector with
nonnegative entries that sum to one. The memoryM records
the various prototypical normal patterns during training.
The weight vector w is obtained from z and calculated by
the softmax operation in Equation (10), where d is the sim-
ilarity measure, defined as cosine similarity.

wi =
exp d z,mið Þð Þ

∑N
j=1exp d z,mj

� �� � : ð10Þ

In addition, the memory module can increase sparsity by
hard shrinking the weight vector w in Equation (11). Sparse
addressing encourages fewer but more relevant memory
items to represent query results, improving the representa-
tion accuracy of memory items.

ŵi = h wi ; λð Þ =
wi, if wi > λ,
0, otherwise,

(
ð11Þ

where λ denotes the shrinkage threshold and ŵ denotes the
sparse weight vector. The elements in the weight vector w
that are less than or equal to the threshold value are assigned
as 0 to realize the sparsity of the vectors. However, it is not
easy to calculate the backpropagation of discontinuous func-
tions. To simplify the calculation, we employ the continuous
ReLU function to realize the shrinking operation as follows:

ŵi =
max wi − λ, 0ð Þ∙wi

wi − λj j + φ
, ð12Þ

where φ is a very small constant. The standardized operation
shall be carried out again when the shrinkage is completed as
follows:

ŵi = : ð13Þ

3.5. Anomaly Determination Module. By querying the mem-
ory module, all prototype vectors are considered instead of
the nearest prototype vectors, which solves the problem of
the excessive generalization ability of the AE. This means
that the reconstruction error for abnormal samples is
enlarged, making recognition easier. The next phase is to
design an appropriate threshold to separate the two classes
instead of directly using the average reconstruction error as
a metric. In the testing phase, the decoder outputs the recon-
struction loss Lr for all test samples and compares it with a
predefined threshold η, which can be expressed as follows:

Lr ≷
H1

Ho

η: ð14Þ

To design an appropriate threshold, the Pauta criterion
[34] is introduced:

An = en −�ej j > 3σ, ð15Þ

where en denotes the reconstruction error and �e and σ
denote the mean and standard deviation of the reconstruc-
tion error of the normal signal. To make the Pauta criterion
more accommodation for the abnormal signal recognition
task, we modified the Pauta criterion as follows:

An > Kσ, ð16Þ

where K denotes a positive constant. If the reconstruction
error of the time-frequency spectrogram of the input signal
satisfies the above formula, the signal is recognized as an
abnormal signal. Otherwise, the signal is recognized as a
normal signal.

3.6. Training. The training loss comprehensively considers
the reconstruction loss and the entropy loss. Given a training
dataset D =∑T

i=1xi containing T time-frequency spectro-
grams of normal signals, let x̂i be the reconstruction time-
frequency spectrogram corresponding the each training
time-frequency spectrogram xi. The minimized reconstruc-
tion error for each time-frequency spectrogram can be
expressed as follows:

Lr xi, x̂ið Þ = xi, x̂ik k22, ð17Þ

where the reconstruction error is replaced by ℓ2-norm. The
entropy loss improves the sparsity of the generated address
weights during training. We minimize the entropy loss:

Le ŵið Þ = −〠
T

i=1
ŵi log ŵið Þ: ð18Þ

Combining Equations (17) and (18), the training loss of
IIMemAE is described as follows:
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L = 1
T
〠
T

i=1
Lr xi, x̂ið Þ + αLe ŵið Þð Þ, ð19Þ

where α denotes a hyperparameter. The memory M is
updated by backpropagation and gradient descent during
training.

Specifically, there are three primary stages for the imple-
mentation of the abnormal communication signals recogni-
tion system:

(1) Signal reception: In the communication system
operating, the receiver performs time-frequency pro-
cessing on all received signals to obtain time-
frequency spectrograms. The time-frequency spec-
trograms are then processed with an image enhance-
ment algorithm

(2) Training IIMemAE: Since the normal communica-
tion signal is known to the system, the IIMemAE
model can be pretrained by the time-frequency spec-
trogram of the normal communication signal, which
is considered to memorize the characteristics of the
normal communication signal. The time-frequency
spectrogram used in training should also be proc-
essed via the image enhancement algorithm

