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The cell faults of lithium-ion batteries will lead to the atypical deterioration of battery performance and even thermal runaway. In
this paper, a novel fault diagnosis method for lithium-ion batteries of electric vehicles based on real-time voltage is proposed.
Firstly, the voltage distribution of battery cells is confirmed in electric vehicles, and the reasons are analyzed. Furthermore,
kurtosis is utilized to discover cell faults for the first time. After the kurtosis-based strategy alarm, the faulty cells in the battery
pack are identified through multidimensional scaling and density-based spatial clustering of applications with noise. This
method reduces the computational load of the data platform due to the characteristics of the sequential structure. Finally, the
strategies to quantify the level of faulty cells and evaluate the safety of electric vehicles are presented. Through the real-time
data collected by electric vehicles, it has been proven that this method can warn and locate faulty cells earlier than the original
system method and has better robustness than other unsupervised fault diagnosis methods.

1. Introduction

To alleviate the energy crisis and deteriorating environmental
pollution, lithium-ion batteries are widely used in electric
vehicles (EVs) because of their long cycle life, cleanliness, high
energy density, and high-power density [1, 2]. EVs will be the
development trend of future automobiles and the focus of
competition in the global automobile industry. Nowadays,
China regards the EV industry as one of the key strategic
emerging industries. As the core component of an EV,
lithium-ion batteries are assembled from many cells in series
or parallel to provide drivers with sufficient range and power
performance [3]. Therefore, the state of the battery directly
determines the overall performance of an EV. Potential battery
cell failure will lead to the decline of the comprehensive per-
formance of EVs and even battery short circuits. In extreme
cases, it will lead to safety accidents such as thermal runaways
[4, 5]. In recent years, EV safety accidents occur frequently,
which hinders the development of the EV industry [6].
Lithium-ion battery cell voltage is the most intuitive and effec-
tive dynamic information in the operation of EVs. Early and
precise detection of voltage faults is helpful to take measures

to avoid safety accidents [7]. Early warning and isolation of
battery failure units based on real-time battery parameters
are of great importance to improve the safety of EVs.

To enhance the reliability and safety of lithium-ion batte-
ries, many scholars have proposed different methods for
lithium-ion battery fault diagnosis. Current fault diagnosis
methods can be divided into three categories: experience-
based methods, model-based methods, and data-driven
methods [5, 8, 9].

The experience-based method is based on the existing
prior knowledge, using logical analysis and reasoning the
relationship between events to achieve battery fault diagno-
sis. It can be divided into the expert system [10], fuzzy logic
[11], and graph theory [12]. Experience-based methods have
no learning ability, resulting in limited generalization ability,
which makes this kind of method less applied in lithium-ion
battery fault diagnosis. The model-based method establishes
the mathematical or chemical model of lithium-ion batte-
ries. Residual signals are obtained to detect and identify
faults by comparing measurable signals from the model out-
puts [13]. Xiong et al. [14] estimated the state of charge
(SOC) based on unscented Kalman filter (UKF) and
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recursive least squares (RLS) to locate voltage sensor fault
location by the residuals. Wei et al. [15] presented a
second-order equivalent circuit model (ECM) and strong
extended tracking Kalman filter (ST-EKF) to estimate termi-
nal voltage online for battery fault diagnosis. Song et al. [16]
designed a fractional-order Luenberger observer to accom-
plish the task of fault detection. Dey et al. [17] utilized a par-
tial differential equation (PDE) model-based diagnosis
scheme for thermal faults in lithium-ion batteries. Kong
et al. [18] developed an electrochemical model for lithium-
ion batteries to detect early internal short circuit cells. The
advantage of the model-based method is that the model
mechanism is clear and easy to modify. However, the
model-based method is difficult to be applied in practice
because of many parameters or complex equation calcula-
tions, and sensor errors with many parameters can easily
affect their performance.

