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Obtaining a quick remote diagnosis of heart disease has proven problematic in recent days. To overcome such issues in e-
Healthcare systems, Internet of Things (IoT) applications have been deployed using cloud computing (CC) approaches. There
are still a number of disadvantages to using CC, including latency, bandwidth, energy usage, and security and privacy
concerns. Fog computing (FC), a CC development, may be able to overcome these obstacles. DiaFog enabling remote users for
real-time diagnosis of diabetic mellitus disease (DMD) has been proposed in this study, which is based on the combined ideas
of 10T, cloud, and fog computing, as well as an ensemble deep learning (EDL) technique. The proposed system is trained with
EDL approaches on the integrated dataset of two diabetes mellitus disease datasets (DMDDs), namely, Pima Indians Diabetes
Dataset (PIDD) and Hospital Frankfurt Germany Diabetes Dataset (HFGDD), obtained from the UCI-ML and Kaggle
repository, respectively, and the integrated dataset of these two. The suggested system has been used to demonstrate accuracy,
precision, recall, F-measure, latency, arbitration time, jitter, processing time, throughput, energy consumption, bandwidth
utilization, network utilization, scalability, and more. In the remote instantaneous diagnosis of diabetic patients, the integration
of ToT-fog-cloud is useful. The results of the trials show the value of employing FC principles and their applicability for speedy
diabetic patient remote diagnosis. PACS-key is describing text of that key PACS-key describing text of that key.

1. Introduction

The first digital revolution, i.e., the connection of numerous
networks known as the Internet, is regarded as an all-time
brilliant invention. The evolving phase continues, and we
are now in the second digital revolution, the Internet of
Things (IoT), which is essential to long-distance communi-
cations. The Internet of Medical Things (IoMT) is a
cutting-edge network that offers a global healthcare system
that can cure any condition of any location [1, 2]. The globe
is becoming more industrialized, and the deceased rate is ris-

ing. However, the number of lifestyle illnesses has been
increased in the same period. Type 2 diabetes, heart attack,
hypertension attack, and obesity are among these disorders.
The kind of nutrition, degree of stress, lack of physical activ-
ity, and environmental variables are all critical contributing
factors to various disorders. In some instances, the side
effects of these disorders may result in life-threatening
symptoms such as paralysis, shortness of breath, irregular
heartbeat, cardiac arrest, and chest discomfort, all of which
need immediate medical treatment. Wearables sensors and
IoT applications are becoming more popular for inexpensive
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e-Healthcare systems [3, 4]. These IoT applications in e-
Healthcare systems have enabled health professionals to
monitor patients remotely while allowing patients to access
e-Healthcare services easily.

1.1. Diabetes Mellitus Disease (DMD). Diabetes, also known
as diabetes mellitus disease (DMD), is a common chronic met-
abolic illness characterized by high blood glucose levels that
may lead to various health problems affecting the kidneys,
heart, and eyesight. There are three basic forms of DMD,
according to the World Health Organization (WHO) [5]:

(i) Type 1 DMD (T1DMD) is an autoimmune disease
that causes insulin levels to drop dramatically

(ii) Type-2 DMD (T2DDMD) is caused by insulin-
producing cells in the pancreas malfunctioning
and insulin resistance in the peripheral organs

(iii) Gestational DMD (GDMD) is a kind of diabetes
that affects pregnant women who have blood glu-
cose levels that are higher than usual

Because of the health risks associated with DMD, it is
critical to keep an eye on vulnerable populations, such as
children, the elderly, and pregnant women [6, 7].

1.2. IoT-Fog-Cloud Integration Approach. Primarily, IoT
applications are based only on CC. The CC creates a com-
plete bundle for the individuals. e-Healthcare systems are
aimed at making patients’ lives simpler and more conve-
nient. Current e-Healthcare systems rely heavily on IoT-
enabled smart devices. Real-world applications of CC and
its enlarged variations, such as edge computing (EC) and
FC, have lately emerged [8, 9]. Traditional cloud networking
infrastructures include restrictions like lesser data transmis-
sion speed, mobile traffic management, and privacy and
security issues. So to circumvent the limits and operate as
a bridge between various terminals and cloud servers, FC
was created [10]. The IoT is built on the combined concepts
of FC and CC ideas [11]. FC is a feature of CC that allows
for reduced latency in cloud servers [12]. Fog-based designs
efficiently cope with e-Healthcare system issues such as
scalability, readability, flexibility, and energy awareness
[13]. The FC tries to improve node-to-node communication
while saving bandwidth [14]. The FC may be utilized to
enhance disease diagnosis and prediction accuracy [15, 16].
The IoT-fog-cloud integration architecture generally com-
prises three layers, as depicted in Figure 1.

1.3. Ensemble Learning (EL) in Disease Diagnosis. Ensemble
learning (EL) classification-based algorithms have recently
been suggested to tackle classification error concerns in
machine learning (ML) applications. The researchers, hence,
proposed some ensemble classifiers for software fault predic-
tion in [17]. For multiclass imbalanced data classification,
ensemble classifiers are also used [18, 19]. The support vec-
tor machine (SVM), k-nearest neighbors (KNN), naive
Bayes (NB), decision tree (DT), artificial neural network
(ANN), fuzzy decision tree, and logistic regression- (LR-)
based learning approaches have been used for diabetes
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prediction [20]. However, these methods suffer from low
classification accuracy and computational complexity
despite their popularity. Thus, a unique ensemble strategy
is required to increase diabetes classification accuracy and
deep learning (DL) in many datasets to justify that the pro-
posed model is efficient.

1.4. Research Gap and Motivation. In recent years, the rising
deceased rate from chronic diseases such as diabetes has
posed a danger to people worldwide. Furthermore, bringing
medical advantages closer to these patients in real-time is a
societal challenge. Previously, diabetes patients used self-
monitoring of blood glucose (SMBG) approaches such as
pricking their fingers numerous times per day to test their
blood glucose levels [8, 21]. There are several disadvantages
to using such tactics. Then, emerged the idea of IoT health
sensors, which replaced conventional sensors that lacked
Bluetooth capabilities to automatically input users’ detected
data into smartphones through a specialized mobile applica-
tion. A wide range of studies has been conducted employing
the integration principles of 10T, CC, and FC, with most
studies focusing on smart cities and smart homes. In e-
Healthcare systems, the integration notion is also essential.
It is worth noting that these studies are hardware-based yet
have a real-time influence on society; nonetheless, they
might be a one-time expenditure for a particular ailment.
In recent days, fast remote diagnosis of any sickness has
become a sought-after task.

1.5. Research Questions. The following research questions
(RQs) have been considered in this study:

RQ1. What are the key outcomes of using a preprocessed
integrated dataset for the diagnosis of DMDs?

