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To further balance the high-capacity transmission requirement and the scarce spectrum resources status quo, we investigate the
joint optimization of energy efficiency (EE) and spectral efficiency (SE) in a downlink multiuser NOMA system. While ensuring
the user quality of service (QoS), a power allocation algorithm based on two-layer optimization is proposed by transforming the
original multiobjective optimization problem into a univariate problem through the linear weighted sum method. Based on the
optimal user power allocation coefficient solution obtained from the inner layer, the outer layer applies the bisection principle
to search for the optimal system transmit power according to the uniqueness of the maximum value of pseudo-concave
functions. Simulation results show that the proposed algorithm always converges within fewer iterations and can achieve the
flexible tradeoff between EE and SE. This is of great significance for improving the energy utilization of actual scenarios with
time-varying communication demands.

1. Introduction

The application and popularization of 5G not only acceler-
ates the development of the Internet of Things (IoT) but also
promotes the emergence of many new communication ser-
vices, which brings more strict performance requirements,
such as better spectrum efficiency, denser network device
access, and ultra-low transmission delay [1–3]. Taking into
account the nearly exhausted frequency band resources, rel-
evant scholars and research institutions begin to seek new
access technologies to deal with the above problem [4].
Therefore, how to efficiently utilize the limited energy to
meet the ever-increasing communication demand becomes
a major topic in the current mobile communication field.

Coincidentally, as a prominent wireless radio technique,
nonorthogonal multiple access (NOMA) can transmit multi-
ple users’ information simultaneously in the same frequency
by introducing the power domain dimension, which gener-
ates excellent spectral efficiency (SE) [5, 6]. Especially, the
key technology determining the performance of NOMA is
power multiplexing [7]. Therefore, in the background of

the high energy consumption and great demand for data
rates in wireless communication system, it desperately needs
more efficient power allocation schemes that consider alto-
gether energy efficiency (EE), SE, and quality of service
(QoS) to maintain the superiority of NOMA.

Generally, the power allocation in NOMA is mainly dis-
cussed from two aspects, i.e., EE and SE. From EE vantage
point, a fast convergence algorithm based on the
Dinkelbach-Like theory was presented in [8], which contrib-
utes to obtain the optimal EE for a multiuser NOMA system.
In [9], Z. Ma et al. investigated the problem about jointing
user and subcarrier allocation while considering user fair-
ness in a downlink multicarrier (MC) NOMA system. In
[6], K. Cumanan et al. studied how the beamforming tech-
nology in MISO NOMA systems can better improve the
EE. In addition, extensive researches have also been done
from the SE aspect of NOMA. For instance, an effective
resource schedule strategy is proposed to enhance the SE
for a MC-NOMA system in [10]. In [11], a method for joint-
ing optimal beamforming and power allocation all intro-
duced to improve the throughput of the NOMA networks
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in multicell. In [12], a power allocation and spectrum shar-
ing technology for the two-slot and secondary NOMA relay
network is given to maximize the overall achievable rate of
cellular users.

However, the above-related works all consider the
single-objective optimization (SOO) with EE or SE. In fact,
the system metric often needs to be flexibly adjusted
according to actual communication scenes. In some scenes
with high real-time demands, the devices often need to
quickly respond to the emergency requirements, such as
medical care or alert information, which is SE critical
[13]. But in other times, the devices can be served just
to maintain its basic operation, and which requires opti-
mal EE at this moment. Thus, it is significant to study
how improve the energy utilization by weighing EE and
SE in the real-time transmission scenarios. In [14], Y.
Hei et al. conducted the parameter analysis and simulation
verification for the EE-SE tradeoff in DCO-OFDM com-
munication system. In [15], O. Aydin et al. studied the
tradeoff about EE-SE in 5G multioperator heterogeneous
networks. Additionally, the closed expressions for the rela-
tionship between EE and SE in CRN network were derived
in [16], which also claimed that EE-SE are not contradic-
tory in CRN networks and can achieve the optimal trade-
off. In NOMA system, the tradeoff about EE and SE for a
single-carrier and multiuser network is investigated in
[17], but it still adopted the constraint method, which
makes EE as the main optimization objective, and SE as
a constraint, in which the acquisition of EE’s value is more
experience-based and less flexible. In [18], the EE-SE tra-
deoff in a NOMA system with multiuser pairs was studied,
and it assumed that there was no interference between
user pairs, which indicates that the power allocation is
only based on every two users. An energy-efficient
resource allocation technique for a hybrid time division
multiple access—NOMA system—was proposed in [19],
the available time for transmission is divided into several
subtime slots, and a subtime slot is allocated to serve a
group of users (i.e., cluster). A network network nonortho-
gonal multiple access (N-NOMA) technique for the uplink
coordinated multipoint transmission (CoMP) was applied
in [20] to improve the system throughput, and the numer-
ical results are presented to show the accuracy of the ana-
lytical results and also demonstrate the superior
performance of the proposed N-NOMA scheme.