With the development of machine learning and artificial
intelligence, as well as the advancement of computer soft-
ware and hardware. In recent years, data-driven methods
have received a lot of attention in battery fault diagnosis.
The data-driven method can be regarded as a “black box,”
which overcomes the problems of complicated modeling
and parameter identifications [8, 19]. Jiang et al. [11] estab-
lished the early warning model for charging safety of EVs by
detecting the cell voltage based on the back propagation neu-
ral network (BPNN). Yao et al. [20] decomposed and recon-
structed the voltage data through the reconstructing discrete
wavelet transform (RDWT) and then inputs it into the gen-
eral regression neural networks (GRNN) to divide the fault
into four levels. Li et al. [21] located potential faulty cells
by combining ECM and long short-term memory (LSTM)
neural networks. Jiang et al. [19] proposed a support vector
machine (SVM) for the study of temperature rise caused by
short circuit failure of batteries. Yang et al. [22] applied ran-
dom forests (RF) to the research of external short circuit
fault diagnosis. The above methods require a large number
of training sets to have good results, resulting in excessive
memory consumption and unsuitable for new vehicles. It is
used in lithium-ion battery fault diagnosis and detection by
converting basic information into characteristic informa-
tion, such as entropy theories. Duan et al. [23] designed a
method for evaluating the inconsistency of cells based on
Shannon entropy. Liu et al. [24] evaluated each cell based
on Shannon entropy to determine the potential faulty cells.
The Shannon entropy theory has also been applied in the
detection of battery pack connection faults [23]. The
improved Shannon entropy [7], sample entropy [25], and
multiscale entropy [6] have also been utilized for battery
fault diagnosis. Some improved entropy theories have an
excessive number of iterations, which increases the running
time of the method. The method based on statistical knowl-
edge and other methods has great prospects in practical fault
diagnosis. Xia et al. [26] proposed a method to detect inter-
nal short circuit fault by calculating the correlation coeffi-
cient between cell voltages. Zhao et al. [4] presented a 3 σ
multilevel screening strategy and neural network to screen
abnormal cells and used a clustering algorithm to verify
the effectiveness of its screening strategy. Sun et al. [27] used

a correlation coefficient and K-means clustering method to
diagnose faulty cells. Wang et al. [28] established a data-
driven abnormal cell capacity diagnosis model based on sta-
tistics and a tree-based model. She et al. [29] developed a
battery state of health SOH estimation model synthesizing
from battery state of health based on incremental capacity
analysis (ICA) and considering the inconsistency of cells.
Chen et al. [30] developed the method of local outlier factor
(LOF) to detect the voltage fault of the battery cells. Some of
the above studies were carried out in the laboratory. Zhang
et al. [31] optimized the multiobjective design of the hybrid
energy storage system for EVs to extend the battery life and
reduce the failure rate. However, in practice, the battery
faces a more complex environment due to the impact of
the environment and the different driving modes of drivers.

In this paper, the data obtained are not for the charging
and discharging of lithium-ion batteries in the laboratory.
All of the data collected comes from the real world to ensure
a more practical fault diagnosis model. Based on mileage, the
cell voltage distribution during charging and discharging of
EV is analyzed. Firstly, kurtosis is used as an early warning
indicator for faulty cells for the first time. Secondly, the
method combines multidimensional scaling (MDS) with
density-based spatial clustering of applications with noise
(DBSCAN) to diagnose faulty cells. The subsequent calcula-
tion is performed only after the alarm of the kurtosis-based
detection method, which reduces the computing load of
the platform. Furthermore, the fault type of the abnormal
cell is determined and quantified by using statistical knowl-
edge, and the voltage consistency of the whole vehicle is
quantified. Finally, the validity of the method is verified by
the real-time data collected from EVs and compared with
other unsupervised methods.

The rest of the paper is organized as follows. Section 2
describes the data acquisition and analysis. Section 3 intro-
duces the methodology for voltage fault diagnosis. Section
4 discusses the diagnostic results in detail. Section 5 con-
cludes this paper.

