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Chemical enterprises are presently confronted with several difficult issues, including high power consumption, dangerous risk
evaluation, and environmental regulation, all of which push industrial and academic institutions to develop new technologies,
catalysts, and materials. Chlorinated polyethylene (CPE) is a polymer made by replacing H2 molecules in high density-(C2H4),
with chloride ions. CPE elastomers are made from a high density-(C2H4) backbone, and it was chlorinated using a free radical
aqueous slurry technique. However, such fundamental polymer characteristics are insufficient to explain the performance
characteristics of chlorinated polyethylene elastomers. Artificial intelligence (AI) has had a massive effect on all sections of the
chemical sector, with tremendous potential that has revolutionized value supply chains, enhanced efficiency, and opened up new
ways to the marketplace. As a result, in this research, we offer a methodology for the performance characterization of chlorinated
polyethylene based on artificial intelligence (AI) and wireless network technology. The Al tools can search through enormous
databases of known compounds and their attributes, leveraging the data to generate new possibilities. The dataset is first gathered.
The chemical characterization is classified using the K-nearest neighbor (KNN) technique. This program was created to examine
molecule structures and forecast the outcomes of new chemical reactions. Bayesian optimization is used to improve

characterization performance. The proposed method will contribute to the future usage of Al in the chemical sector.

1. Introduction

Polymers are a necessary and important substance group in
materials science. They are found in a wide range of prod-
ucts, from commonplace items like the packaging to
cutting-edge technologies like lithium-ion batteries, solar
cells, and 3D printing materials. There are quite a few of
them. Chlorinated polyethylene (CPE or PE-C) is a soft
polymer that is widely used in modern manufacturing pro-
cesses. PE-C is a high-staging, high-grade rubber that was
used in conjunction with ethylene propylene, R-C4H9,
RCN, and CSM. PE-C changed with various matters. And
the PE-C can be utilized frequently in the fabrication of
wires and cables [1]. The PE-C and rubber matters, such as
PVC profile pipes, can also be used to modify magnetic
materials and ABS. Also, PE-C is created by substituting

hydrogen and Cl” atoms in HDPE [high-density polyethyl-
ene]. PE-C is a white crystalline powder. It also does not
have a smell or flavor. PE-C manufactured from little pres-
surized (C2H4) ,, HDPE is preferable because of its stronger
high-temperature thermal aging resistance [2]. PE-C has
0.93 to 0.96 (grams per centimeter cube) density, 5 to 25 mil-
lion mean molecular weight, and 0.01 to 2.0 (grams per 10
minute) melt index. The chlorination level of PE-Chas nota-
ble impact on its possessions. A thermoplastic elastomer has
a chlorine concentration ranging from 16 to 24 percent; an
elastomer has a CI" mixture ranging from 26 to 48 percent
and so on. When the chlorine concentration is between 49
and 58 percent, the polymer has a leather-like semielastic
hardness, but when it exceeds 73 percent, the polymer
becomes brittle. After being subjected to a chlorine solution
containing approximately 27 percent chlorine, high-pressure
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polyethylene loses its crystallinity. When a high-crystallinity
low-pressure polyethylene with a chlorine content of 30% is
introduced, the crystallinity is lost. The chlorine level of PE-
C rubber elastomer should range between 30 and 40%.
Chlorine is included in 25-45% of CPE rubber. The increased
CI' mixture improves the fire blocking, permeability of air, and
resistance of oil [3]. Reducing chlorine concentration, on the
other hand, enlarges the cooling resistance, durability, and
compact curve presentation of the PE-C. The PE-C comes as
both the elastomer and resin types. PE-C may be utilized with
a combination of other materials such as PVC or other poly-
mers, depending on the application, or maybe used solo [4].
It can also be blended with other polymers like ethylene, poly-
propylene, polystyrene, and even ABS. Although, a large
amount of mixture volume of broad monomer atomic forms,
compound chain sorting, and different polymer artificial oper-
ations presents significant challenges to analyzers due to the
proper disadvantages of person logical skill when confronted
with vast journals and higher-dimensional information.
Because the vast majority of polymer research data is inacces-
sible, only a small portion of it can be utilized. Contemporary
polymer research is dominated by an ineffectual “trial-and-
error technique” that depends upon many tests coached by
experience, significantly limiting the development of new
plastic matters [5]. ML, a subset of Al has advanced growing
nowadays and is formally virtue at obtaining addition with
operating vast volumes of higher-dimensional information.
Many new opportunities have developed as a result of the
rapid adoption of machine learning (ML) technology with its
strong classification and regression capabilities, particularly
in the polymer industry [6]. Nonetheless, the field of polymer
informatics is still in its infancy. Researchers are attempting to
improve ML algorithms and to integrate data accumulation
and ML algorithms more deeply in specific applications [7].
In this paper, it is proposed using artificial intelligence (AI)
in conjunction with wireless network technology to precisely
assess the performance of chlorinated polyethylene in polymer
research. Here, the main contributions include as follows:

(i) Improve data generation by combining higher output-
combination practical with higher output personation

(ii) The AI can then describe the synthetic chlorinated
polyethylene’s performance based on the generated
data

(iii) Then by introducing the wireless network technology
for properly storing and transmitting data securely

The remaining section of the paper can be constructed as
follows. Section II provides a quick view of relevant literature.
Section III explains the objective statement. Section IV contains
a comprehensive explanation of the concept under consider-
ation, while Section V examines the recommended approach.
Finally, in Section VI, we conclude along with the future work.

2. Related Works

Several researchers focused on developing a method for
analyzing the performance of several polymers including
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CPE. That are all can be depicted below, Cravero et al.
(2019) [8] examine the FS4RVDD algorithm’s scalability
and reliability. The measurement of the data bank, the mod-
ulo of the aspect subsets, noise in data, and kind of correla-
tion were all varied and combined to create synthetic data
(linear and nonlinear). In addition, the FS4RVDD results
were compared to those of classic FS approaches applied to
several simplified polymeric material representations. Zhao
et al. (2018) [9], with a weight percentage of Cl of 71, a thin
film (8-10m) of randomly chlorinated polyethylene (CPE)
is formed. CPE has a higher glass transition temperature
and Young’s modulus of 2.6 GPa due to the Cl content,
which may contribute to the material’s strong electrical con-
ductivity. The random dispersion of Cl molecules on the
polymer chain is responsible for the well-managed medium
permittivity (3-4) and lower loss at high temperatures.
CPE’s improved energy storing capacity and functioning
temperature enable it an appealing polymeric dielectric for
higher-pulse metalized film capacitor utilizations. Mondal
et al. (2020) [10] show how lower percolating nanocarbon
clusters reinforced polymer composite can be used to create
a unique adaptable composite with substantial mechanical
resilience and long-term stability. PE-C compounds demon-
strated a minimum flow threshold (13.7 weight percent) and
an excellent EMI-shielding value of 42.4dB when loaded
with 40% weight VXC carbon black. CPE composites have
been demonstrated to have excellent mechanical and EMI
shielding features after thermal-air aging therapy (Li, et al.
2020) [11] in which EVA, chlorinated polyethylene, and
rubber nitrile were combined with an electron beam before
being irradiated. This was research done on the impact of
CPE and electron radiation on the framework with its char-
acteristics of compounds. EVA/NBR/CPE composites were
studied for their mechanical characteristics, crosslinking
degrees, crystallization assets, construction, and morphol-
ogy. The results showed that adding 25phr CPE to the
EVA/NBR blend system significantly increased the system’s
capacity while also increasing the degrees of crosslinking
and the transmission temperature of glass while simultaneously
decreasing the crystallization temperature and enthalpy. The
mechanical assets of the compounds are enlarged firstly, and
after that, they can be reduced. Michel et al. 2020 [12] here in
which four spectroscopic techniquesare compared, together
with ML classifiers, estimate theprecision of both user polymers
and marine polymers wasteidentification, together with less-
ened ATR-FTIR, NIR spectroscopy,and XRF spectroscopy
(MPD). These spectroscopies were all successful in identifying
consumer plastic kinds using machine learning classifiers
(Stefas et al. 2019). [13] uses Laser-Induced Breakdown Spec-
troscopy (LIBS), and distinct polymer models with similar
polymer arrays with variant additions are identified and distin-
guished. LIBS spectroscopic data were used to classify the plas-