(3) Anomaly recognition: All the time-frequency spec-
trograms obtained in (1) are used as the input of
the IIMemAE model, which reconstructs all the
time-frequency spectrograms. The parametric Pautu
criterion measures the threshold. If the reconstruc-
tion error is larger than the threshold, it is consid-
ered an abnormal signal. Otherwise, it is considered
to be a normal signal

4. Simulation Results and Discussion

In this section, the performance of the proposed IIMemAE
model and its variants are evaluated through extensive sim-
ulations. The standard MemAE [29] serves as the baseline
under identical conditions. All models are trained with the
Adam optimizer of a learning rate of 0.01 for a maximum
of 100 epochs. The hyperparameter α is 0.0002. All models
are implemented based on the Pytorch framework and
trained by using an NVIDIA GTX1080 GPU.

4.1. Simulation Setup. In this paper, the BPSK signal as the
normal signal is obtained by simulation. Any remaining sig-
nal that is not a BPSK signal is considered anomalous, and
we simulate six typical synthetic anomalies [35, 36]. (i)
Comb-spectrum: the comb spectrum jamming consists of
multiple identically modulated subjammings. It is a set of
narrowband interferers modulated over a range of frequen-
cies. Each subjamming is superimposed in the time domain
and separated in the frequency domain. The jamming spec-
trum is comb-shaped. (ii) Multitone: the multitone jamming
consists of multiple tones. Each frequency point is randomly
distributed in a specific frequency band. (iii) Pulse: the pulse
jamming transmitted at a random time on a fixed frequency

band. (iv) Single-tone: single-tone jamming can affect the
BPSK signal by generating high power. (v) Sweeping: it per-
forms linear frequency sweep jamming on the BPSK signal,
and the center frequency of the jamming is the same as the
BPSK signal. (vi) Noise-FM: the noise FM jamming with a
certain bandwidth and high power is added to the BPSK
signal.

The time-frequency spectrograms of one normal signal
are shown in Figure 3 and six abnormal signals are shown
in Figure 4. The training dataset contains 2000 normal
time-frequency spectrograms, each of size 112 × 112. The
testing dataset contains 1400 time-frequency spectrograms
with 200 normal time-frequency spectrograms and 1200
anomalous time-frequency spectrograms. Each abnormal
signal mentioned above has 200 time-frequency spectro-
grams, each of which is of size 112 × 112. The training and
testing datasets are not duplicated. The test dataset’s 200
time-frequency spectrograms of the normal signal are taken
out as the validation dataset.

The implementation of the IIMemAE model to recog-
nize abnormal signals can be described as follows:

(1) The training dataset and test dataset are processed by
the image enhancement algorithm. Then, the train-
ing dataset is fed into the network to train. Only
the time-frequency spectrogram of normal signals
is trained during training. Figure 5 shows an exam-
ple of the samples processed by the image enhance-
ment algorithm

(2) Input the validation dataset into the trained network
to obtain the reconstruction error of the normal sig-
nal timefrequency spectrogram. The threshold η is
measured by the mean and variance of the recon-
struction error

(3) Input the test dataset into the trained network and
get the reconstruction error of each time-frequency
spectrogram. Comparing the reconstruction error
with the threshold η, if the reconstruction error of
a time-frequency spectrogram satisfies the paramet-
ric Pauta criterion in Equation (16), it is considered
an abnormal signal. On the contrary, it is considered
a normal signal

As commonly done in the literature [20, 29], we use the
AUC value as the evaluation index of all models, which is the
area under the ROC (receiver operation characteristic)
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Figure 3: Time-frequency spectrograms of one normal signal.
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curve. We also consider the F1-score, which represents the
harmonized average of precision and recall. It is a metric pri-
marily used to assess imbalanced data accurately [37].
Table 1 shows the average AUC values for 20 tests on the
signal dataset. The memory capacity N is 1000, the signal-
to-noise ratio (SNR) is 10 dB, and the JSR is 5 dB.

As shown in Table 1, the proposed IIMemAE outper-
forms the standard MemAE. In particular, all evaluation
metrics of IIMemAE at K = 0:3 outperform the standard
MemAE.
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(a) BPSK signals with the comb spectrum jamming
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(b) BPSK signals with the multitone jamming
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(c) Pulse jamming on BPSK signals
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(d) BPSK signals with the single-tone jamming
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(e) Linear frequency sweeping jamming on BPSK signals
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(f) BPSK signals with the noise FM jamming

Figure 4: Time-frequency spectrograms of six abnormal signals.