2. Data Acquisition and Analysis

2.1. The Data Source of EVs. The EV has the characteristics
of informatization and networking. Therefore, China has
established data centers based on big data technology. For
the data acquisition specification of EVs, China published
the technical specifications of remote service and manage-
ment systems for EVs in 2016. The format, range, and fre-
quency of collected data are also stipulated in this
specification. In current, the EV big data centers have
formed three levels of structure: Enterprise Service and
Monitoring Center (ESMC), Local Service and Management
Center (LSMC), and National Service and Management
Center (NSMC). The structure of the EV data center is
shown in Figure 1. During the operation of an EV, the vehi-
cle terminal transmits the data collected by the sensor to the
data center through the general packet radio service (GPRS)
wireless network according to the specification. All data is
collected by the ESMC for the first time and reported to
other centers following the communication protocol.
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The data platform architecture is mainly based on the
Linux system and Java programming language and is built
with the Hadoop system. By April 2022, the NSMC has con-
nected 8 million new energy vehicles. Simple data statistics
cannot meet the current data analysis needs of the new
energy automotive industry. The data mining and law explo-
ration behind the data deserve more attention, such as EVs
safety warnings and vehicle technology subsection analysis.
In order to solve the above problems, it is necessary to estab-
lish relevant models with the powerful power of big data
platform or targeted cloud platform in close combination
with the actual operation of new energy vehicles, so as to
achieve the effect of analyzing the operation of new energy
vehicles and early warning [32].

2.2. Data Content and Cleaning. To ensure the acquisition of
real and sufficient data, this paper collects the data of 10 elec-
tric buses running for one year from the ESMC of an electric
vehicle enterprise in Suzhou, China. The main content of the
collection is that each system during vehicle driving includes
the battery system, motor drive system, and vehicle control
system as shown in Table 1 [24].

In this paper, the cell voltages of EVs are extracted for
analysis. The voltage acquisition accuracy is 0.01V, and the
format obtained from the ESMC is a matrix. The row vector
of thematrix is the voltage data of all cells at a certainmoment,
and each column vector is the voltage data of each cell. The
acquisition frequency of each collected data is 0.1Hz.

Due to the influence of buildings and the environment
during driving, the data may be lost in the steps of data acqui-
sition, transmission, and decoding, resulting in null values.
Sensor failure also causes the collected data to be obviously
abnormal or null, so it is necessary to clean the data.

The data cleaning strategies of this paper are as fol-
lows: The extreme abnormal data is removed through
the box plots, such as 65,535V caused by signal loss.
Box plots are a common method for handling outliers in
data. The feature of box plots is that there are no strict
requirements on the distribution of data processed during
the use of box plots. The box plot eliminates outliers as
shown in Figure 2.

In Figure 2, the Q1 and Q3 are the upper and lower quar-
tiles of the data, respectively. The interquartile range (IQR)
is the length of box plot, which is the blue square in Figure 2.

The calculation formula of each symbol is as follows:

IQR =Q3 −Q1,

f low =Q1 − k × 1:5IQR,

f up =Q3 + k × 1:5IQR:

ð1Þ

To prevent the fault values from being eliminated, the
variable k is used to expand the ½ f low, f up� and the k = 3.
The interval between the normal values is ½ f low, f up�. The
range of outliers is ð−∞,f lowÞ ∪ ð f up,+∞Þ.

The missing data with more than 3 consecutive rows
missing is discarded, and the remaining missing data is sup-
plemented by the previous value.

2.3. Voltage Distribution Analysis. For some battery cell fault
researchers, the cell voltage distribution is regarded as a nor-
mal distribution in some literature, and the Z-score [33] or 3
σ [4] method is proposed to diagnose voltage fault. However,
the conclusion that the cell voltages conform to the normal
distribution is not verified. A series capacity degradation

GPRS Transmission
(GB/T 32960)

ESMC

NNMCLSMC

Vehicle terminal
collects data 

Data statistics 
and reporting

Data statistics 
and reporting

Data statistics, spot-check and reporting

Figure 1: Three levels structure of electric vehicle data centers.

Table 1: Acquisition systems and contents.

System of EV Acquisition content

Battery system
Battery voltage (V), battery current (A), insulation resistance (kΩ), SOC (%), cell voltage (V), and probe temperature

(°C).
Vehicle control
system

Accumulated mileage (km), vehicle status (start/stop), gear, speed (km/h), accelerator pedal travel (%), brake pedal
travel (%), DC-DC status (work/disconnect), and location information (GPS).

Motor drive
system

Motor speed (r/min), motor torque (N∙m), motor temperature (°C), motor controller voltage (V), and motor
controller current (A).
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model is established in the laboratory environment. Through
the accelerated aging test, it can be concluded that the degra-
dation of batteries is independent of each other and conforms
to the normal distribution [34]. It is difficult to approximate
the normal distribution of battery cells in the real world
because of the complicated operating conditions of EVs. The
reasons are as follows, and some reasons are verified in 4.