RQ2. What are the major benefits of involving EL
approaches with DL techniques in predicting a specific
disease?

RQ3. What are the motives for using the integrated
architecture in e-Healthcare systems, as well as the primary
projected benefits?

RQ4. What is the primary objective of the IoT-fog-cloud
integrated framework in processing e-Healthcare systems?

RQ5. Is it conceivable under the proposed work for the
user to restrict third-party exposure to their clinical records?

1.6. Objective and Key Contributions of the Research. The
rapid diagnosis of diabetes patients remotely is a need which
is the main objective of this research. In this paper, DiaFog
enabling remote users for real-time diagnosis of diabetes
mellitus disease based on integrated concepts of IoT, cloud,
and fog computing and ensemble deep learning (EDL) has
been proposed. The proposed system is trained with EDL
approaches on the integrated dataset of two diabetes melli-
tus disease datasets (DMDDs), namely, Pima Indians Dia-
betes Dataset (PIDD) and Hospital Frankfurt Germany
Diabetes Dataset (HFGDD), obtained from the UCI-ML
and Kaggle repository, respectively, and the integrated data-
set of these two.

This paper’s main goal and contributions may be
described this way:
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FiGure 1: The architecture of IoT-fog-cloud integration.

(i) Building a portable automated diabetes patient
diagnostic system based on EDL techniques

(ii) Using various frameworks and simulators previ-
ously recommended for IoT-fog-cloud integration
for ultimate predictive analytics

(iii) Examining the work in terms of numerous evalua-
tion metrics as well as network metrics on the dia-
betes disease integrated dataset

(iv) Addressing the findings and making comparisons of
the findings with those of previous research
investigations

(v) Highlighting the major areas where further IoT-fog-
cloud computing integrated studies can foster the
application of the methods

(vi) Identifying and analyzing prior work in diabetes
disease diagnostics done by various authors in real
time from afar

1.7. The Organization of the Paper. The following is the
order in which the paper is organized: Section 2 discusses
the spectrum of research work conducted in this field with
a table containing the summary of these researches. Section
3 covers this work’s architectural features, including the pro-
posed work’s design and the proposed model’s working
principle. Section 4 describes the efficient examination of
the proposed work, comparing it with some related results
considered in this research. Section 5 concludes with the
study’s pros and cons and the possible extensions to the pro-
posed work.

2. Related Work

Kaur et al. have introduced a cloud IoT-based framework
named CI-PDF for diabetes prediction considering accuracy,
sensitivity, and specificity as evaluative parameters on the

PIDD dataset and claimed to have achieved 94.5% of predic-
tion accuracy by combining neural network (NN) and DT
approaches [22]. Priyadarshini et al. have presented Deep-
Fog, a fog computing-based deep neural architecture for
predicting stress type, diabetes, and hypertension attacks
using standard datasets and open-source software tools, and
claimed to have achieved a superior and competitive method
in comparison to others [15]. Ferndndez-Caramés and
Fraga-Lamas have introduced an IoT continuous glucose
monitor- (CGM-) based system that claims to offer a translu-
cent and truthful blood sugar data source from a population
in a quick, flexible, scalable, and low-cost manner by acces-
sing the collected blood sugar samples and warning them in
the case of a dangerous situation being detected [21]. Barik
et al. have introduced Foglearn, a fog computing-based
framework for the application of K-means clustering in
Ganga River Basin Management and real-world feature data
for detecting diabetes patients suffering from diabetes melli-
tus and found that fog computing holds a lot of promise for
medical and geospatial big data analysis [23]. Fernandez-
Caramés et al. have created and implemented a system that
improves commercial CGMs in terms of IoT capabilities,
allowing them to monitor patients remotely and alert them
about the severity of their conditions. And they claimed to
have developed a better technique for diagnosing patients’
illnesses remotely in real time [6]. Gia et al. have developed
a fog-based structure for remote health monitoring and fall
detection. The system provides numerous progressive ame-
nities such as ECG feature extraction, security, and locally
distributed storage. In addition, the system operates accu-
rately, and the wearable sensor node is energy efficient
[24]. Devarajan et al. proposed an energy-efficient fog-
assisted healthcare system that manages glucose levels based
on evaluative measures such as energy efficiency, prediction
accuracy, computational complexity, and latency on two
datasets from the UCI repository diabetes dataset and the
Physical Activity Monitoring Dataset (PAMAP2). The
experimental results show that fog over cloud computing



has increased bandwidth efficiency, reduced latency, and
enhanced accuracy [25]. Abdel-Basset et al. have suggested
a novel framework based on computer-propped diagnosis
and IoT to detect and observe type 2 diabetes patients and
indicated the validity and robustness of the proposed algo-
rithms considering accuracy and execution time as the per-
formance evaluators [26]. Haq et al. have developed a filter
method based on the DT-ID3 (Iterative Dichotomiser 3)
model for essential feature selection in comparison to two
ensemble learning algorithms, Ada Boost and RF, using pre-
diction accuracy and computation time as evaluative mea-
sures, and found that the DT algorithm based on selected
features improves the classifier’s performance [27]. Kumari
et al. have proposed an ensemble voting classifier that uses
the ensemble of three ML algorithms, viz., LR, NB, and RF
for the classification considering the evaluative measures like
accuracy, precision, recall, and Fl-score on PIDD and
claimed to have achieved comparatively enhanced results
on binary classifications [28]. Geetha and Prasad have built
a hybrid model named T2DDP that doctors can effectively
use to treat diabetic patients by employing supervised classi-
fication algorithms such as NB and ensemble algorithms like
bagging with RF and AdaBoost for DT and found that the
forecast will be submitted to the patient’s cell phone at an
early stage to make the immediate decisions about the health
risk [29]. Shynu et al. have introduced efficient blockchain-
based secure healthcare services for disease prediction in
fog computing, considering purity, normalized mutual
information (NMI), and accuracy as performance evaluators
on PIDD and Cleveland heart disease dataset (CHDD) and
thereby claimed that the proposed work efficiently clusters
and predicts the disease compared to other methods [30].
Singh et al. have introduced an ensemble-based framework
named eDiaPredict employing XGBoost, SVM, RF, NN,
and DT to predict diabetes status among patients consider-
ing performance parameters like accuracy, sensitivity, speci-
ficity, Gini Index (GI), precision, the area under the curve
(AUC), the area under the convex hull (AUCH), minimum
error rate (MER), and minimum weighted coefficient
(MWC) on PIDD and claimed that the proposed model
could provide patients with a practical and precise predic-
tion of diabetes based on glucose concentrations [31]. Rajput
et al. have proposed a reference model for assisting rural
people in India who have diabetes in characterizing two dia-
betes victims at an early stage using KNN, LR, SVM, RF, DT,
and NB classifiers, considering accuracy, misclassification
rate (MCR), recall, precision, prevalence, and F1-score as
evaluative parameters on PIDD, and claimed to have
achieved improved communication and interaction between
patients [32]. Table 1 depicts an overview of the works con-
ducted relating to this field.