0.5

0.4

0.3

0.2

0.1

0
100 200 400 500 600300

Time (s)

Fr
eq

ue
nc

y 
(H

z)

(a) The original time-frequency spectrogram
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(b) The time-frequency spectrogram after image enhancement processing

Figure 5: The time-frequency spectrogram of the multitone abnormal signal before and after image enhancement algorithm processing.

Table 1: Experimental results of different models.

Model TP TN F1-score AUC

MemAE 67.26 99.45 78.86 83.36

MemAE (IE) 59.83 99.47 73.36 79.65

MemAE (K = 3) 98.40 83.03 65.79 90.71

IIMemAE (K = 3) 98.88 92.10 80.31 95.49

IIMemAE (K = 0:3) 69.10 99.54 80.40 84.32

7Wireless Communications and Mobile Computing



Specifically, the model with anomaly determination mod-
ule significantly outperforms MemAE without parametric
Pauta criterion and exhibits higher TP (true positive). From
the mean TN (true negative), MemAE (IE) can produce better
results than the standard MemAE. We can conclude from
Table 1 that the image enhancement module can improve
the recognition accuracy of abnormal signals, and the abnor-
mal judgment module can improve the recognition accuracy

of normal signals. The IIMemAE proposed in this paper com-
prehensively considers the effect of the two modules on the
overall recognition accuracy. Therefore, IIMemAE can yield
better performance than the standard MemAE.

Moreover, we empirically study the computational
complexity of the proposed method on the test dataset (i.e.,
contains 1400 time-frequency spectrograms) using NVIDIA
GTX1080 GPU. As shown in Table 2, the proposed

Table 2: The computational complexity of the presented IIMemAE model, IIMemAE’s variants, and the standard MemAE model.

IIMemAE (K = 0:3) IIMemAE (K = 3) MemAE (K = 3) MemAE (IE) MemAE

Running time (s) 0.01599 0.01627 0.01524 0.01613 0.01495
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Figure 6: Robustness to the setting of memory capacity. The AUC values of IIMemAE and its variants for different memory capacities on
the abnormal.
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Figure 7: AUC of different SNRs for each model with the JSR of 5 dB.
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IIMemAE (K = 3) averagely takes 0.01627 seconds to recog-
nize a time-frequency spectrogram. Compared to the stan-
dard MemAE model that takes 0.01495 seconds for each
time-frequency spectrogram, our image enhancement mod-
ule and anomaly determination module induce little addi-
tional computational time (i.e., 1:32 × 10−3 seconds per time-
frequency spectrogram).

4.2. Impact of Different Memory Capacities. We conduct
experiments by setting different memory capacities, and
the AUC values are shown in Figure 6. For the anomalous
signal datasets, the AUC of the model is always stable even
as the dimension of the memory matrix increases. It indi-
cates that IIMemAE is insensitive to memory capacity N
and can robustly produce credible results. In addition, simu-

lation results of other models show that they are equally sta-
ble and robust. All models have AUC values of 80% and
above, with IIMemAE (K = 3) performing the best. Com-
pared with the standard MemAE, IIMemAE and MemAE
(K = 3) can produce better AUC values. The MemAE (IE)
does not perform well as the standard MemAE because it
has worse TP values.

4.3. Impact of Different SNRs. As shown in Figure 7, with the
increase of SNR, the AUC values of the five models increase.
Overall, MemAE (IE) shows the worst performance, and
IIMemAE (K = 3) offers the best performance. However, it
is worth noting that the standard MemAE performs the
worst at low SNR. These models with the image enhance-
ment module and anomaly determination module can pro-
duce good recognition results even at low SNR.
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Figure 8: Boxplots of reconstruction error for each signal by the IIMemAE (K = 3) model. On the left is the reconstruction error
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Figure 8 shows the reconstruction error distribution for
each signal under the IIMemAE (K = 3) model. In the box-
plots, the upper and lower bounds of the box in blue are
the upper and lower quartiles of one signal reconstruction
error, respectively. Therefore, the width of the box reflects
the degree of fluctuation in the reconstruction error of each
signal. The red line segment in the middle of the box repre-