(1) The number of battery cells varies from dozens [4] to
thousands [8] of different vehicles. So the number of
cells is insufficient to support the normal distribu-
tion theory for some EVs

(2) Some EVs have battery packs installed in different loca-
tions of the EV. The battery packs are installed on the
side and back of the EV in this study. Due to the differ-
ent location temperatures and other conditions of the
EVs, it will affect all the cells in the whole battery pack.
Even the performance of all the cells in the battery
packs is inferior to other battery packs

(3) The cells are connected in series and parallel. In the
process of charge and discharge, the cells affect each
other, resulting in each cell not being completely
independent. In addition, the different control strat-
egies of the balancing system in the battery manage-
ment system (BMS) also influence the parameters of
the battery cells

The normal distribution has some simple and efficient
methods for screening outliers, but forcing data to be con-
sidered as normal distribution will degrade the accuracy of
the model. Therefore, battery cell distribution should be
tested and analyzed when developing faulty cell diagnosis
methods.

3. Methodology

3.1. Kurtosis. Kurtosis can be defined as the standardized
fourth population moment about the mean, which is a
dimensionless parameter [35]. It was originally used to rep-
resent impulsive characteristics in signal processing and
quantify the waveform peaks. Kurtosis has been widely used
in fault diagnosis [36], signal processing [37], and other
fields. The formula of kurtosis is shown in formula (2).
The σ is the standard deviation (SD) as shown in formula
(3).

k =
E X − μð Þ4
E X − μð Þ2� �2 =

μ4
σ4

, ð2Þ

σ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

i=1
xi − μð Þ2

vuut , ð3Þ

where k is the kurtosis, E is the expected value, μ is the sam-
ple mean, and μ4 is the fourth moment about the mean.

3.2. Multidimensional Scaling. Multidimensional scaling
(MDS) is a multivariate data analysis method that can show
“distance” in low-dimensional space. The principle is that
when determining the similarity of n objects, MDS can max-
imize the similarity of n objects in two-dimensional or three-
dimensional space [38]. After optimization by Kruskal [39]
et al., it has been widely used in fields such as medical anal-
ysis [40] and environmental research [41]. The specific cal-
culation steps are as follows:

There are n objects in the set, and the similarities
between each object are calculated with the correlation coef-
ficient in the statistics. The d̂ij is the similarity between i and

j. So the generalized distance matrix D̂ = d̂ijðn × nÞ is con-
structed, and the nondiagonal elements of the matrix are
arranged from small to large as follows:

d̂i1 j1 ≤ d̂i2 j2 ≤⋯d̂il jl ⋯≤d̂im jm ,m =
1
2
n n − 1ð Þ, il < jl ; l = 1, 2,⋯,m:

ð4Þ

To indicate ranking, the d̂il jl is the similarity of il and jl

Outliers

Outliers

f
up

f
low

Q
1

Q
3

Normal

Figure 2: Rules for eliminating outliers from box plot.

Table 2: The stress-1 evaluation standard.

Stress-1 Goodness of fit

0.2 Poor

0.1 Fair

0.05 Good

0.025 Excellent

0 Perfect
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calculated by the correlation coefficient, and l is the similar-
ity arranged in the l-th.

Euclidean distance matrix D is defined in r-dimensional
space:

D = dij n × nð Þ, dij ≥ 0, dij = 0, i, j = 1, 2,⋯, n: ð5Þ

The dij is the Euclidean distance between elements i and
j in r-dimensional space.

The matrix D satisfies the following conditions:

di1 j1 ≤ di2 j2 ≤⋯dil jl ⋯≤dim jm ,m =
1
2
n n − 1ð Þ, il < jl ; l = 1, 2,⋯,m:

ð6Þ

The dil jl is the between elements il and jl, and l is the dis-
tance arranged in the l-th.

To find a suitable point to make D and D̂ as similar as
possible, MDS changes the position of n objects in r-dimen-
sional space by iteration. To measure this similarity, Krus-
kal’s normalized stress-1 criterion is defined as follows [42]:

Stress − 1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

i=1
〠
n

j=1
dij − d̂ij
� �2

/〠
n

i=1
〠
n

j=1
d2ij

vuut : ð7Þ

The evaluation standard for stress-1 is shown in Table 2
[39].