Based on the above researches, for improving the energy
utilization, we consider both EE and SE as primary optimi-
zation goals simultaneously in a downlink multiuser NOMA
system. By applying the linear weighted sum function
method [21], the original multiobjective optimization
(MOO) problem is firstly transformed into a SOO problem
through a positive weighting factor. While satisfying users’
QoSs, we finally propose a dual-layer power allocation algo-
rithm based on bisection searching. The optimal closed-
form expressions for power allocation coefficient of all con-
nected users and the optimal system transmit power can be,
respectively, obtained in inner and outer layer optimization.
Simulation results demonstrate the validity of the proposed
algorithm.

2. System Model

In this paper, a downlink NOMA transmission scenario with
multiple users is considered in Figure 1, wherein one cen-
trally located base station (BS) servesM single-antenna users
simultaneously. The channel coefficient from the BS to the
mth user (1 ≤m ≤M) is represented by hm = gmd

−α/2, where
gm denotes the Rayleigh fading, d is the distance between the
mth user and the BS, and α is the path-loss exponent. With-
out loss of generality, we assume that the BS can obtain the
instantaneous user channel state information (CSI), and the
channel gains of users are sorted as: 0 < jh1j2 ≤ jh2j2 ⋯≤
jhMj2.

According to the protocol of NOMA, the BS sends a
superimposed signal composed of all users’ information to
each user through the code superposition technology. At
the receiving end, the successive interference cancelation
(SIC) is adopted to eliminate the inter-user interference.
That is, each user first decodes signal of the user whose
channel gain is lower than that of its own, and subtracts it
from its received signal. Afterwards, it decodes own signal
by treating the signal of users with a higher channel gain
than itself as interference. Specifically, the mth user first
decodes the ith (i = 1, 2,⋯,m − 1) user’s information and
subtracts it from the superimposed signal it receives, and
then the information of the jth (j =m + 1,m + 2,⋯,M) user
is regarded as interference.

Consequently, the achievable data rate of the mth user
can be written as:

Rm = log2 1 + amPT hmj j2
PT hmj j2∑M

i=m+1ai + σ2

 !
, m = 1,⋯,M, ð1Þ

where PT represents the maximum available transmit power
at the BS, and am is the ratio of the allocated power of the
mth user to PT .

Furthermore, the sum rate of the system is expressed as:

R = 〠
M

m=1
Rm: ð2Þ

Assuming that the system has the unit bandwidth, the SE
and EE can be defined as follows [16]:

ηSE = R, ð3Þ

ηEE =
R

P + Pc
, ð4Þ

where Pc is the circuit power consumption, and P is the
actual consumed transmit power by BS.

3. Problem Formation

According to previous studies on EE and SE for NOMA sys-
tems, SE always grows with the increasing of the transmit
power of the BS, while EE first increases and then begins
to decrease after achieving its maximum value. This means

2 Wireless Communications and Mobile Computing



that EE and SE are contradictory when the BS power is large
enough, and also indicates that there is a tradeoff between
EE and SE.