3. Proposed Work: DiaFog

This section contains information on the various datasets,
materials, and techniques employed in this study and the
proposed work’s architecture, design, and operation, desig-
nated as DiaFog.

Wireless Communications and Mobile Computing

3.1. Materials and Methods. This section is for the back-
ground study related to this research work. The simulation
tool iFogSim, the simulating framework FogBus, one of the
popular cloud service providers, Amazon Web Services
(AWS), and the cloud computing platform Aneka are dis-
cussed briefly here, along with the datasets considered in
training the model. In addition, a detailed discussion on
the techniques considered in this research.

3.1.1. Dataset Description. DiaFog, the suggested model, is
tested on three diabetic disease datasets: the Hospital Frank-
furt Germany Diabetes Dataset (HFGDD), the Pima Indians
Diabetes Dataset (PIDD), taken from the Kaggle and UCI-
ML repository, respectively, and the Integrated Diabetes
Dataset (IDD) of these two [33-35]. The HFGDD has 2000
persons, whereas the PIDD has 768 patients; both have nine
columns. The binary result column contains two classes,
each of which accepts the values “0” or “1,” with “0” indicat-
ing the absence of diabetes and “1” indicating the existence
of diabetes illness. Additionally, there are 1316 normal indi-
viduals and 684 diabetic individuals in HFGDD, while there
are 500 normal individuals and 268 diabetic individuals in
PIDD. An experiment’s IDD was created by combining
characteristics from both datasets. The suggested filtering
and normalizing approaches handle all datasets with some
missing values. Table 2 provides a summary of these data-
sets. There are 2768 cases in the IDD, each with a unique
attribute. A deep machine learning technique cannot be used
for the short dataset with nominal values. As a result, all
nominal data is transformed into numeric values for the
EDL model to work. Table 3 shows a summary of the data-
set’s characteristics.

3.1.2. Deep Learning (DL) and Activation Function (AF).
Deep learning (DL), hierarchical learning (HL), or deep
structured learning (DSL), a subset of ML, is gaining interest
in the categorization of data points [36]. The primary types
of DL include the recurrent neural network (RNN), deep
neural network (DNN), convolution neural network
(CNN), and artificial neural network (ANN). An ANN is a
system that uses weighted inputs to learn. These inputs are
then processed to generate an output. As the ANN learns,
new routes emerge. Paths with greater weightings in the
model are considered more significant (or create more
desired outcomes). The bulk of DL structures and algo-
rithms employ the ANN framework. An ANN has neurons
(interconnected nodes). A multilayer perceptron (MLP) is
a feedforward ANN that employs backpropagation to train
the network. It is utilized for supervised learning, parallel
distributed computing, and algorithmic neurobiology. The
dataset was trained using MLP, a DL approach. The MLP
function approach is presented as follows [37, 38]:

V,=0,+ Y W, X, (1)
p=1
Y, :fq(Vq)' (2)
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TaBLE 1: A summary of some related works done.

Dataset(s)

Author Materials and methods used Evaluative measures Findings
Kaur et al. CI-PDF, a cloud IoT-based diabetes PIDD Accuracy, sensitivity, ~Achieved 94.5% of prediction accuracy
[22] prediction platform, was introduced and specificity by combining DT and NN approaches
Introduced DeepFog, a deep neural

. . . - Stress, T2D, . . . -

Priyadarshini architecture based on fog computing for h . Accuracy, precision,  Achieved a superior and competitive
. - ypertension . .

et al. [15] forecasting stress, diabetes, and datasets recall, and F1-score method in comparison to others

hypertension attacks

Introduced an IoT CGM-based system
to remotely monitor patients by
accessing blood sugar samples obtained

Fernandez-
Caramés and

This study claimed to be able to give a

Not .. opulation with transparent and
Prediction accuracy pop P

Fraga-Lamas and to notify them if a problematic mentioned trustworthy. blood sugar data quickly,
[21] L easily, and affordably
scenario is discovered
Introduced the FogLearn framework for
. K-means clustering in Ganga River As a consequence, fog computing has
Barik et al. . . . -
23] Basin Management using real-world PIDD Accuracy great potential for extensive data
feature data for diagnosing diabetes analysis in medicine and geography
patients
Desi il lution that all .
Ferndndez- es1gne‘d and built a so ution that aflows The authors claimed to have developed
) continuous commercial CGMs to Not . . . .
Caramés et al. . . . Prediction accuracy a better technique for diagnosing
(6] monitor patients remotely and warn mentioned patients’ illnesses remotely in real time
them about their problems Y
. A fog—l')ase.d system for remQte health Not . The suggested procedure is precise, and
Gia et al. [24] monitoring and fall detection was . Energy efficiency
. mentioned the worn sensor node saves energy
introduced
E flici ,
To manage blood glucose levels, propose neggc}ésra?ency As a consequence, the fog over cloud
Devarajan 8 & > Prop PAMAP2 o4 computing has improved bandwidth
an energy-efficient fog-assisted computational : e
et al. [25] and PIDD . efficiency, latency, and classification
healthcare system complexity, and
latency accuracy
To diagnose and monitor type 2
Abdel-Basset diabetes patients, a new framework Personally Accuracy and The suggested algorithms were shown
et al. [26] based on computer-assisted diagnostics collected data execution time to be valid and resilient

and the IoTs was proposed

Found that the decision tree algorithm
based on selected features improves the
classifier performance

Developed a filter method based on the Clinical data Accuracy and

Hagq et al. [27] ID3-DT model computation time

Proposed an ensemble voting classifier
that employs the ensemble of three ML PIDD
algorithms, viz., RF, LR, and NB

Proposed T2DDP is a hybrid model that

uses supervised classification algorithms

Geetha and like NB and ensemble algorithms like PIDD Accuracy, precision,
Prasad [29] bagging with RF and AdaBoost for DT recall, and F1-score
to help physicians properly treat

diabetic patients

Kumari et al.
(28]

Accuracy, precision, Achieved comparatively enhanced
recall, and F1-score results on binary classifications

It was discovered that the predicted
outcome would be sent to the patient’s
mobile phone at an early stage, allowing

them to make quick judgments
concerning the health risk

Introduced efficient blockchain-based . In comparison to existing approaches,
?;l g]nu etal safe healthcare services for illness PI(]:)I_]I)D%Id Accurac;lr\,nl\)/llirlty, and the suggested work efficiently clusters
prediction in fog computing and predicts illness

Accuracy, GI

DiaPredict, ble-based syst
eDiaPredict, an ensemble-based system sensitivity, AUC,

Singh et al. that uses XGBoost, RF, SVM, NN, and

The proposed model can provide
patients with a practical and precise

. . PIDD ificity, ision, - .
[31] DT to forecast diabetes status in Siic; C;—IIWMI;EI‘;a:fg prediction of diabetes based on glucose
patients, was introduced l\)/IW C ’ concentrations
Raiout et al Proposed a reference model for aiding Accuracy, MCR, recall, The authors stated that they were able to
P " rural people in India who are suffering PIDD precision, prevalence,  increase patient communication and
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TABLE 2: A brief description of considered datasets.