tic samples using machine learning techniques like PCA and
LDA. These machines learning algorithmic techniques, in par-
ticular, those combining LIBS and LIBS, offered outstanding
classification results, with identification accuracies up to
100% (Stanojevic 2021). [14] outlines the LCA air pollution
cycle in waste creation and maintenance using library research.
Following the completion of the investigation, a logical link was
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established between the toxicity effect and the generated
PCDD/F dioxins using Gaussian and exponential designs
based on the artificial neural network technique and the tested
information (Charalampous et al. 2021). [3] develops the scale
correctness of produced examples using FDM procedure and
assures the efficacy of the technique by developing a unique
approach for selecting process parameter settings (Wang,
et al. 2018). In [15], by using WNBRP mixes compatible with
PE-C, liquefy compound was used to create thermoplastic elas-
tomers (TPEs). Tensile strength and break elongation were
much higher in the EVA/PE-C/WNBRP mixes than in EVA/
WNBRP ones. Furthermore, the WNBRP in the etched EVA/
CPE/WNBRP was firmly incorporated into the EVA matrix,
resulting in clean fracture surfaces. Results from the DMA
showed that the Payne effect was greatly diminished when
PE-C amount (5phr) in EVA/CPE/WNBRP. (Osmani and
Mahmud 2021) [16] focuses on the usage of ML techniques
on various polluted datasets. The classification algorithms used
were FT and LSVM. Nondominated sorting genetic algorithm-
IT is used with algorithms that help achieve an optimum solu-
tion with the minimal false-positive rate (FPR) and minimal
false-negative rate (FNR) to select the perfect mix of event
and nonevent information (FNR) (Xu et al. 2021). [17] esti-
mates the polymer bandgap, and researchers used a machine
learning frameworktermed as support vector regression
(SVR), which used training data from DFT computation and
Dragon to produce descriptors. The SVR design utilizing 16
important characteristics as inputs performed optimally for
predicting polymer band gaps after feature selection with the
greatest relevance and least redundancy. The SVR design’s
determination coefficient (R?) was as high as 0.824 for the
leave-one-out crossvalidation and as low as 0.925 for the inde-
pendent test for polymer band gaps based on DFT calculations
and SVR predictions. The final product is obtained by adding
4,4'methylene—bis—(2,6—di ter t-butyl phenol) (AO 4426) to an
80:20 mixture of chlorinated polyethylene (CPE) and polyvi-
nyl alcohol (PVA). The damping characteristics and molecular
architecture of the composites were calculated, described, and
evaluated using DMTA, DSC, and FT-IR. According to the
investigation, the composite PVA/CPE has only one dampen-
ing peak. However, with the addition of AO 4426, a new damp-
ing peak emerged above CPE’s glass transition temperature as a
result of phase separation caused by AO 4426 microcrystal
aggregation under the effect of hydroxyl hydrogen bonds (Jiang
and Zhang 2021). [18] gave an introduction about the emer-
gence of the intelligent optimization algorithm, particularly
the swarm intelligent optimization algorithm, which has given
this scientific Endeavour fresh meaning. Currently, the field of
artificial intelligence is seeing the emergence of self-creating
swarm intelligence optimization algorithms that replicate spe-
cies development. Intelligent algorithms are always emerging
as civilization progresses and science and technology improved.
Paper-plastic composite molds have been developed and put to
use in the catering packaging business as a result of this. Con-
sumption ideals have changed for the better in the modern
era. People are increasingly conscious of environmental protec-
tion, and food safety is more prominently shown in their
minds. A new emphasis for the adhesive-free composite film