In this section, we investigate the joint optimization of
EE and SE to achieve a flexible tradeoff between the two.
The primordial MOO problem can be formulated as:

P1 : max
P

ηEE Pð Þ, ηSE Pð Þf g, ð5Þ

where 0 ≤ P ≤ PT :
Unlike SOO problem, MOO problem can have multiple

optimal solutions. For P1, we suppose P∗ is the transmit
power that enables EE to achieve its maximum value. When
P∗ ≥ PT , P1 only has one solution, i.e., the global optimal
solution PT . When P∗ < PT , the objective can be expressed
as:

P2 : max
P

ηEE Pð Þ, ηSE Pð Þf g,

s:t:P∗ ≤ P ≤ PT :
ð6aÞ

In order to addressP2, we first normalize ηSE and ηEE to
make them additive and comparable, and then, referring to
the common conversion method for MOO problems, the
weighted sum function is adopted. Afterwards, a new system
metric is defined as:

W λEE, λSEð Þ = ω ⋅ λEE + 1 − ωð ÞλSE, ð7Þ

where λEE = ηEE/ηmax
EE and λSE = ηSE/ηmax

SE . ηmax
EE and ηmax

SE are,
respectively, the maximum value that EE and SE can achieve
within the range of a given BS power. It is evident in (7) that
the flexible tradeoff between EE and SE can be realized by
adjusting ω (ω = fωj0 ≤ ω ≤ 1g), which is a preference factor.

Moreover, substituting (3) and (4) into (7), we get

λEE−SE = ω
1

ηmax
EE P + Pcð Þ + 1 − ωð Þ 1

ηmax
SE

� �
R: ð8Þ

As a result, P2 can be further described as:

P3 : max λEE−SE, ð9aÞ

s:t:Rm ≥ Rmin
m , 1 ≤m ≤M, ð9bÞ

P ≤ PT and P = 〠
M

m=1
amPT , ð9cÞ

where constraint (9a) denotes the minimum target rate of
the mth user, which is required by its QoS and denoted as
Rmin
m for 1 ≤m ≤M. (9b) shows the constraint for maximum

transmit power of the BS.
To ensure problem (9) is solvable, the maximum BS

transmit power must be large enough to support all users’
QoS mentioned in (9a), which further introduces the mini-
mum transmit power constraint. We define Pmin as the total
minimum transmit power that can just satisfy all users’ QoS
requirements, and thus, problem (9) is feasible only when
P ≥ Pmin. Therefore, it is important to first establish the fea-
sible range of P, and the derivation of which is discussed as
follows.

Denote pm as the allocated power of the mth user, and
the problem of calculating Pmin can be described as

Pmin ≜ min
pk ,1≤m≤M

〠
M

m=1
pm, ð10aÞ

s:t:pm ≥ Am 〠
M

i=m+1
pi +

σ2

hmj j2
 !

, 1 ≤m ≤M, ð10bÞ

where Am = 2Rmin
m − 1. And (10b) originates from the mini-

mum target rate constraints in (9b). The solution to problem
(10) can be found by using the following theorem.

Theorem 1. Denoted fpmin
m gMm=1 as the optimal solution to the

objective (10), which is given as

Pmin
m = Am 〠

M

i=m+1
Pmin
i + σ2

hmj j2
 !

, 1 ≤m ≤M: ð11Þ

Proof. We prove the theorem according to the contradiction
principle. Assuming fp∗mgMm=1 is a set of allocated power of all
users and also is the optimal solution to problem (10) with at
least one constraint in (10b) inactive. More generally, we
then set the kth constraint as inactive, i.e.,

p∗k > Ak 〠
K

i=k+1
Pmin
i + σ2

hkj j2
 !

: ð12Þ

We next create fP∗∗
m gMm=1 as a new set by defining

p∗∗m = p∗m for k ≠m and setp∗∗k to the right-hand side
(RHS) of (12). By observing the structure of the con-
straints in (10b), for an arbitrary m, we can find that the
RHS of (10b) is a monotonically nondecreasing function
of pi for 1 ≤ i ≤M. In the result, the setting of p∗∗k , whose
value is less than p∗∗k , ensures that all the constraints in
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Figure 1: System model.
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(10b) hold for the newly created set fP∗∗
m gMm=1. But then,

we can get ∑M
m=1p

∗∗
m <∑M

MM with the definition of
fP∗∗

m gMm=1. It obviously contradicts to the assumption that

fP∗∗
m gMm=1 is the optimal solution to problem (10). There-

fore, we can conclude that the function (10a) is minimized
when all the constraints in (10b) are active. The proof is
complete.