Dataset used

Number of characteristics

Number of instances

HFGDD 9 (8 considered as inputs) 768 (500 healthy and 268 diabetic)

PIDD 9 (8 considered as inputs) 200 (1316 healthy and 684 diabetic)

IDD 9 (8 considered as inputs) 2768 (1816 healthy and 952 diabetic)

TAaBLE 3: A brief description of considered features of the datasets.
SL. no. Features Meaning Values
1 Pregnancies Number of times the women is pregnant A numeric value (between 0 and 17)
After 2 hours, plasma glucose concentration was .

2 Glucose determined in an oral glucose tolerance test (OGTT) A numeric value (between 0 and 199)

3 Blood pressure Diastolic blood pressure (in mmHg) A numeric value (between 0 and 122)

4 Skin thickness Thickness of triceps skin fold (in mm) A numeric value (between 0 and 99)

5 Insulin 2-hour serum insulin (in #U/ml) A numeric value (between 0 and 846)

6 Body mass index (BMI) Index mass of the body (weight in kg/height in m?) A numeric value (between 14 and 80.6)

7 Diabetes p (eglggze function Diabetes mellitus family history A numeric value (between 0.078 and 2.42)
Age Age in years A numeric value (between 1 and 120)

Outcome Diabetes disease diagnosis 0: healthy and 1: diabetic

Here, V is the ¢ number of linear combinations of p
number of inputs, X, is the p number of inputs, 6, is the q
number of bias, W, is the weighted connection between
the neuron j and the input X, f () is the ¢ number of
activation functions, and Y, is the g number of outputs.

A DNN uses a layered NN with several layers of neurons.
DNN s are made up of numerous linked perceptrons, each of
which is a single neuron. In a DNN, dense layers are those
where all inputs are densely connected to all outputs. DNNs
may also have hidden layers. A hidden layer is a point
between the NN’s input and output where the activation
function (AF) transforms the incoming data. It is called a
hidden layer since it is not visible from the system’s inputs
or outputs. The deeper the NN, the more data recognition.
The AF multiplies the input delivered to a node by weight
and capacity. The function determines the signal’s range.
In DNN, each layer may be switched on or off, with the out-
put of one layer feeding the input of the next layer ahead. A
DNN has more hidden layers than other NNs. The dataset
was trained using DNN, a DL algorithm. The DNN model
is given as [38-40]

Pii(y) = Wi'yx) + B}", (3)

Py(y) =P/ (), m=1. (4)

Here, each preactivation function P}'(y) is normally a
linear operation involving the matrix W}'(y) and the bias
B}, which can be integrated into a parameter P!

P (ﬁ’”“) = pm (ﬁ'”‘l), m>1. (5)

The ¥ denotes the addition of 1 to the vector y. The form
of hidden-layer activation functions H"(y) is often the same
at each level, but this is not always the case.

The activation function (AF) creates a weighted total and
then adds bias to it to determine whether a neuron should be
activated or not. The goal of these functions is to introduce
nonlinearity into a neuron’s output. ReLU (Rectified Linear
Unit) became a prominent AF in DL and continues to give
outstanding results today. It was built to solve the research’s
vanishing gradient issues. The sigmoid function has long
been the most common AF in NNs. The sigmoid function’s
values are in the range [0, 1], and because of its nature, tiny
and big numbers sent through it will become values near
zero and one, respectively. ReLU is the most often used
AF, while the sigmoid function is the most commonly used
AF for binary classification, which may be expressed as
[37, 40, 41]

R(d) = max (0, d), (6)

S(d) = g 7)

Here, R(d) and S(d) are for ReLU and sigmoid AF,
respectively, whereas the max () function finds the maxi-
mum value.

3.1.3. Ensemble Learning (EL). Ensemble learning (EL) may
improve performance and accuracy in predictive analysis
[42-44]. Ensemble approaches promise to reduce the bias
and variance of the traditional learning algorithm’s three
flaws: the computational, symbolic, and statistical problems.
Ensemble approaches include bagging, boosting, and stacking.
Bagging is a strong, effective, and easy ensemble approach.
This approach employs several copies of a training set utilizing
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the bootstrap with any classification or regression model. Bag-
ging works well with unstable nonlinear models (little changes
in the training set create large changes in the model). Boosting
is a model averaging meta-algorithm. A popular ensemble
approach is a potent learning principle [45, 46]. Multiple clas-
sifiers are built by various learning algorithms on the same
dataset of feature vectors, and their classifications are stacked.
Voting and averaging are also simple ensemble procedures.
They are simple to comprehend and use. Both techniques
begin by building several classification models on a training
dataset. Create each base model using multiple splits of the
same training dataset and algorithm or utilizing the same
dataset with alternative methods. This method uses majority
voting to choose the final output prediction that obtains more
than half of the votes. The ensemble technique could not cre-
ate a reliable prediction if no guess receives more than 50% of
the votes. In weighted averaging, each model’s forecast is mul-
tiplied by a weight, and then, the average is determined. A
smoother model is frequently the result of this procedure.
Assume we have M-bootstrap samples of size N (approxima-
tions of M-independent subsets) indicated as {s, s, s\ }, {s
s {5t 5 s}

We might fit M nearly independent weak learners (one
from each subgroup) w(s),w,(s) -+, wy(s) using data
coefficients d, (s), d,(s), ---,d,(s) and then aggregate them
using either majority voting or weighted averaging to
achieve an EDL model with reduced variance as

MV, (s) = argmax,[card (m|w,,(s) = P)], (8)
WA, (s) = ]\17 Y d,(s) xw,(s). (9)

1

3
I

3.1.4. iFogSim and FogBus. The iFogSim simulator proved
helpful in evaluating alternate scheduling strategies for fog
and clouds [47]. A range of situations may be considered
with iFogSim, including latency, energy usage, network con-
gestion, and operating expenses. Performance indicators are
measured by emulating fog/edge devices and cloud data cen-
ters. This study used iFogSim for several simulations. This
study also uses the FogBus paradigm [9], integrating IoT,
CC, and FC concepts. It uses blockchain to guarantee com-
munication security, privacy, and data integrity. It links
Aneka’s platform-based fog setup with the cloud via HTTP
RESTful APIs. It enables platform-independent IoT applica-
tion execution and interaction interfaces while computing
instances. It lets developers construct apps and customers
operate several apps simultaneously, and service providers
manage their resources.