In order to reduce dimensions, the center matrix B = bij
ðn × nÞ based on the distances of objects is constructed as
follows:

bij = −
1
2

d2ij −
1
n
〠
n

j=1
d2ij −

1
n
〠
n

i=1
d2ij +

1
n2

〠
n

i=1
〠
n

j=1
d2ij

 !
 i, j = 1,⋯, n:

ð8Þ

The eigenvalues Λ and eigenvectors Γ of the B are calcu-

lated and arranged as follows:

Λ = diag λ1, λ2 ⋯ λc ⋯ λrð Þ,
Γ = e1, e2 ⋯ ec ⋯ erð Þ,

ð9Þ

where the λc is the c-th eigenvalue of matrix B and the ec is
the eigenvalue corresponding to the eigenvalue λc of matrix
B. The r is the dimension of the MDS output.

The coordinates of each object in the low dimension
space could be expressed as follows:

X = ΓΛ1/2: ð10Þ

3.3. Density-Based Spatial Clustering of Applications with
Noise. The density-based spatial clustering of applications
with noise (DBSCAN) algorithm is a density-based spatial
clustering method proposed by Ester et al. [43]. It is one of
the most representative density-based clustering methods.
The algorithm defines the following concepts: Define ε as
radius parameter andMinpts as neighborhood density thresh-
old. Within a set, p is considered a core point if it contains
objects within the radius of ε that exceeds the Minpts. If the
q is within a radius of p, the p and q are called direct density
reachable. For the objects p1, p2, … , pi, … ,pn, if all pi and
pi+1 are direct density reachable, the p1 and pn are called den-
sity reachable. For w in the set, if both pi and qi are density
reachable with w, the pi and qi are called density connection.

The process of the DBSCAN is as follows: All objects in
the set are traversed through direct density reachable, den-
sity reachable, and density connection. When a cluster is
clustered, the next point is selected to start the cluster until
no new point is added to any one cluster. Finally, the above
objects are clustered into several clusters, and the objects not
included in any cluster are noise data [44].

3.4. Diagnosis Method. Firstly, the real-time operation data
of EV is obtained by the ESMC. Through data cleaning,
the obvious abnormal values of cell voltages are removed

Start

Obtain data on ESMC

Extract cell voltage data

Data cleaning

Acquire cell voltage matrix

Kurtosis > Threshold

c-score

Calculate the similarity of
each voltage curve

BIAS>0

DBSCAN

Multidimensional Scaling

Undervoltage Overvoltage

Locate abnormal cell

N

Y

YN

Figure 3: The flowchart of the voltage fault diagnosis method.
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Figure 4: Voltage distribution in discharging conditions.
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Figure 5: Voltage distribution in charging conditions.
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and the missing values are filled. The cell voltage matrix U
with t interval is collected.

The matrix U is as follows:

U =

u1,1 u1,2 ⋯ u1,n

u2,1 u2,2 ⋯ u2,n

⋮ ⋮ uk,j ⋮

ut,1 ut,2 ⋯ ut,n

2
666664

3
777775
t×n

, ð11Þ

where t is the sampling time and n is the number of cells.
The uk,j is the voltage of the j-th cell in the k-th sampling
time.

The sliding window without repeating sample is used for
the voltage matrix U. The kurtosis of the matrix at each time
is calculated. If the kurtosis exceeds the set threshold kThres for
3 consecutive moments (ki−1 > kThres, ki > kThres, ki+1 > kThres),
it is determined as the battery cell fault. The above conditions
will trigger the faulty cell alarm. The matrix K is shown below:

K =

k1

⋮

ki
⋮

kt

2
66666664

3
77777775
t×1

, ð12Þ

where ki is the kurtosis of the sampling at the time i.
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Figure 6: Temperature probe distribution and range. (a) The number distribution of the maximum temperature probe and the minimum
temperature probe. (b) The range of the temperature of the probe.
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If the voltage alarm is triggered, the distance matrix is
obtained by calculating the Euclidean distance of all cell volt-
age curves in the window. The Euclidean distance of cell
voltage curves is calculated as follows:

di,j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
t

k=1
uk,i − uk,j
� �2

vuut , ð13Þ

where di,j is the similarity between the i-th cell voltage curve
and the j-th cell voltage curve. The uk,i is the i-th cell voltage
value at the k-th moment.