Afterwards, when all constraints in (10b) are active, the
optimal solution to objective (10), i.e.,fP∗∗

m gMm=1, can be cal-
culated sequentially in the order m=M,M − 1,⋯, 1, this is
because thatPmin

m can be calculated by fpmin
i+1 gMi=m+1, and

pmin
M = AMσ

2/jhmj2is determinable. Subsequently, we
obtainPmin =∑K

m=1p
min
m and the feasible region of the actual

consumed power is Pmin ≤ P ≤ PT .

4. Proposed Optimal Solutions

It is apparent that P3 is nonconvex, so it is difficult to find
the global optimal solution in polynomial time. Therefore,
we decompose it into a dual problem, by searching the opti-
mal power allocation in inner layer and optimal available
transmit power in outer layer, the final solution of P3 can
be obtained.

4.1. Inner Layer: Optimal Power Allocation Scheme. For a
given P within the feasible range Pmin ≤ P ≤ PT , P3 can be
regarded as an optimization problem that only includes the
power allocation factor am. Additionally, for any given ω,
the part in square brackets on the RHS of (8) is a constant.
At this time, problem P3 is equivalent to maximize the
overall sum rate R.

Moreover, substituting (1) into (2), R can recast as:

R = log2 PT h1j j2 〠
M

i=1
ai + σ2

 !

+ 〠
M−1

m=1
log2 PT hm+1j j2 〠

M

i=m+1
ai + σ2

 !"

− log2 PT hmj j2 〠
M

i=m+1
ai + σ2

 !#
− log2 σ2

� �
:

ð13Þ

In order to simplify the notation, we then define:

Γm ≜ PT hmj j2, 1 ≤m ≤M, ð14Þ

θ ≜ 〠
M

i=1
ai =

P
PT

, ð15Þ

βm ≜ 〠
M

i=m+1
ai, 1 ≤m ≤M − 1, ð16Þ

Fm βmð Þ ≜ log2 Γm+1βm + σ2
� �

− log2 Γmβm + σ2
� �

: ð17Þ

Based on the above definitions, R can be reformulated as:

R = log2 1 + Γ1θ/σ2
� �

+ 〠
M−1

m=1
Fm βmð Þ: ð18Þ

Here, we further emphasize that θ = fθj0 ≤ θ ≤ 1g is the
power consumption factor, which denotes the ratio of the
actually utilized power P to the maximum available BS
transmit powe rPT . Therefore, the power allocation of the
inner layer is to allocate parameter fa∗mðθÞgMm=1 by treating
θ as a constant, and its solution is a function of θ. Moreover,
it can be easily observed that the first term in (16) is a con-
stant for any given θ, and then the optimization problem for
maximizing R is equivalent to:

P4 : max
am ,1≤m≤M

〠
M−1

m=1
Fm βmð Þ,

s:t:Rm ≥ Rmin
m ,

〠
M

m=1
am = θ,

ð19aÞ

where the optimal power allocation coefficient of the mth
user, i.e.,a∗mðθÞ, can be obtained by [22]:

a∗m θð Þ =

Am
2Rmin

m
θ − 〠

m−1

i=1
a∗i θð Þ + σ2

P hmj j2
" #

, m ≠M

θ − 〠
m−1

i=1
a∗i θð Þ, m=M

8>>>>><
>>>>>:

:

ð20Þ

4.2. Outer Layer: Optimal Available Transmit Power. In
inner layer problem, we have obtained the optimal closed-
form solution for the power allocation among users, in
which θ is the only variable. Furthermore, in outer layer,
P3 can be transformed into a univariate optimization prob-
lem about θ.