sector was created with the fast growth of the catering industry
(Li et al. 2020) [19]. The author, describes the photo chlori-
nated (20°C) and thermally chlorinated (90°C) polyethylene
with varying chlorine levels by weight (19% up to 13%) that
were subjected to infrared spectral spectroscopy to determine
their quality. By our previous paper’s microstructural high-
resolution nuclear-magnetic-resonance studies, 4-6 additional
bands between 500cm’' and 2000 cm’ were discovered. They
spoke about how the chlorination process alters the molecular
structure of the polyethylene samples they tested for chlorine
(Wang et al. 2020) [20]. To create unique SPE materials,
researchers advocate combining machine learning and
coarse-grained molecular dynamics (CGMD). The coarse-
graining of chemical species resulted in a multidimensional
design space made up of physically interpretable universal
descriptors. To effectively explore the space, the autonomous
CGMD simulations were employed in conjunction with a
Bayesian optimization (BO) technique. Researchers used this
CGMD-BO approach to guide the directions to enhance the
elements of the best-known electrolytes, comprising anion, sec-
ondary site, and backbone chain, which provided comprehen-
sive explanations of the relations between lithium conductivity
and intrinsic molecular material features, such as molecule size
and nonbonding interaction strength (Ong 2019). [21] exam-
ines their work in the Materials Virtual Lab to design and opti-
mize technological materials for energy storage, energy
efficiency, and high-temperature alloys; (ii) build scalable
quantum-accurate models; and (iii) increase the speed and
accuracy of reading characterization spectra (Yamada, et al.
2019) [22]. XenonPy.MDL, a pre-trained model library, is cur-
rently being developed. Pretrained models for small molecules,
polymers, and inorganic crystalline solids total more than 140
000 in this first release. Pretrained models are accompanied
by several notable breakthroughs in transfer learning, such as
generating models with just a few hundred material properties.
They also show how strategic model transfer may improve
extrapolative prediction ability. Even though transfer learning
has shown nontrivial transferability across distinct features that
transcend the many fields of materials science, our study has
revealed underlying bridges between small molecules and poly-
mers as well as between organic and inorganic chemistry (Kim
et al. 2020) [23] in which the model’s behavior should be
shown to augment current thermodynamic information by
learning representations of materials that match synthesis-
related features. Lastly, they use the model to test for the
synthesizability of new perovskites that have been suggested
(Vivanco-Benavides, et al. 2022). [24] shows that the quantity
of information available from experiments is surprisingly sim-
ilar to what is found when modeling uncontrolled physical
characteristics of carbon nanotubes with the use of algorithms.
Specifically, in the analysis of some nanostructure, the use of
ANN, irregular forests, and KNN is emphasized, particularly
in the analysis of nanostructures. These methods are impor-
tant. It has been found that carbon nanotubes have a wide
range of interesting physical and chemical characteristics. For
thermal, electrical, and electronic characteristics, the theory of
density functional and dynamics of molecular findings still
needs to be supplemented by machine learning results.
Chiral-geometricalvariables were employed to analyze the
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FIGURE 1: Flow of the proposed methodology.

quiver feedback of carbon nanotubes; consequently, several
exact predictions were needed to forecast the mentioned waves
when it comes to mechanical characteristics. To explain the
thermionic and vibrational characteristics of carbon nanotubes
using machine learning, a certain number of iterations must be
completed (Zhao et al. 2021) [25]. JAMIP is a Python frame-
work created by Jilin University to fulfill the research needs of
computational material informatics; JAMIP is a data-driven
infrastructure powered by artificial intelligence. It consists of
a raw material manufacturing plant, a high-throughput first-
principles computations engine, an automated task submission
and progress monitoring system, and data extraction, manage-
ment, and storage system. To aid high-throughput computa-
tions, certain elements such as an inorganic crystal structure
prototype library and critical machine learning modules related
to functional material investigations have been incorporated.
Using halide perovskites as an example, they demonstrated
how their newly developed technique may be utilized to ana-
lyze optoelectronic semiconductor materials informatics.
Because it adheres to the ideas of automation, flexibility,
dependability, and intelligence, the JAMIP code is a promis-
ingly powerful instrument in the rapidly expanding field of
computational materials informatics (Agrawal and Choudhary
2019). [1] describes the benefits, limitations, and current appli-
cations of deep learning to various forms of material data.
Advances in deep learning, together with increased access to
materials databases and big data generally, hold great potential
for speeding up the discovery, design, and implementation of
next-generation materials (Uniigiil and Karaagag 2021) [26].
Chlorinated polyethylene and chloroprene rubber mix silane
vulcanization at low temperatures was examined. Instead of
employing an extrusion technology, which is widely employed
for predicted applications, rubber compounds were manufac-
tured using an internal mixer. Rubber compounds were inves-
tigated for their rheological and dynamic characteristics.
Vulcanization was followed by investigations into physic
mechanical and thermal stress-relaxation characteristics as well
as morphological and temperature scans. To discover the
vulcanization reaction process, structural research was carried
out utilizing Fourier transform infrared spectroscopy and
X-ray photoelectron spectroscopy. At 110°C and water, all of
the compound compositions could be vulcanized. In compari-
son to epoxy silane, amino silane was shown to be more
effective [27].