The similarity between cell voltage curves is expressed by
matrix D:

D = di,j
� �

n×n =

0 d1,2 ⋯ d1,n

d2,1 0 ⋯ d2,n

⋮ ⋮ ⋱ ⋮

dn,1 dn,2 ⋯ 0

2
666664

3
777775
n×n

, ð14Þ

If all cell voltage changes consistently during the opera-
tion of EV, matrix D should approach matrix 0.

The distance matrix D is mapped to two-dimensional
space based on MDS. Normalize the data of the two dimen-
sions, respectively, so that all data are between the interval
[0,1]. DBSCAN is used to determine noise points in two-
dimensional space, and the corresponding index numbers
of noise points are faulty cell numbers.

When the faulty cell numbers are determined, it is
judged that the fault cell is overvoltage or undervoltage by
formula (15). The formula of uk,j is shown in (16)

BIAS =
∑t

k=1 uk,j − �uk,j
� �

t
, ð15Þ

�uk,j =
∑n

j=1uk,j
n

, ð16Þ

where the uk,j is the voltage of the j-th cell in the k-th
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Figure 8: Some typical parameter curves of running EV.

3.24

3.26

3.28

3.30

3.32

3.34

3.36

3.38

3.40

3.42

Vo
lta

ge
 (V

)

Cell number

 Voltage

Kurtosis = 56.4508 
standard deviation = 0.0062

0 50 100 150 200 250 300 350

(a)

3.275

3.280

3.285

3.290

3.295

3.300

3.305

3.310

Vo
lta

ge
 (V

)

 Voltage

Kurtosis = 2.1511 
Standard deviation = 0.0044

Cell number
0 50 100 150 200 250 300 350

(b)

Figure 9: Kurtosis and SD in different cases. (a) The kurtosis and SD before the cell fault. (b) The kurtosis and SD during normal operation.
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sampling time. The �uk,j is the average voltage of the cell at
the k-th time.

The BIAS greater than 0 indicates cell overvoltage and
less than 0 is cell undervoltage.

Define the concept of vehicle inconsistency score to
quantify the safety of each vehicle as follows:

c − score =
∑t

i=1ki
t

, ð17Þ

where the t is the total sampling time in a window and ki is
the kurtosis of i time. The higher the c -score of inconsis-

tency, the worse the consistency of the battery cells in the
EV.

The characteristic of this diagnostic method is that the
following calculation is performed to locate the faulty unit
after the prealarm based on the kurtosis. This method
reduces the computational load of the data centers and has
practical application capabilities. The flowchart of the
method is illustrated in Figure 3.

4. Results and Discussion

4.1. Distribution Results. To test whether the cell voltages of
EVs in this paper conform to the normal distribution, cell
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voltages of five vehicles are selected for analysis with the
change of mileage. The cell voltage distribution of EVs at
0 km, 10, 000 km, 20, 000 km, 30, 000 km, and 40, 000 km
is extracted. Restrictions were added to ensure that it is not
disturbed by other factors:

(1) The charging and discharging conditions of EVs are
distinguished, and the voltage distribution during
charging and discharging is recorded for each vehicle
at different mileage

(2) For discharge case, the total discharge current is
between 23.5A and 26.5A, and SOC is between
78% and 82%. For charging case, SOC is between
78% and 82%, and charging current is platform
period with an error no more than 5A

Based on the above restrictions, 50 samples of cell volt-
age distribution were obtained. The distribution of the five
vehicles is similar, taking vehicle 1 as an example. The volt-
age distribution and Q-Q diagram of vehicle 1 during dis-
charge are shown in Figure 4 and during charging are
shown in Figure 5. The D is the discharge state of EVs in
Figure 4 and the C is the charge state of EVs in Figure 5.

The voltage distribution is similar to the long tail distribu-
tion when the battery is discharged, and the Q-Q plots are sim-
ilar to the inclined “S.” The reason for the long tail distribution
is that there are double peaks, indicating that more data deviate
from the normal distribution, which tends to weaken with the
increase of mileage. But the voltage distribution approximates
the left-skewed distribution when the battery is charged, and
the Q-Q plots are similar to the inverted “U.” The reason for
the left-skewed distribution is that more data are centered on
the left. The cell voltages are more concentrated when charging
because of the balance system of the BMS.