Based on the optimal power allocation demonstrated in
(20), (8) can be rewritten as:

λEE−SE′ θð Þ =Q θð ÞR θð Þ, ð21Þ

where

Q θð Þ = ω

ηmax
EE θPT + PCð Þ + 1 − ω

ηmax
SE

, ð22Þ

R θð Þ = log2 1 + Γ1θ/σ2
� �

+ 〠
M−1

m=1
F β∗

m θð Þð Þ, ð23Þ

and β∗
mðθÞ =∑M

i=m+1a
∗
i ðθÞ, P = θPT .
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The problem in outer layer can be finally formulated as:

P5 : max
θ

λEE−SE′ θð Þ, ð24aÞ

s:t:Pmin/PT ≤ θ ≤ 1:: ð24bÞ
In order to obtain the optimal solution of P5, we first

introduce the following theorem:

Theorem 2. λEE−SE′ ðθÞ is a strict pseudo-concave function
with respect to θ.

Proof. Combining (22) and (23), λEE−SE′ ðθÞ can be re-
expressed as:

λEE−SE′ θð Þ = ωR θð Þ
ηmax
EE θPT + PCð Þ + 1 − ω

ηmax
SE

R θð Þ, ð25Þ

where the convexity of RðθÞ can be firstly verified. It is clear
that the first term of RðθÞ, i.e., log2ð1 + Γ1θ/σ2Þ, is a logarith-
mic function with respect to θ, which indicates that it is
strictly concave. Moreover, the convexity of the second term,
Fmðβ∗

mðθÞÞ, can be derived recursively from the convexity of
FmðβmÞ. The first-order derivative of FmðβmÞ aboutβm is
given as:

dFm βmð Þ
dβm

= Γm+1 − Γmð Þσ2

ln 2 Γm+1βm + σ2ð Þ Γmβm + σ2ð Þ ≥ 0, ð26Þ

and the second-order derivative can be further derived as:

d2Fm βmð Þ
dβm

2 = − Γm+1 − Γmð ÞDσ2

ln 2 Γm+1βm + σ2ð Þ Γmβm + σ2ð Þ½ �2
≤ 0, ð27Þ

where D = ðΓm+1βm + σ2ÞΓm + ðΓmβm + σ2ÞΓm+1.

Obviously, the second-order derivative of FmðβmÞ is
nonpositive, which reveals that FmðβmÞ is concave with
respect to βm for 1 <m <M − 1. On this basis, we can fur-
ther come to the conclusion that Fmðβ∗

mðθÞÞ is also concave
with respect to θ. This is due to the fact that fa∗i ðθÞgMi=1 and
fβ∗

mðθÞgM−1
m=1 are both affine mappings according to their lin-

ear expressions, which preserves the convexity of Fmðβ∗
mðθÞÞ

about θ. As yet, actually, we have proved that RðθÞ is a
strictly concave function with respect to θ, this is because it
is the summation about log2ðΓ1θ/σ2 + 1Þ and Fmðβ∗

mðθÞÞ,
which are all strict concave, and the convexity of functions is
preserved by addition operations.

Moreover, for arbitrary ω, ηmax
EE , and ηmax

SE , both are deter-
ministic quantities. Additionally, θPT + PC is an affine func-
tion of θ. Therefore, since the numerator and denominator
of the first term on the RHS of (25) are, respectively, strict
concave and affine, it can be easily concluded that the first
term of λEE−SE′ ðθÞ is strict pseudo-concave about θ. Clearly,
the second term on the RHS of (25) is also strict concave.
Finally, based on the additivity of concave functions, we

can declare that λEE−SE′ ðθÞ is a strict pseudo-concave func-
tion about θ. The proof is completed.

For any pseudo-concave function, there is a unique max-
imizer [20], which guarantees the existence and uniqueness
of the global optimal solution of objective (24a), i.e., the root
of the equation dλEE−SE′ ðθÞ/dθ = 0, and the expression for d
λEE−SE′ ðθÞ/dθ is shown as:

dλEE−SE′ θð Þ
dθ

= −PTω

ηmax
EE θPT + Pcð Þ2

R θð Þ + dR θð Þ
dθ

Q θð Þ, ð28Þ

where

dR θð Þ
dθ

= 1
ln 2

ΓM da∗M θð Þ/dθð Þ
ΓMa

∗
M θð Þ + σ2

� �
,

da∗m θð Þ
dθ

=

Am
2Rmin

m
1 − 〠

m−1

i=1

da∗i θð Þ
dθ

 !
, m ≠M

1 − 〠
M−1

i=1

da∗i θð Þ
dθ

,m =M

8>>>>><
>>>>>:

:

ð29Þ

At this time, the outer layer optimization problem is
transformed into searching the maximum value of the
pseudo-concave function λEE−SE′ ðθÞ, which can turn to the
bisection algorithm for help.