3. Proposed Work

This section explains the flow of the proposed method.
Figure 1 shows the schematic representation of the proposed
methodology.

3.1. Dataset Collection. In a sealed, agitated vessel or reactor,
polyethylene was chlorinated in an aqueous slurry stage. In 8
liters of water, 1 kg of polyethylene was mumbled. The slurry
was treated with 2 milliliters of nonylphenol surfactant (to
lower surface tension) and 45 g of talc (to prevent agglomer-
ation). The slurry’s temperature was raised to around 95°C,
and the treatment began by injecting 1/21/m of chlorine
gas while being exposed to ultraviolet illumination. Behind
900 seconds, the reactor pressurized force was enlarged to
2.8 100000 pascals, and the reaction was held at this pressure
for 5 minutes. After chlorination, the slurry was transported
to another agitated tank to neutralize any remaining HCI
before being cleaned and washed in an 80°C caustic batch.
The polymer was dried at a temperature of around 40
degrees Celsius. CPE-1 was screened towards several frac-
tions depending upon the distributed measurement. Here,
chlorine levels in the various fractions were determined
using the DIN EN ISO 1158 technique.

3.2. Analysis Flow. The OFC technique can be used to deter-
mine the amount of sulfur created when the required
organic molecules are combusted in an oxygen flask. Such
molecules could contain chlorine, bromine, iodine, fluorine,
or sulfurcompounds. The base of the DINENISO1158 tech-
nique is a similar oxygenflask combustion technique.

The CPE representative model was weighed with an
accuracy of 0.01 mg and deposited on filter paper cut in
the 50-70 mg range. The paper trail was projecting from
the platinum helix.

In the container, the water, potassium hydroxide solu-
tion (100 grams per liter), and hydrogen peroxide solution
(300 grams per liter) are filled in the scales of 15 milliliter,
4 milliliters, and 1 milliliter, respectively. Also, via fiber
(glass) tube, the oxygen can be given to replace the air at
250 milliliters per minute for 300 seconds (5 min).

The back end of the paper was set to fire using a gas fire.
The platinum wire-conveying stopper was firstly inserted,
and the paper has been set ablaze. After combustion had
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Input: training samples A, test samples B
Output: Class labels of Y
* Training Phase *
Training the optimum-K-scoresofevery training sample

* Test Phase *

Utilizing ID3 technique to developKNN with training sample and their associatedoptimum-K-scores
Preserving the optimum-K-scores of training sample in every node

Attaining the optimum-K-scores of test sampleemploying KNN
Forecasting test labels employing conventionalkNNtechnique with trainedoptimum-K-scores on every training sample

ArLcoriTHM 1: Pseudocode of the Proposed KNN Method.

completed, the container was raised upstanding. The con-
tainer has been stoppered along refrigerated below a cool
water flow to enable rapid and complete occupation of the
generated HCL acid.

Behind1800 seconds, the contents of the container were
moved into 250 ml Erlenmeyer, and the container has been
cleaned and transported to Erlenmeyer, yielding the last vol-
ume of around 40 ml. The Erlenmeyer flask was filled with 1
gram of NaNO,; and 2.5 milliliters of HNO; liquid (2N).
The mixture was brought to a rolling boil for 5 minutes.
After cooling, 1 mL of 50 g/l potassium chromate solution
was added, and the solution was measured through titration
with silver nitrate solution (0.1 N). Equation (1) is used to
compute the chlorine concentration in the solution.

0.1x(V, -V
Aci = 3.5455 x M, (1)
m

in which

Aciis the chlorine content of CPE.

V, and V, represent the volume of AgNO, mixture used
for the determination (in terms of milliliters) and the vol-
ume of silver nitrate solution used for the blank test, respec-
tively (inmilliliter). V, is typically 0 for pure materials and
stilled equipment. m denotes the mass of the CPE sample
(in grams).