Based on the Shapiro-Wilk test, none of the above 50
samples could be accepted as normally distributed at the
0.05 level, which proves that the battery voltage of EVs does
not conform to the normal distribution regardless of the
mileage change or whether it is charged or discharged. To
increase the test sample size, 2,000 driving segments
(whether charging or discharging) were randomly selected
from multiple vehicles for the Shapiro-Wilk test, and the
results did not conform to the normal distribution.

For the vehicles in this study, 64 temperature probes
were installed in 12 battery packs. Based on the one-year
driving data of a vehicle, the number of distribution of the
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maximum temperature probe and the minimum tempera-
ture probe are shown in Figure 6(a). The range is the differ-
ence between the maximum and minimum probe
temperatures, and the range of the temperature of the probe
is shown in Figure 6(b). This means that the cells in different
locations are in different temperatures, and the temperature
range of the probe is greater than 3°C many times, which will
affect the performance of some battery packs. The difference
in battery packs leads to the distribution of cell voltage like a
square wave at a moment as shown in Figure 7.

4.2. Cell Fault Early Alarm. The Figure 8 shows the battery
voltage, battery current, and mileage of an EV, while it is
driving. When the driver accelerates the vehicle, the current
of the battery increases, and the voltage decreases slightly.
When the driver brakes the vehicle, the current is negative
because of the braking energy feedback.

The vast majority of cell voltages is normal during the run-
ning time of an EV. Only a few cells are abnormal, and the
voltage differences with other normal cells are subtle, espe-
cially at the beginning of the cell fault. SD is commonly used
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in many EVs as an early warning indicator for detecting cell
faults [6]. However, traditional detection indicators such as
SD cannot detect cell faults and alarms at the beginning of fail-
ure. Kurtosis can sensitively capture peaks in voltage curves.

The following figures compare the warning capabilities
of SD and kurtosis for cell fault. The cell voltage distribution
of one hour before the cell fault alarm on that day is shown
in Figure 9(a), and the voltage distribution curve of a vehicle

during normal operation is shown in Figure 9(b). The SD of
the normal moment and the moment before the fault
changes slightly. But the kurtosis before the cell fault is much
greater than that at the normal moment, which can effec-
tively identify the fault and avoid the problem of false alarms
caused by setting a small threshold.

The operation data of 10 EVs is selected. The cell volt-
ages are extracted based on the sliding window, and the win-
dow size is 100. The kurtosis for each window of 10 vehicles
is calculated. In the first window, the kurtosis of vehicle 5 is
significantly higher than that of other vehicles as shown in
Figure 10. However, at this time, vehicle 5 has no faulty cell
alarm, and the cell fault alarm is not triggered until 3 hours
later as shown in Figure 11. But the fault is detected by the
kurtosis at the first window. The above research proves that
kurtosis can be used as an indicator of the faulty cell early
warning.
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Figure 17: DBSCAN results for the normal vehicles. (a) DBSCAN results of vehicle 1. (b) DBSCAN results of vehicle 2.

Table 3: BIAS of fault cells.

Cell number BIAS

216 (2020/5/24) -3.039%

217 (2020/5/24) 2.957%

216 (2020/5/25) -7.052%

217 (2020/5/25) 7.026%
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4.3. Fault Cell Identification. The similarity matrix between
the voltage curves of 336 cells of vehicle 5 is calculated. MDS
is used for distance matrices, and the results are mapped in
two-dimensional space. The stress-1 is 0.00171 indicating that
DMS fits well. The DBSCAN in two-dimensional space shows
that cells 216 and 217 are distinct outliers. The result of
DBSCAN is illustrated in Figure 12. Observing the voltage
curves, it is found that the voltage curves of cells 216 and
217 are offset. The voltage curves of 336 cells corresponding
to the first window are shown in Figure 13.

Although the actual offset is small, this difference can be
magnified based on MDS and DBSCAN for cell fault
diagnosis.

Through a large number of sampling windows of the 10
vehicles, the kurtosis alarm threshold of 60 is set by a trial
and error method. The ε is 0.3 and Minpts is 5 in DBSCAN.

The data of the day before vehicle 5 triggers the alarm is
selected. According to the fault diagnosis method proposed
in this paper, the kurtosis exceeds the set value in sampling
from 2,900 to 3,000 samples as shown in Figure 14.