4.3. Power Allocation Scheme of Joint Optimization the EE
and SE. In this section, we proposed the bisection
searching-based power allocation algorithm for the joint
optimization of EE and SE, which is shown in Algorithm 1,
and the process of it can be described as follows, where t is
used to record the number of iterations before the algorithm
converges.

At the beginning, the BS calculates the minimum trans-
mit power Pmin and then determines whether it is in the fea-
sible range ðPmin/PTÞ ≤ θ ≤ 1. If the condition is satisfied, we
can further figure out the root of λEE−SE′ ðθÞ, and the value of
dλEE−SE′ ðθÞ/dθ with the range ½Pmin/PT , 1� can be divided
into the following three cases:

Case 1: If dλEE−SE′ ðθÞ/dθjθ=1 ≥ 0, which indicates that
λEE−SE′ keeps increasing in feasible range, and the optimal
power consumption factor is θ∗ = 1.

Case 2: If dλEE−SE′ /dθjθ=Pmin/PT
≤ 0, which indicates that

λEE−SE′ keeps decreasing in feasible range. At this time, the
optimal power consumption factor is θ∗ = Pmin/PT .

Case 3: If dλEE−SE′ /dθjθ=Pmin/PT
> 0 and dλEE−SE′ /dθjθ=1 < 0,

which indicates that λEE−SE′ first increases and then
decreases. Thus, the optimal power consumption factor is
θ∗ ∈ ½Pmin/PT , 1� and can be found by using the bisection
searching method.

5. Simulation Results

The validity of Algorithm 1 is verified using computer sim-
ulations. We assume that the distance d from all users to
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the BS is the same and d = 80m. Besides, we also suppose
that all users have the same QoS requirements, which means
that Rmin

m = Rmin = 1bps/Hz for 1 ≤m ≤M. Finally, the set-
tings of other parameters are shown in Table 1. Note that
if the maximum available transmit power of the BS cannot
support all users’ minimum rate constraints, we default that
the system does not work.

Figure 2 reveals the EE versus SE with variable PT , and
the variation range of PT is 5~ 30dBm. As PT increases, it
can be seen that EE first increases with SE, but when EE
reaches its optimal value, EE begins to go down while we
continue to increase the PT , and the system power utilization
will decrease. This indicates that EE and SE are contradic-
tory when the available BS power is large enough, and there
is a tradeoff between the two.

Figure 3 shows the EE versus PT , in which M is set to 2,
3, 4. And “max-SE” means that when the system focuses on
maximizing SE, it always applies the full power allocation
strategy among users. However, from the EE’s point of view,
it is obviously not optimal. Because when the power is larger

1.Input:Pmin,PT ,t,ε;
2.Initialization:θU = 1, θL = Pmin/PT , t = 1, ε = 10−3;
3.Given θU = 1, the optimal power allocation coefficient
4.can be obtained by using (20), and then calculate QU :
5.QU = dλEE−SE′ /dθjθ=θU ;
6. ifQu ≥ 0
7. θ∗ = θU ;
8. else
9. Given θL = Pmin/PT , the optimal power allocation
10. can be obtained by using (20), and then calculate

QL:
11. QL = ðdλEE−SE′ /dθÞjθ=θL ;
12. ifQL ≤ 0
13. θ∗ = θL;
14. else
15. θM = θL + θU/2,QM = ðdλEE−SE′ /dθÞjθ=θM ;
16. whilejQM j ≥ ε
17. ifQL ⋅QM > 0
18. θL = θM ,QL =QM ;
19. else
20. θU = θM ,QU =QM ;
21. end
22. t = t + 1;
23. θM = θL + θU/2, QM = ðdλEE−SE′ /dθÞjθ=θM ;
24. end while
25.. θ∗ = θM ;
26. end
27. end
28.Output:θ∗PT , t.