3.1.5. AWS and Aneka. Amazon Web Service (AWS), a CC
service provider, is the most reliable cloud computing com-
pany, providing excellent web services and security [48].
This platform is a perfect example of actual cloud computing
since it allows for data security, integrity, and availability. It
provides on-demand services. The IT resources are cheap,
and there is no upfront commitment. The CC platform
Aneka enables developers to establish APIs [49]. Its primary

design element is a service-oriented architectural (SOA) mod-
ule. One of its primary features is its support for numerous
programming models that describe the execution logic of pro-
grams using various abstractions. The framework’s extensible
SOA simplifies cloud administration and deployment while
supporting various distributed application design patterns.
Aneka uses cloud resources, whereas iFogSim and FogBus
are used for different simulations and using fog resources.

3.1.6. Platform and Languages Used. The components of this
work were written in a variety of programming languages.
The Python programming language was used to create the
preprocessing and EDL components. Jupyter python tool
and SciKit Learn, Keras, and Tensorflow libraries were uti-
lized in the EDL application. The approach, data filtering,
and data processing in the intelligent gateway implementa-
tion are all made in Python to maintain compatibility with
other services. We use the Pandas embedding library, a data
structure library, to import the file into our Python environ-
ment. Numpy, Matplotlib, and additional libraries as needed
are also loaded into the environment [50, 51]. In addition,
the Android application is built using the App Inventor tool
from MIT, and the web communications are carried out
using the PHP programming language in this work.

3.2. The Architecture. DiaFog’s architecture, as shown in
Figure 2, incorporates a variety of techniques, hardware
components, and software components required in this
framework, as detailed below. The suggested study is based
on previously specified frameworks and simulators for IoT-
fog-cloud integration for ultimate predictive analytics.

3.2.1. Hardware Components Used. DiaFog consists of IoT
health sensors, gateways, master PC node (MPN), fog
worker node (FWN), and cloud data center node (CDCN),
which are briefly covered here. The IoT health sensors col-
lect data from diabetic patients and transfer it to gateway
devices. For example, the “blood pressure sensor” measures
systolic and diastolic pressures in mmHg. Gateways take
patient data and share it with either MPN or FWNs. These
gateways behave like fog. MPN assigns jobs to worker nodes
using a resource manager or handles requests using a
learned EDL model. When MPN and FWNs are overloaded,
it forwards to CDCNs via cloud integrators, acting as a gate-
way device. FWN processes data using the learned EDL
model and produces results as requested by gateway devices
or MPNs. FWNs are Raspberry Pi devices in this work.
CDCN is used to access cloud resources. MPN and FWNs
are overloaded, and MPN forwards to CDCNs, acting as a
gateway device.

3.2.2. Software Components Used. The proposed work com-
prises various software components, which are briefly dis-
cussed here. In the data preprocessing module, data from
IoT health sensors such as blood pressure sensors is prepro-
cessed and filtered before being sent to the cloud. Prepro-
cessing of data improves model prediction accuracy.
Preprocessed data from gateway devices are saved in a .csv
file and utilized next. The data manager (DM) accepts pre-
processed data from IoT health devices. Depending on the



= - ANEKA

Wireless Communications and Mobile Computing

AWS

i
"2 | CI
o0« |
_— |
|
, . DM p.
" = —» ()
- | Gateway MPN
4 | device
'% Human i
ToT health i
sensors i —
‘ = &
FWN-1 FWN-2

FIGURE 2: The architecture of DiaFog.

situation, it may combine data from many sources and
change transmission frequency. The DM is in charge of
deciding which FWNs to distribute the received data. The
resource manager (RM) selects resources for programs to
execute. The calculating server’s RM determines each MPN
and FWN’s resource status. After collecting data, the RMs
establish resources on FWNs and the cloud for applications.
After receiving credentials from a gateway device, the MPN
security manager (SM) validates them against the Credential
Archive of Warehouse Service. In contrast, the FWN-SM
oversees protected interactions of an FWN with others while
conducting computations. The cloud integrator (CI) delivers
storage and resource-providing instructions to the cloud. It
gives context data for cloud-based instances like containers
and virtual machines (VMs) to resource management. The
resource monitor (RMr) allots resources to programs and
tracks how successfully they are used in real time. A service
provider-defined threshold is exceeded, an unexpected prob-
lem occurs, and the RM is notified. In this component, the
dataset is used to train a DL approach to classify vector
points (5vectors) generated by IoT health device preprocess-
ing. On the other hand, it predicts and delivers results for the
RM’s tasks, a bagging classifier, and an EL approach for clas-
sification and averaging.

3.3. The Design. DiaFog’s design begins with good dataset
selection. The approach incorporates preprocessing of the
raw patient dataset. The EDL model to be used at each
design node is a step. An Android app is a vital tool for
remote users. Experiment setup and implementation are
the critical elements in the proposed study’s design.

3.3.1. Dataset Preprocessing. The raw dataset is preprocessed
and filtered here. The data were cleaned and normalized

before training and testing to improve the model’s predic-
tion accuracy. In this study, the mobile application collects
eight things every time, and the 9th data in the dataset is uti-
lized as the anticipated outcome. Table 4 shows a sample of
the considered integrated dataset.

3.3.2. Experimental Set-Up and Android App. The set-up is
implemented with some hardware configurations as evalua-
tive hardware for the experiments in this work, including the
primary gateway device (Xiaomi A2 with Android version
10), MPN (Dell with Core i3, Windows 10 64-bit OS, and
6 GB RAM), FWNs (five numbers of Raspberry Pi 4 with
4GB SDRAM), and public cloud (AWS with Windows
server and Aneka platform). In addition, 100 cell phones
belonging to different people were utilized to test the scal-
ability of the suggested concept.

The DiaFog.apk, an android interface built using MIT’s
App Inventor for this effort, will be utilized in a variety of
Android-enabled gateway devices to gather data from
remote users [52]. It serves as a connection point for IoT
health devices and MPNs or FWNs [12]. As shown in
Figures 3 and 4, the data input from the individuals is deliv-
ered to MPNs, and results are recorded.