3.3. Classification Using K-Nearest Neighbor (KNN)
Algorithm. The key benefit of KNN over other algorithms
is that it can be utilized to classify several classes. As a result,
if the data has more than two labels or, to put it another way,
if you need to categorize the data into more than two catego-
ries, KNN is a good choice.

The dataset is split into training and test samples. 50%
percentage of the solution is considered as training sample,
and remaining 50% of the solution is taken for test samples.
The kNN technique’s methodology is predicated on the
intuitive notion that samples from the same class must have
similar feature spaces. As a result, for an indeterminate class
test sample, we could simply calculate the distance between
the test sample and all of the training samples and assign
the class indicated by the test sample’s kNNs. The proposed
KNN technique condenses the training set from all training
samples into a subset, namely, the neighbors of the test sam-
ple’s nearest neighbors and all test sample’s neighbors. As a

result, we expect the set S to nearly completely cover all of
the training samples’ nearest neighbors.

3.4. Bayesian Optimization (BO) of the Characterization
Process. The Bayesian optimization (BO) method is well
known for optimizing expensive opaque functions. It depends
upon the probability model of to-be-optimized unspecified
goal f (a). The opaque function f (a) is called indefinitely
until the budget is exhausted. Queries are made up of f evalu-
ations at different hyperparameter configurations al,..., and
that is determined using an explore exploit trade-off criterion
or acquisitiveness function. The hyperparameter layout that
corresponds to the greatest question is then come back. Apply-
ing Gaussian process (GP) advance to f and computing the
posterior GP depends on the noticed questions f (al) ..., and
f is a common method (an). The posterior GP is defined by
the posterior mean function and a posterior variance function,
both of which must be assessed when the acquisition function
is evaluated for each subsequent query off.

A prominent acquisitiveness function means an expected
improvement (EI), and it can be explained as the sum of
development expected in an assessment over present mini-
mal f (a,,;,). For a Gaussian predictive distribution, EI can
be explained in the closed formation as eqn. (2).

El(a) = E[max (0, f (anyy) = f(a)] = 0 (a) (2(a)) + Py (2(a))), (2)

z(a) - y(a) B (amin) . (3)

- o?(a)

In response to the need for information, other acquisi-
tion functions have emerged. Standard acquisitions are just
concerned with the goal f (a) and do not take into account
any additional limitations. The goal of this study is to opti-
mize an opaque function f (a) that corresponds to goodness
restrictions ¢ (x), with R + indicating how closely the associ-
ated fairness rule should be imposed.

4. Performance Analysis

4.1. Progress of Reaction. The Cl-concentrations of CPE-(1-3)
are roughly 6.5, 12, and 34 percent, as per DIN EN ISO 1158.
In terms of response time, Figure 2 displays the reaction time
of three CPE-(1-3) productions.

As can be observed, as the length of the chlorination
reaction grows in this interval, the rate of the reaction
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FiGure 2: Chlorine content of products vs. time (minute).

TasLe 1: Differential screening analysis.

Distributed size (um) Wt. of polyethylene and objects (g)

PE CPE-1 CPE-2 CPE-3

2000 104 110 115 136
1015 383 407 427 510
500 276 294 310 370
300 90 96 101 121

150 105 112 118 142
100 42 45 47 57

Total summation 1000 1065 1119 1338

increased gradually. This approach is beneficial and shows
that the chlorination procedure was completed effectively.
This graphic will be used in kinetic reaction researches in
the future.

4.2. Screening Analysis. Six sieves of varied (mesh) diameters,
comprising 100, 150, 300, 500, 1015, and 2000, were
employed for differentiated screening analysis of the initial
PE and created CPEs. Polyethylene, CPE-1, CPE-2, and
CPE-3 were all screened and analyzed. Table 1 displays
the results.

The masses of exceptionally larger or smaller molecules
are lighter than the masses of average molecules, as per
Table 1. PE molecules with 100 micron sizes, for instance,
weigh roughly 42 g, but those with 2000 micron diameters
weigh 104 g.