sents the median of each signal reconstruction error. SNR is
-2 dB in the left boxplots, the average reconstruction error of
the BPSK signal is 32.69, and the average reconstruction
error of each abnormal signal is 71.69, 49.32, 66.80, 31.35,
32.75, and 42.88, respectively. SNR is 10 dB in the right
boxplots, the average reconstruction error of the BPSK sig-
nal is 13.63, and the average reconstruction error of each
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Figure 10: Boxplots of reconstruction error for each signal by the IIMemAE (K = 3) model. On the left is the reconstruction error
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Figure 11: The reconstruction results of the abnormal signal single-tone by IIMemAE (K = 3). (a) The reconstruction results of IIMemAE
(K = 3) with a JSR of 0 dB. (b) The reconstruction results of IIMemAE (K = 3) with a JSR of 10 dB.
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abnormal signal is 98.57, 64.27, 110.48, 26.09, 38.34, and
56.48, individually. As the SNR increases, the average recon-
struction error of the BPSK signal decreases, while the aver-
age reconstruction error of the abnormal signal increases.
Therefore, the larger the SNR, the IIMemAE model can bet-
ter reconstruct normal signals and enlarge the reconstruc-
tion error of abnormal signals.

4.4. Impact of Different JSRs. Figure 9 shows the experimen-
tal results of setting different JSRs. Compared with the stan-
dard MemAE model, the IIMemAE (K = 3) model offers the
best performance evaluated based on AUC. In particular, all
models except MemAE (K = 3) perform best when JSR is
0 dB. Specifically, Figure 10 shows the reconstruction error
distribution of each signal through the IIMemAE (K = 3)
model at different JSRs. JSR is -5 dB in the left boxplots,
the average reconstruction error of the BPSK signal is
11.06, and the average reconstruction error of each abnor-
mal signal is 17.76, 25.75, 13.62, 19.86, 16.46, and 25.54,
respectively. JSR is 0 dB in the middle boxplots, the average
reconstruction error of the BPSK signal is 11.06, and the
average reconstruction error of each abnormal signal is
26.74, 32.87, 34.71, 17.93, 22.15, and 28.71, individually.
Since the parameter JSR is set based on the abnormal signal,
it does not affect the reconstruction of the BPSK signal for
the IIMemAE model. As the JSR increases, the IIMemAE
model enlarges the reconstruction error of anomalous sig-
nals and thus can result in better performance.

However, when the JSR increases to a certain level, the
performance of the IIMemAE model begins to decline. In
Figure 10, JSR is 10 dB in the right boxplots, the average
reconstruction error of each abnormal signal is 55.27,
27.97, 53.07, 7.47, 11.14, and 27.61, respectively. Compared
with the middle boxplots at JSR of 0 dB, the reconstruction
errors of abnormal signal comb-spectrum and pulse are
enlarged. However, the reconstruction errors of abnormal
signals multitone, single-tone, sweeping, and noise-FM are

reduced instead. Particularly, the reconstruction errors of
abnormal signal single-tone and sweeping are almost as same
as the normal BPSK signal.

To see it more clearly, we further plot images for the
experimental results, which are performed color reversion
process in Figure 11. It shows the time-frequency spectro-
gram, the reconstructed time-frequency spectrogram, and
the reconstructed error image of the abnormal signals sin-
gle-tone with a JSR of 10 dB. Comparing the reconstructed
error images at the JSR is 0 dB and 10 dB, the IIMemAE
model can reconstruct the abnormal signal single-tone and
sweeping well with the JSR of 10 dB. In Figure 11(a) and
Figure 11(b), the reconstruction error is 20.65 and 11.56,
respectively. Single-tone jamming and frequency sweeping
jamming characteristics are similar to the BPSK signal char-
acteristic. From the time-frequency spectrogram, they both
look like a line segment. Therefore, the performance of the
IIMemAE model begins to degrade at the JSR of 5 dB.