3.3.3. Implementation. DiaFog’s implementation section
examines how the previously mentioned components are
implemented. One of the most popular programming lan-
guages, Python, has been used to preprocess data and train
the EDL model in recent years. For the predictive binary
classification, the model uses ANN with a bagging classifier
and majority voting classifier as EL techniques and DNN
with a bagging classifier and weighted averaging as EL
methods, as shown in Figure 5. Both EDL models were
applied to the three datasets mentioned earlier: HFGDD,
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TaBLE 4: Samples from the preprocessed IDD dataset.
Sl no. Pregnancies Glucose Blood pressure Skin thickness Insulin BMI DPF Age Outcome
1 6 148 72 35 0 33.6 0.627 50 1
2 1 85 66 29 0 26.6 0.351 31 0
3 8 183 64 0 0 233 0.672 32 1
4 1 89 66 23 94 28.1 0.167 21 0
5 0 137 40 35 168 43.1 2.288 33 1
6 5 116 74 0 0 25.6 0.201 30 0
7 3 78 50 32 88 31 0.248 26 1
8 10 115 0 0 0 353 0.134 29 0
9 2 197 70 45 543 30.5 0.158 53 1
10 8 125 96 0 0 0 0.232 54 1

Fog Based Framework for Diabetes Disease Diagnosis
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|

FIGURE 3: Screenshot of the DiaFog app with diabetes response as
no.

PIDD, and IDD. The results of the trials are then compared
to determine which EDL model is the best. In the case of
ANN, the ReLU function is used in all of the input, hidden,
and output layers, but in the case of DNN, the ReLU func-
tion is used in both the input and hidden layers, and the sig-
moid function is utilized at the output layer. The sizes of
various layers in this study, including an input layer, a hid-
den layer, and an output layer, are 8, 3, and 2 in ANN and
8, 4, and 2 in DNN, respectively. The ninth feature is used
to determine whether or not the patient has DMD. This pro-
posed work’s learning rate is 0.001 and 0.12 in ANN and
DNN, respectively. In this study, the commonly used opti-
mizer, Adam, is employed for modeling in both scenarios.
Table 5 shows a summary of the DL approach setup. The
Android app utilized in this project was created using MIT’s
App Inventor, and the online communications were done
with PHP language. The data characteristics are stored in
an excel file and then delivered to the MPN through HTTP
post. The DM stationed within MPN is responsible for the
subsequent conveyance of the data obtained. After any of
the nodes have successfully processed the data supplied from
the persons, the result is transmitted to the user’s gateway
device through the MPN.

3.4. The Working Principle. The working concept of this sug-
gested work, DiaFog, is explained with several algorithm
phases and a communication flow diagram. These networks
are based on the master-slave idea, with MPN as the master
and FWNss as slaves. The MPN, FWNSs, and gateway devices
are all on the same network. There are three ways to com-
municate: MPN alone, MPN with FWNs, or cloud only. In
the first situation, MPN fulfills the task request and provides
the result, whereas in the second case, FWN does so. When
MPN detects insufficient resources, i.e., MPN and FWNss are
overloaded, it forwards to CDCNs, acting as a gateway
device. Algorithm 1 describes the primary function of the
gateway device, whereas Algorithm 2 describes the primary
role of the MPN. Besides, Algorithm 3 is for training the
EDL model, and Algorithm 4 is for the test cases applied
to the generated EDL model. This work’s hardware compo-
nents interact according to the prescribed framework. The
communication chain shown in Figure 6 depicts a flow of
work ordered by users remotely.
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3.5. Algorithms Representing Detailed Working of DiaFog
4. Empirical Analysis

A short discussion on different network characteristics and
evaluative metrics is addressed, followed by a discussion on
the outcomes acquired by this suggested effort dubbed Dia-
Fog. This section also includes an overview of comparisons
with similar works done. The performance of every planned
task must be evaluated for research purposes. This study is
built on previously suggested frameworks and simulators
for IoT-fog-cloud integration for ultimate predictive analyt-
ics. These include performance parameters (accuracy, preci-
sion, recall, F-measure, etc.) and network parameters
(latency, arbitration time, processing time, throughput,

Wireless Communications and Mobile Computing

bandwidth consumption, jitter, network utilization, energy
consumption, scalability, etc.).

4.1. Performance Parameters. The primary purpose of per-
formance parameters is to find the confusion matrix, a
real-to-anticipated-class matrix on which numerous evalua-
tion metrics have been applied. T}, T, F,, and F, are abbre-
viations for the confusion matrix’s true positive, true
negative, false positive, and false negative. Some of the per-
formance measures for classification purposes explored in
this study include accuracy (Acc), precision (Pre), recall
(Rec), and F-measure (F-M). The “Acc” is defined as the
number of correct predictions divided by the total number
of input samples. The “Pre” is defined as the ratio of prop-
erly predicted positive observations to the total number of
correctly predicted positive observations. The “Rec” is
defined as the proportion of successfully expected positive
observations to the total number of properly predicted pos-
itive observations. The “F-M” is the weighted average of
“Pre” and “Rec.” The detailed evaluation formulas are as fol-
lows:

Acc= (I, + T) (10)

(T, +Ty+F, +Fy)’
Pre= ! s 11
(T, +Fy) (D

T

Rec= ! , 12
(T +Fy) (12)
r (2 x Pre x Rec) (13)

- (Pre + Rec)

In this work, in order to validate the proposed EDL
model, we evaluated it through six models. Here, model 1,
model 2, and model 3 are the ANN along with the bagging
Classifier and majority voting EL models applied on PIDD,
HFGDD, and IDD datasets, respectively, whereas, model 4,
model 5, and model 6 are the DNN along with the bagging
classifier and weighted averaging EL models applied on
PIDD, HFGDD, and IDD datasets, respectively. The
observed results are then compared, as depicted in Table 6
and Figures 7-10. From experiments, it is revealed that
model 6 outperforms other models in terms of the perfor-
mance parameters like “Acc,” “Pre,” “Rec,” and “F-M.”

4.2. Network Parameters. Network characteristics are heavily
influenced by the computing approach or level at which the
fog-enabled IoT application is coordinated. Various network
characteristics such as latency, arbitration time, total pro-
cessing time, throughput, energy consumption, bandwidth,
jitter, network utilization, and scalability are used to verify
this suggested work. Layout 1 for MPN alone, layout 2 for
MPN with 1 FWN, layout 3 for MPN with 2 FWNs, layout
4 for MPN with 3 FWNs, layout 5 for MPN with 4 FWNSs,
and layout 6 for CDCN only are the various configurations
employed in this study for the assessment of various net-
work metrics.
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TaBLE 5: Configuration of DL methods considered in DiaFog.