In addition, the table demonstrates that CPE-(1-3) was
growing weights in contrast to physical education. As a con-
sequence of the chlorination process, the mass of the prod-
ucts has increased. For instance, in the CPE 2 procedure,
the overall sum of the final output from the reactors was
1119¢g per 1000 grams PE, with the addition of 119 grams
representing the mass of Cl” introduced to the physical edu-
cation chains, resulting in higher weight. Table 2, on the
other hand, expresses the amount of increased weight per
created CPE compared to the starting PE for a certain parti-
cles size. The proportion of chlorine per generated CPEs of
various sizes is shown in Table 3.

4.3. Fourier Transfer Infrared (FTIR) Spectra. These mate-
rials have been produced as a powder with a diameter of
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TaBLE 2: Increase in chlorine content.

The difference in weight between objects

Size distribution and polyethylene (g)

(pm) m, —Mmpp M — Mpp M -m
CPE-1 PE MCpE-2 PE McpE-3 PE
2000 6 11 32
1015 24 44 127
500 18 34 94
300 6 11 31
150 7 13 37
100 3 5 15

TasLE 3: Chlorine percentage based on size dispersion.

Percentage of chlorine for various

Distributed size (ym) particle sizes

CPE-1 CPE-2 CPE-3
2000 5.7 10.5 31.2
1015 6.2 11.6 33.1
500 6.5 12.3 34.0
300 6.6 12.2 35
150 7.1 12.3 35.7
100 8.3 13.1 36.9

100 1
90
80 A
70 1
60 -
50 A
40 -
30 A
20 A
10 A

% Transmission

4000 3500 3000 2500 2000 1500 1000 500
Frequency Cm-1

FIGURE 3: FTIR spectrum for polyethylene.

around 100 m for FTIR spectra. Figure 3 depicts the original
polyethylene’s infrared spectra. Figures 4-6 show the infra-
red spectra of various chlorinated polyethylene.

In the infrared range, chlorinated polyethylene’s spec-
trum strongly matches with those polyvinyl chloride (1100
to 1300 per cm). C,H, is chlorinated in the creation of
[-CHCI-], with only a few -CCl,- units generated, according
to the finding. The CH, distortion phase can be seen at
around 1380cm™ in the initial polyethylene spectrum. As
the chlorine concentration of chlorinated polyethylene rises,
this band becomes weak; yet, it exists in the spectra of
objects carrying extra CL- than PVC, indicating that methyl
groups are still available in the particles.

Figure 7 shows the comparative analysis of the classifica-
tion accuracy for the existing and the proposed methods. It
is evident from the graph that the proposed AI framework
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FIGURE 4: FTIR spectra for CPE-1.
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FIGURE 5: FTIR spectrum for CPE-2.
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FiGURre 6: FTIR spectra for CPE-3.

outperforms the conventional approaches. The characteriza-
tion of the properties of chlorinated polyethylene can be done
better using the proposed classification algorithm when
compared with the traditional classification approaches. This
classification approach yielded accurate characterization
results for the chlorinated polyethylene.

Table 4 shows the comparison of classification perfor-
mance with respect to accuracy, precision, and recall.

7
120
100 H
g 80
oy
8 60
3
3
< 40
20 -
0
Random  k-means [27] GLMnet [27] K-Nearest
Forest [27] Neighbor
(KNN)
[proposed]

Ficure 7: Comparison of classification accuracy for existing vs.
proposed method.

TaBLE 4: Comparison of classification performance.

S.no Method used Acc(:;)r)acy Pre(i/:s)lon R(eo/cz)a)lll
1. Random Forest [27] 84 80 78
2. k-means [27] 65 72 80
3, GLMnet [27] 90 85 89
4. K —ne{;l:)sgorlztlg]hbor 97 92 91

5. Conclusion

This article addresses the radical chlorination of (C2H4),, in
suspension below pressure and ultraviolet irradiation. The
performance of characterization is improved by employing
Bayesian optimization, an artificial intelligence method.
Smaller particles had a lower weight and a higher chlorine
concentration, according to the differential screening inves-
tigation. The FTIR spectra of CPE models demonstrate that
the CCI stretching and twisting phases, also C-C shakings,
produce large spikes as the reaction progresses. Because of
the induction effect of Cl™ particles contributed to the poly-
mer network, the peak related to the CH2- stretching mode
grows wider.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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