The synthetic abnormal signal in this paper is formed by
the superimposition of the jamming signal on the normal
recognition. Simulation results show that the IIMemAE
model outperforms the standard MemAE model even at
low SNR and JSR. Specifically, in the IIMemAE model, the
image enhancement module can improve the recognition
accuracy of abnormal signals, and the anomaly determina-
tion module can improve the recognition accuracy of nor-
mal signals. Moreover, the anomaly determination module
with the parametric Pauta criterion can balance the recogni-
tion accuracy of normal and abnormal signals and adapt to
diverse abnormal signal recognition tasks. Future works will
investigate the image enhancement model to further
improve the performance of the IIMemAE model for signals
with similar features. Besides, more research work is needed
to detect anomalies in real-time signal. When the JSR
increases to a certain level, the time-frequency spectrogram
of the synthetic abnormal signal will mainly display the
characteristics of the jamming signal. If the characteristics
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Figure 12: The influence of different parameters K in the IIMemAE model on the recognition performance of abnormal signals.

11Wireless Communications and Mobile Computing



of the jamming signal are similar to the normal signal, the
IIMemAE model will reconstruct the synthetic abnormal
signal well, leading to its performance degradation. This
issue also exists in the standard MemAE model and two var-
iant models. We hope to address this issue in future work
further.

4.5. Impact of Different K . Figure 12 shows the effect of dif-
ferent parameters K in the IIMemAE model on the recogni-
tion performance of abnormal signals with the SNR is 10 dB
and the JSR is 5 dB. The evaluation indexes TP and AUC
increase with the increase of K , and the F1-score fluctuates
relatively stably within a certain range. However, the evalua-
tion index TN decreases as K increases. It dictates that the
size of K can balance the classification accuracy of positive
samples and negative samples. In particular, TP and TN
are above 94% when the parameter K is set to 2. Therefore,
we can select an appropriate K value for the IIMemAE
model to adapt to different abnormal signal recognition task
requirements.

5. Conclusion

In this paper, we have proposed an IIMemAE model to
improve the performance of abnormal communication sig-
nals recognition based on the MemAE model. The proposed
IIMemAE model can address the issue that the performance
of anomaly recognition may be degraded due to the imbal-
anced communication signals in the real world. We have
considered two important issues, i.e., redundant information
exists in the time-frequency spectrogram, and the recogni-
tion accuracy of normal signals based on the standard
MemAE model is low. We have introduced an image
enhancement module and an anomaly determination mod-
ule. In particular, the image enhancement module can
reduce the influence of redundant information in the time-
frequency spectrogram, and the anomaly determination
module based on the parametric Pauta criterion can be flex-
ibly adjusted according to the need for anomaly or classify
the detected anomalies.

Data Availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is supported by the National Key R&D Program
of China (No. 2018YFB1800800) and the National Natural
Science Foundation of China (No. U20B2038, No.
61901520, No. 61931011, No. 61871398, No. 61827801,
and No. 62101254).

References

[1] Q. Wu, G. Ding, J. Wang, and Y.-D. Yao, “Spatial-temporal
opportunity detection for spectrum-heterogeneous cognitive
radio networks: two-dimensional sensing,” IEEE Transactions
onWireless Communications, vol. 12, no. 2, pp. 516–526, 2013.

[2] G. Ding, J. Wang, Q.Wu, Y.-D. Yao, F. Song, and T. A. Tsiftsis,
“Cellular-base-station-assisted device-to-device communica-
tions in TV white space,” IEEE Journal on Selected Areas in
Communications, vol. 34, no. 1, pp. 107–121, 2016.

[3] S. Rajendran, V. Lenders, W. Meert, and S. Pollin, “Crowd-
sourced wireless spectrum anomaly detection,” IEEE Transac-
tions on Cognitive Communications and Networking, vol. 6,
no. 2, pp. 694–703, 2020.

[4] M. Liu, B. Li, Y. Chen et al., “Location parameter estimation of
moving aerial target in space–air–ground-integrated
networks-based IoV,” IEEE Internet of Things Journal, vol. 9,
no. 8, pp. 5696–5707, 2022.

[5] H. Pirayesh and H. Zeng, “Jamming attacks and anti-jamming
strategies in wireless networks: a comprehensive survey,” IEEE
Communications Surveys Tutorials, vol. 24, no. 2, pp. 767–809,
2022.

[6] M. Liu, C. Liu, M. Li, Y. Chen, S. Zheng, and N. Zhao, “Intel-
ligent passive detection of aerial target in space-air-ground
integrated networks,” China Communications, vol. 19, no. 1,
pp. 52–63, 2022.