Algorithm 1: Bisection searching-based power allocation algorithm.

Table 1: Simulation parameters.

Parameters Characteristic

Number of users M = 2, 3, 4
Noise power σ2 = ‐70dBm
Path-loss exponent α = 3
Maximum available transmit power of the BS PT = 5 ~ 30dBm
Circuit power consumption Pc = 28:30dBm

SE (bits/s/Hz)
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M=3,Pc=28dBm
M=4,Pc=28dBm

M=2,Pc=30dBm
M=3,Pc=30dBm
M=4,Pc=30dBm

6 7 8 9 10 11 12 13 14 15

Figure 2: The EE versus SE with different M and Pc :.
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than P∗, EE will increase firstly and then begin to decrease
with the increasing of the power. “Opt-EE” means that in
the proposed joint optimization algorithm, the system treats
EE as an indicator when ω = 1, and the system power can
always be maintained at the optimal value that maximizes
EE.

Figure 4 depicts the relationship between the optimal
transmit power θ∗PT and the weighting factor ω. The max-
imum available transmit power of the BS is set to 30 dBm,
i.e., PT = 30dBm, and M is set to 3. It can be seen that as ω
increases, θ∗PT first remains unchanged at the PT , and then
gradually approaches the P∗. This is because when ω is
smaller, the system metric is equivalent to SE, and BS uses
as much transmit power as possible to maximize the SE.
With the increasing of ω, the system metric gradually trans-
forms to be EE. Therefore, θ∗PT gradually approaches P∗

that maximizes EE.

Figure 5 reveals θ∗PT versus t with different M in the
proposed joint optimization algorithm, where PT is set to
25 dBm. It can be firstly observed that the actual con-
sumed power grows with the increasing of M. This is
because the BS needs more power to provide guaranteeing
for the increased users’ QoS, but actually, the computa-
tional complexity is not significantly enhanced. Because
the proposed joint algorithm can always achieve conver-
gence around 7 iterations. More importantly, we can find
that the value of θ∗PT with ω = 0:8 is obviously smaller
than that ω = 0:2. This is due to that the main system
metric is the SE, and at this time, the BS always tends to
use all power to maximize the system capacity. Oppositely,
the main system metric is EE when ω = 0:8, the system
always tries to keep the EE at the optimal value, and the
value is always less than the power value required to max-
imize the SE.

5 10 15 20 25 30 35
PT (dBm)

3

4

5

6

7

8

9

10

11
A

ve
ra

ge
 E

E 
(b

its
/Jo

ul
e)

M=2,opt-EE
M=3,opt-EE
M=4,opt-EE

M=2,max-SE
M=3,max-SE
M=4,max-SE

Figure 3: The EE versus PT of the BS with different M.
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Figure 6 investigates the λEE and λSE, and the joint objec-
tive function WðλEE, λSEÞvarying with ω. It can be seen that
EE gradually increases with ω, while the SE gradually goes
down. However, when the value of ω is close to zero, both
EE and SE remain unchanged, which is in consistent with
the trend of θ∗PT demonstrated in Figure 3. In particular,
when ω = 0, the maximum SE can be achieved, and the EE
reaches the optimal value when ω = 1.

6. Conclusion

In order to better maintain the system performance and
reduce energy consumption, we study the joint optimization
of EE and SE in a downlink NOMA system in this paper. We
first define a new system performance measurement indica-
tor and then transform the original MOO problem into a
SOO problem. Under the condition that guarantees users’
QoSs, a two-layer bisection searching-based power alloca-
tion algorithm is presented finally. Simulation results verify
that the proposed power allocation scheme can achieve the
opportune tradeoff between EE and SE by flexibly adjusting
the weighting factor in the given indicator function from
zero to 1. The method is universal and suitable for improv-
ing the energy utilization of actual scenarios with time-
varying communication demands.
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