DL No. of input  No. of hidden  No. of output ~ Optimizer —Learning AF atinput  AF at hidden  AF at output
methods layers layers layers used rate layers layers layers
ANN 8 3 2 Adam 0.001 ReLU ReLU ReLU
DNN 8 4 2 Adam 0.120 ReLU ReLU Sigmoid

1 Inputs: USR;
Output : RES;
True: Gateway in active mode

RES; Reset to obtain ATB; and submit USR; again.

2 True Obtain ATB; using IHD; Submit USR; to GTW,;GTW, connected to MPN Send USR; to MPN using GTW; Obtain

AvrGoriTHM 1: Gateway primary function.

1 Inputs: USR;
Output : RES;
True : MPN in active mode

2 True Obtain USR;MPN (Available) outcome = =0 return RES; return RES, FWN,(Available) outcome = =0 return RESy
return RES;,CDCN,(Available) outcome = =0 return RESy; return RES;, Return RES; to GTW; using MPN

ALGORITHM 2: MPN primary function.

Latency is the time it takes for data to flow across a net-
work. It also refers to the time it takes for a data packet to be
recorded, transferred, processed by several devices, and
finally received and decoded. The variation in latencies is
estimated by adding transmission time and queuing delay,
as shown in Figure 11. Because all contact is done through

single-hop data transfers, the latency is nearly the same
whether the work is submitted to MPNs or FWNs. The
latency in a cloud arrangement is relatively significant due
to multihop data transfer outside the network, which is the
primary function of the FC. Arbitration time refers to the
time limit for the MPN to respond to the gateway devices,
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1 Inputs : SDT;
Output : RES;

True : Samples in training mode

2 Truei=1 to M Obtain SDT; Training DLA; on SDT; Bootstrap DLA; using BCF; Apply Majority Voting or Weighted Aver-

aging Calculate PPR; Generate an EDL Model

ALGorITHM 3: Training EDL model(s).

1 Inputs: TDT,
Output : RES;

True : Data in test mode

2 Truej =1 to N Apply TDT;, to generated EDL Model Assign RES; to the nearest outcome values {0, 1} Calculate predictive

class (RES;) Return RES;

ArcoriTHM 4: EDL model test cases.
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FiGure 6: The flowchart of data

communications in DiaFog.

TABLE 6: Observed results of various performance parameters.

Performance parameters EDL models

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Accuracy (in %) 81.6 90.2 94.5 83.5 934 98.6
Precision 0.72 091 0.96 0.81 0.95 0.99
Recall 0.69 0.88 0.94 0.76 0.93 0.96
F-measure 0.70 0.89 0.95 0.78 0.94 0.97

which might vary depending on the network setup. The
arbitration time under different fog situations is shown in
Figure 12. The incidence of arbitration is lower when assign-
ments are routed directly to MPN or CDCNEss. In other cases,
time is spent balancing load between nodes, which reduces
the arbitration rate. On the other hand, cloud processing is

exceptionally fast due to its superior capability. The process-
ing time is longer because the nodes in FWNs have less pro-
cessing power and a lower clock frequency. Processing time
is the time it takes for a task to be started, processed, and
returned to the users. It also changes with setups. The pro-
cessing characteristics under varied fog conditions are
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F1GURE 9: The recalls of various models.

shown in Figure 13 as well. One thing that may be seen is
that the total processing time is considerably shorter in the
case of cloud communications. Throughput is measured in
bits per second, HTTP transactions per day, or millions of
instructions per second. It is determined by the successful
data packet delivery rate from any node to end users.
Figure 14 shows a representation of the variation in through-
puts, measured in megabits per second (Mbps), discovered
for different configurations. Compared to the CDCN, the
throughput numbers for MPN with FWN’s are much greater
than those for the CDCN. In order to compute the through-

put, it is necessary to determine the rate at which data
packets are successfully sent from fog nodes to end users.
Essentially, jitter is the temporal delay of changes in time.
Jitter is the variation in response time between task requests.
It is vital for many real-world applications, such as e-
Healthcare data analysis. Figure 15 depicts the variation of
jitter with different configurations. Because MPN addition-
ally conducts other responsibilities such as arbitration, secu-
rity checking, and resource management, jitter is more
significant in the MPN-alone scenario than when tasks are
transmitted to FWNs; nevertheless, jitter is significantly
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FiGure 10: The F-measures of various models.
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F1GURE 12: The arbitration time of various configurations.

higher when jobs are supplied to CDCN. Data transferred
over an Internet connection is measured in bandwidth in a
particular time period. It refers to the amount of data sent
across a link in a specific time period (typically measured
in kilobits per second (Kbps)). The circumstance, such as
MPN alone, FWNs, or cloud, and the number of FWNs
impact bandwidth consumption. Figure 16 demonstrates

the variation in bandwidth utilization across all FWNs in
different configurations. Because of the high number of
heartbeat packets, it is required to check for security vulner-
abilities and transmit data (through the cloud). As the num-
ber of FWNs increases, the amount of bandwidth used
increases. Network utilization is the average rate of success-
ful data transmission across a communication link. A fog
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computing design uses less network than a cloud computing
system. The issue impacts the network utilization, including
MPN alone, FWNs, or cloud, and the number of FWNs.
Because the fog environment reduces the number of user
requests routed to the cloud, as seen in Figure 17, network
utilization time in the case of MPN and/or FWNs is much
smaller than that of CDCNs.

Energy consumption is the total energy utilized by the
system. Sensors and other system components need energy.
The physical theorem uses the following formula to compute
it [53]:

E=Txp(X). (14)
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FIGURE 18: The energy consumption of various configurations.

Here, E is for the energy, p() is the power function, X is
the parameter set that impacts power, and T is the task pro-
cessing time. CDCN uses a significant amount of energy as
compared to MPN or FWN:ss, as seen in Figure 18. CDCNs
use a considerable amount of energy compared to FWNs

due to this. As the number of FWNs increases, the amount
of energy used by the proposed task increases. Table 7
depicts the averages of observed outcomes of various net-
work parameters corresponding to multiple configurations
based on the data collected.
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TaBLE 7: Observed results of various network parameters.

Network parameters Layouts
Layout 1 Layout 2 Layout 3 Layout 4 Layout 5 Layout 6

Latency (in ms) 323 41.3 36.8 35.7 43.2 2459.9
Arbitration time (in ms) 165.4 1123.5 1228.7 1847.5 2223.4 143.5
Processing time (in ms) 2353.6 3156.4 2897.5 34434 3273.6 1247.8
Throughput (in Mbps) 21.1 26.7 32,6 34.8 48.9 26.6
Jitter (in ms) 5.75 3.25 4.50 5.50 8.75 83.50
Bandwidth (in Kbps) 4.1 6.4 9.5 11.7 18.2 13.4
Network utilization (in sec) 94 12.1 14.8 17.4 19.7 26.9
Energy consumption (in watt) 3.13 4.24 5.29 6.18 7.83 23.22

Scalability of software services

Mean response time (in Secs)

0 I T T T T T T T T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Number of requests

FIGURE 19: The mean response time concerning the number of requests.