[7] M. Liu, J. Wang, N. Zhao, Y. Chen, H. Song, and R. Yu, “Radio
frequency fingerprint collaborative intelligent identification
using incremental learning,” IEEE Transactions on Network
Science and Engineering, p. 1, 2021.

[8] A. Moumena, “Abnormal behavior detection of jamming sig-
nal in the spectrum using a combination of compressive sam-
pling and intelligent bivariate k-means clustering technique in
wideband cognitive radio systems,” in 2015 4th International
Conference on Electrical Engineering (ICEE), pp. 1–4, Bou-
merdes, Algeria, 2015.

[9] M. Spuhler, D. Giustiniano, V. Lenders, M. Wilhelm, and J. B.
Schmitt, “Detection of reactive jamming in DSSS-based wire-
less communications,” IEEE Transactions on Wireless Com-
munications, vol. 13, no. 3, pp. 1593–1603, 2014.

[10] D. Ciuonzo, A. Aubry, and V. Carotenuto, “Rician mimo
channel- and jamming-aware decision fusion,” IEEE Transac-
tions on Signal Processing, vol. 65, no. 15, pp. 3866–3880, 2017.

[11] C. Sorrells, P. Potier, L. Qian, and X. Li, “Anomalous spectrum
usage attack detection in cognitive radio wireless networks,” in
2011 IEEE International Conference on Technologies for Home-
land Security (HST), pp. 384–389, Waltham, MA, USA, 2011.

[12] S. Liu, L. J. Greenstein, W. Trappe, and Y. Chen, “Detecting
anomalous spectrum usage in dynamic spectrum access net-
works,” Ad Hoc Networks, vol. 10, no. 5, pp. 831–844, 2012.

[13] H. Yan, B. Zhou, J. Liu, M. Kong, and Z. Pei, “Radio signal rec-
ognition based on constructing typical spectrum,” in 2016 2nd
IEEE International Conference on Computer and Communica-
tions (ICCC), pp. 1889–1894, Chengdu, 2016.

[14] Q. Qu, S. Wei, S. Liu, J. Liang, and J. Shi, “JRNet: jamming rec-
ognition networks for radar compound suppression jamming
signals,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 12, pp. 15035–15045, 2020.

[15] P. Wang, Y. Cheng, B. Dong, and G. Gui, “Binary neural net-
works for wireless interference identification,” IEEE Wireless
Communications Letters, vol. 11, no. 1, pp. 23–27, 2022.

12 Wireless Communications and Mobile Computing



[16] H. Xu, X. Ma, C. Wang et al., “A neural network approach for
wireless spectrum anomaly detection in 5G-unlicensed net-
work,” CCF Transactions on Pervasive Computing and Interac-
tion, pp. 1–9, 2022.

[17] T. J. O’Shea, T. Roy, and T. Erpek, “Spectral detection and
localization of radio events with learned convolutional neural
features,” in 2017 25th European Signal Processing Conference
(EUSIPCO), pp. 331–335, Kos, Greece, 2017.

[18] S. Rajendran, W. Meert, V. Lenders, and S. Pollin, “Unsuper-
vised wireless spectrum anomaly detection with interpretable
features,” IEEE Transactions on Cognitive Communications
and Networking, vol. 5, no. 3, pp. 637–647, 2019.

[19] R. Longadge and S. Dongre, “Class imbalance problem in data
mining review,” International Journal of Computer Science &
Network, vol. 2, no. 1, 2013.

[20] B. Min, J. Yoo, S. Kim, D. Shin, and D. Shin, “Network anom-
aly detection using memory-augmented deep autoencoder,”
IEEE Access, vol. 9, pp. 104695–104706, 2021.

[21] G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, and A. Pescapé,
“A hierarchical hybrid intrusion detection approach in IoT
scenarios,” in GLOBECOM 2020 - 2020 IEEE Global Commu-
nications Conference, pp. 1–7, Taipei, Taiwan, December 2020.

[22] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune:
an ensemble of autoencoders for online network intrusion
detection,” 2018, http://arxiv.org/abs/1802.09089.

[23] Q. Feng, Y. Zhang, C. Li, Z. Dou, and J. Wang, “Anomaly
detection of spectrum in wireless communication via deep
auto-encoders,” vol. 73, Tech. Rep. 7, Journal of Supercomput-
ing, 2017.