With the analysis of the cell voltage curves, the voltage
curves of cells 216 and 217 begin to deviate gradually as
shown in Figure 15. The higher cell voltage in the first few
minutes is due to the charging of the vehicle. The early
warning of this method is one day earlier than the actual
alarm and can identify abnormal cells as shown in Figure 16.

Prediagnosis of battery cells based on kurtosis is neces-
sary. Outlier cells were not found to use the MDS and
DBSCAN for normal vehicles. The DBSCAN results of nor-
mal vehicles are shown in Figure 17(a), 17(b). More impor-
tantly, the MDS and DBSCAN for each window will increase
the data center computing load.
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Figure 19: Result of multiscale entropy for cells in different vehicles. (a) Result of multiscale entropy for the normal vehicles. (b) Result of
multiscale entropy for vehicle 5.
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4.4. Fault Quantification. Based on the BIAS, cells 216 and
217 are quantified to determine overvoltage or undervoltage,
respectively. The cell consistency of the vehicle deteriorates
from the day before the alarm. The decrease in cell 216 is
almost equal to the increase in cell 217 as shown in
Table 3. The reason is that cells 216 and 217 are connected
in parallel, and changes in the internal resistance or capacity
of one cell affect the other.

According to the formula (17), the c -score of the 10
vehicles is shown in Figure 18. The higher the c -score, the
worse the consistency of the vehicle. The cell voltage consis-
tency of nine vehicles is fair, while the inconsistency c -score
of vehicle 5 is significantly higher than other vehicles.

4.5. Method Comparison. This method is compared with
common unsupervised algorithms such as 3 σ [4] and
entropy-based [6]. In this paper, the ability of multiscale
sample entropy is tested in diagnosing abnormal cells, and
the multiscale entropy of 336 cells is calculated. Generally,
the template of length m points is 2. The range of tolerance
r is generally between 0:1 × SD and 0:25 × SD. In this paper,
the r = 0:15 × SD by trial and error method and the
scale =15. In practice, it is found that more data is needed
for multiscale sample entropy; otherwise, matching vectors
will not be found in the calculation process, which will lead
to the absence of a definition of sample entropy. Each cell of
vehicle 5 is calculated with multiscale sample entropy as
shown in Figure 19(a). Figure 19(b) is the multiscale sample
entropy of a normal vehicle. The sample entropies of each
individual are very small, so it is difficult to identify the fault
cells.

The 3σ method is used for cell fault voltage diagnosis,
which can accurately identify faults in advance as shown in
Figure 20(a). But some normal cells are diagnosed as faulty
cells as shown in Figure 20(b). Because the cell voltage data
are not normally distributed, this conclusion was validated
before the method was developed.

5. Conclusions

In this paper, the novel method for lithium-ion battery fault
diagnosis of EV based on real-time voltage is presented. The
effectiveness of the method is verified based on the real-time
data collected by EVs. The related conclusions are drawn as
follows:

(1) The cell voltage distribution of some types of EVs is ver-
ified not to be a normal distribution in this work. The
reason is the limitation of the number of cells and the
interaction of the cells in series and parallel. Other rea-
sons include the influence of the balance system of
BMS, and the location of the battery pack is different

(2) Kurtosis is used as an early warning indicator to find
faulty cells for the first time. It is verified that kurtosis
has a better ability to detect cell faults than SD. The
fault cells are identified through MDS and DBSCAN.
The faulty cells were detected one day earlier than
the previous method. Furthermore, the BIAS judges
the type of cell fault and quantifies the degree of fault,
and the c -score evaluates the cell inconsistency of EVs

(3) Comparisons of the entropy-based method and 3σ
method verify the superiority of this method. It is
difficult to find faulty cells in advance based the on
entropy-based method. The 3σ method can accu-
rately identify the cell faults in advance, but some
normal cells are diagnosed as faulty cells

Future work can be carried out in the following areas:

(1) The existing data preprocessing methods do not
combine the operation principle of EVs. In the
future, some battery parameters will be combined
with machine learning to propose a more efficient
and accurate filling strategy
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(2) In this paper, this battery fault diagnosis model was
established based on the cell voltage. A fault diagno-
sis model based on multivariate information fusion
will be established combining temperature, voltage,
and capacity data of the cells in the future

(3) The charge and discharge states of EVs should be
discussed separately in subsequent studies, which
can better distinguish the differences between the
static and dynamic processes of EVs
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