TaBLE 8: Comparison of the proposed work DiaFog with the considered existing works.

Work IoT CC FC ML DL EL Network parameters Evaluative parameters
AT LT PT TP EC BW JT NU SC Acc Pre Rec F-M
[22] Y Y N Y Y N N N N N N N N N N Y N Y N
[15] Y Y Y NN Y N N N N N N N N N N Y Y Y Y
[21] Y Y Y N N N N N N N N N N N N N N N N
[23] Y Y Y Y Y N N N N N N N N N N Y N N N
[6] Y Y Y N N N N N Y Y Y N N Y Y N N N N
[24] Y Y Y Y N N N Y N N Y N N N N N N N N
[25] Y Y Y Y Y N N N N N N Y N N N Y Y Y Y
[26] Y Y Y N N N N N Y N N N N N N Y N N N
[27] N N N Y N Y N N Y N N N N N N Y N N N
[28] N N N Y N Y N N N N N N N N N Y Y Y Y
[29] N N N Y N Y N N N N N N N N N Y Y Y Y
[30] Y Y Y Y N N N N Y N N N N N N Y N N N
[31] N N N Y N Y N N N N N N N N N Y Y Y N
[32] Y Y N Y N N N N N N N N N N N Y Y Y Y
DiaFog (proposed) Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Scalability refers to the capacity of the IoT-fog-cloud-  may increase resources to meet changing application
based system to raise the resources of software service deliv- demands while maintaining the infrastructure’s constraints.

ery when higher revenue for the service is needed over time  As shown in Figure 19, our main worry is whether the sys-
(i.e., a demand scenario) [54, 55]. A scalable infrastructure  tem can scale up in quantity as consumers need it over time.



18

As the number of requests grows, the mean response time
grows as well. The increase in mean reaction time is not
exponential but relatively moderate. It is also noted that
response times do not fluctuate with increased queries, indi-
cating the research’s scalability.

4.3. Comparison. The proposed framework is compared with
some considered existing works involving various perfor-
mance and network parameters. We included other aspects
such as throughput, network usage, and scalability that were
not evaluated before, demonstrating the work’s uniqueness.
Table 8 depicts a comparison of the proposed work, DiaFog,
with several existing results employed in this research rele-
vant to this suggested work. The following abbreviations
are used in Table 8: yes (Y), no (N), latency (LT), arbitration
time (AT), processing time (PT), throughput (TP), energy
consumption (EC), bandwidth (BW), jitter (JT), network
utilization (NU), accuracy (Acc), precision (Pre), recall
(Rec), and F-measure (F-M) are some of the terms used.

5. Conclusion and Future Scope

To make an individual’s life easier and more consistent, the
FC idea with IoT implementations has played an important
part in recent days. Because DMDs have a high mortality
rate, it is beneficial if the patient may self-diagnose remotely
by employing IoT applications. However, formal IoT impli-
cations only use CC for real-time data storage, analysis, etc.,
with several drawbacks like latency and network usage. To
solve this problem, FC should be combined with IoT and
CC. This research proposes DiaFog, a fog-enabled system
for real-time diagnosis of diabetes patients utilizing EDL
methods. The model is trained on the combined HFGDD
and PIDD diabetes datasets from Kaggle and UCI-ML ware-
houses. The IDD is both cost-effective and sensitive to real-
time diabetes patient diagnosis. Aspects of this study, DiaFog,
are examined including accuracy, precision, recall, F-measure,
latency, arbitration time, jitter, throughput, energy consump-
tion, bandwidth use, network utilization, and scalability. This
framework integrates IoT, CC, and FC ideas to guarantee
low latency and high accuracy applications in patients’ DMD
diagnostics and remote prediction. The trials show that it is
a viable and user-friendly platform for instantaneous remote
DMD diagnosis.

DiaFog may be used to diagnose diabetes patients
remotely, anywhere around the globe. This study work’s
combined IoT, FC, and CC strategy establishes low latency,
high precision, etc. The research concluded that it is a robust
and user-friendly framework for immediate remote DMD
diagnostics. In terms of latency, network usage, energy
usage, security, and privacy, the results support FC’s appro-
priateness for real-time remote diabetic patient diagnostics.
A person with a few sensors and a smartphone app can be
diagnosed anywhere. Every study has its benefits and draw-
backs. This study has certain disadvantages; for example, the
general execution of the suggested work is difficult and
expensive. The dataset we used in this study comprises
2768 instances, which looks little from a DL experiment per-
spective since more examples mean more accurate and exact
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conclusions. This modular design relies on a single network
platform, a work restriction.

Moreover, the suggested work may be improved by
incorporating additional well-known DL principles. This
work’s expansions may be used to treat various chronic dis-
orders. Also, alternative CC platforms such as edge comput-
ing, mist computing, and surge computing should be used to
extend this suggested architecture. Another area where we
should work in the future is the problem of a single network
platform. Individuals must be made aware of the importance
of IoT, cloud, fog, and edge computing and other related
technologies and their worldwide consequences in recent
days.

Notations

USR;:  Users’ data {USR,, USR,, USR;, ---}

GTW,;: Gateways {GTW,, GTW,, GTW,, ---}

IHD;:  IoT health devices {IHD,, IHD,, IHD;, ---}

ATB;:  Attributes/features/characteristics (ATB, for age,
ATB, for blood pressure, ATB; for pregnancies,
ATB, for glucose, ATB; for skin thickness, ATBy
for DPF, ATB, for insulin, ATBg for BMI, and
ATB, for outcome)

MPN:  Master PC node

FWN;: Fog worker nodes {FWN,, FWN,, FWNj,, ---}

CDCN;: Cloud data center nodes {CDCN,, CDCN,, CDC
N,, }

SDT;:  Training samples {SDT,, SDT,, SDT5, ---}

TDT;  Test data {TDT,, TDT,, TDT}, ---}

BCF;:  Bagging classifier algorithms {BCF,, BCF,, BCF;

DLA;: DL algorithms {DLA,, DLA,, DLA;, ---}

M: Maximum number of iterations in training EDL
model(s)

N: Number of test data

PPR;:  Performance parameters (PPR, for accuracy, PPR,
for blood precision, PPR; for recall, and PPR, for
F-measure)

RES;:  Results (RES, i.e., diabetic when the value of
outcome is 1, RESy, i.e., healthy when the value of
outcome is 0).

Data Availability

The IoT data used to support the findings of this study are
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