[24] Y. Ghanney andW. Ajib, “Radio frequency interference detec-
tion using deep learning,” in 2020 IEEE 91st Vehicular Tech-
nology Conference (VTC2020-Spring), pp. 1–5, Antwerp,
Belgium, May 2020.

[25] Y. Tian, H. Liao, J. Xu, Y. Wang, S. Yuan, and N. Liu, “Unsu-
pervised spectrum anomaly detection method for unautho-
rized bands,” Space: Science & Technology, vol. 2022, article
9865016, pp. 1–10, 2022.

[26] C. Huang, Z. Yang, J. Wen et al., “Self-supervision-augmented
deep autoencoder for unsupervised visual anomaly detection,”
IEEE Transactions on Cybernetics, pp. 1–14, 2021.

[27] B. Zong, Q. Song, M. R. Min et al., “Deep autoencoding Gauss-
ian mixture model for unsupervised anomaly detection,” in
International Conference on Learning Representations, Van-
couver, Canada, 2018.

[28] F. Ye, C. Huang, J. Cao, M. Li, Y. Zhang, and C. Lu, “Attribute
restoration framework for anomaly detection,” IEEE Transac-
tions on Multimedia, vol. 24, pp. 116–127, 2022.

[29] D. Gong, L. Liu, V. Le et al., “Memorizing normality to detect
anomaly: memory-augmented deep autoencoder for unsuper-
vised anomaly detection,” in 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 1705–1714, South
Korea, 2019.

[30] L. Zhang, H. Wang, and T. Li, “Anti-jamming message-driven
frequency hopping—part I: system design,” IEEE Transactions
on Wireless Communications, vol. 12, no. 1, pp. 70–79, 2013.

[31] Z. Chen and L. Wu, “Blind source separation of dual-carrier
MPPSK signal based on smoothed pseudo wigner distribu-
tion,” in 2014 9th International Symposium on Communica-
tion Systems, Networks Digital Sign (CSNDSP), pp. 664–667,
Manchester, UK, July 2014.

[32] V. Bajaj, K. Rai, A. Kumar, and D. Sharma, “Time-frequency
image based features for classification of epileptic seizures
from EEG signals,” Biomedical Physics & Engineering Express,
vol. 3, no. 1, p. 015012, 2017.

[33] Y. Zhou, X. Song, Y. Zhang, F. Liu, C. Zhu, and L. Liu, “Feature
encoding with autoencoders for weakly supervised anomaly
detection,” IEEE Transactions on Neural Networks and Learn-
ing Systems, vol. 33, no. 6, pp. 1–12, 2021.

[34] F. Wan, G. Guo, C. Zhang, Q. Guo, and J. Liu, “Outlier detec-
tion for monitoring data using stacked autoencoder,” IEEE
Access, vol. 7, pp. 173827–173837, 2019.

[35] T. Kuang, H. Chen, L. Han, R. He, W. Wang, and G. Ding,
“Abnormal signal recognition with time-frequency spectro-
gram: a deep learning approach,” 2022, http://arxiv.org/abs/
2205.15001.

[36] M. Liu, Z. Liu, W. Lu, Y. Chen, X. Gao, and N. Zhao, “Distrib-
uted few-shot learning for intelligent recognition of communi-
cation jamming,” IEEE Journal of Selected Topics in Signal
Processing, vol. 16, no. 3, pp. 395–405, 2022.

[37] T. M. Barros, P. A. Souza Neto, I. Silva, and L. A. Guedes, “Pre-
dictive models for imbalanced data: a school dropout perspec-
tive,” Education Sciences, vol. 9, no. 4, p. 275, 2019.

13Wireless Communications and Mobile Computing


	Abnormal Communication Signals Recognition Based on Image Enhancement and Improved Memory-Augmented Autoencoder
	1. Introduction
	2. System Model
	3. IIMemAE-Based Abnormal Signal Recognition Algorithm
	3.1. Overview
	3.2. Image Enhancement Algorithm
	3.3. Encoder and Decoder
	3.4. Memory Enhancement Module
	3.5. Anomaly Determination Module
	3.6. Training

	4. Simulation Results and Discussion
	4.1. Simulation Setup
	4.2. Impact of Different Memory Capacities
	4.3. Impact of Different SNRs
	4.4. Impact of Different JSRs
	4.5. Impact of Different K

	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

