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With the development of intelligent concepts in various fields, research on driverless and intelligent industrial robots has
increased. Vision-based simultaneous localization and mapping (SLAM) is a widely used technique. Most conventional visual
SLAM algorithms are assumed to work in ideal static environments; however, such environments rarely exist in real life. Thus,
it is important to develop visual SLAM algorithms that can determine their own positions and perceive the environment in
real dynamic environments. This paper proposes a lightweight robust dynamic SLAM system based on a novel semantic
segmentation network (LRD-SLAM). In the proposed system, a fast deep convolutional neural network (FNet) is implemented
into ORB-SLAM2 as a semantic segmentation thread. In addition, a multiview geometry method is introduced, in which the
accuracy of detecting dynamic points is further improved through the difference in parallax angle and depth, and the
information of the keyframes is used to repair the static background information absent from the removal of dynamic objects,
to facilitate the subsequent reconstruction of the point cloud map. Experimental results obtained using the TUM RGB-D
dataset demonstrate that the proposed system improves the positioning accuracy and robustness of visual SLAM in indoor
pedestrian dynamic environments.

1. Introduction

With the rapid development of modern urbanization, people
are paying increasing attention to navigation systems and
guiding maps in indoor environments to plan itineraries.
In addition, with increasing urbanization in various coun-
tries, in the event of military conflicts, cities will become
the main battlefields for human-machine coordinated oper-
ations and unmanned operations [1]. At the same time, in
dangerous related industrial production, how to use
unmanned equipment to perform inspection and mainte-
nance in places that humans cannot reach has also become
one of the main problems. Simultaneous localization and
mapping (SLAM) [2] can be implemented in modern
devices that use mobile robots as vehicles that capture data
using external sensing sensors to model the environment
as the robot moves and simultaneously estimate its own
motion without a priori information about the environment,

such as unmanned ground vehicles (UGVs), unmanned
aerial vehicles (UAVs), and mobile robots. SLAM is also
widely used in aerial robots [3], intelligent marine naviga-
tion [4], and deep space exploration [5]. Thus, this technol-
ogy plays an important role in daily life, industrial
production, and military applications. Moreover, in recent
years, with the rapid development of deep learning, image
processing techniques (including object detection, image
classification, and semantic segmentation) have been
improved greatly. In the semantic segmentation of images,
pixel-level semantic classification can be obtained and used
to recognize the preceding attributes of each pixel in an
image in advance, e.g., the most common pedestrians and
pets in an indoor environment [6]. Such semantic informa-
tion provides visual SLAM with relevant information about
dynamic objects in the scene. As a result, many researchers
have started to combine visual SLAM with deep convolu-
tional neural networks for object detection and semantic
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segmentation, which enables SLAM to perceive the sur-
rounding environment at a semantic level. Thus, deep
learning-assisted visual SLAM has become a research trend.

Although the current research on visual SLAM has
made some developments since most of the current visual
SLAM algorithms assume an ideal static environment,
which rarely exists in real life, if a dynamic object is
assumed to join the current environment, the motion of
that dynamic object will be calculated into the motion of
the visual sensor, thus making the accuracy of the calcu-
lated poses greatly reduced, or even leading to localization
and mapping failure. Then the dynamic objects here can
be divided into two categories, one is objects that have their
own movement characteristics, such as people, animals, and
moving carriers, and the other is objects that do not have
their own movement characteristics but are forced to move
in their current state due to external forces, such as tables,
chairs, and water glasses. Both types of dynamic objects can
be the main disturbing factors for visual SLAM to calculate
poses and construct maps in dynamic environments. These
problems are solved in my work, which enables the visual
SLAM algorithm on a mobile device to determine the posi-
tion and perceive the environment more efficiently in real
dynamic environments.

Thus, herein, a visual SLAM algorithm for an indoor
pedestrian dynamic environment is proposed. The proposed
system adopts a new lightweight convolutional neural net-
work for semantic segmentation. In addition, a tracking pre-
processing stage is introduced to the tracking thread to
eliminate the dynamic parts and repair the background in
the image. Then, a reliable ORB feature point is input to
the subsequent threads. Finally, a dense point cloud map is
generated. Our main contributions are summarized as
follows.

First, a lightweight robust dynamic SLAM (LRD-SLAM)
for indoor dynamic environments is proposed. LRD-SLAM
mainly improves real-time performance while ensuring
positioning accuracy in a dynamic environment and has
strong robustness when working.

Second, a fast deep convolutional neural network (FNet)
is proposed for semantic segmentation. This convolution
neural network is used as a semantic thread that enables
the fast and accurate identification of information on pedes-
trians in the given scene. The segmentation target can be
covered with a binary mask overlay.

Third, a new dynamic object culling strategy algorithm is
proposed. In this algorithm, a multiview geometric method
based on parallax angle and depth values is employed to
determine whether the target is a potential dynamic object.
Then combined with the dynamic objects detected by
semantic segmentation, the dynamic objects are processed
through the dynamic object culling strategy.

The remainder of this paper is organized as follows. Sec-
tion II reviews the visual SLAM methods in three types of
dynamic environments. Section III introduces the basic
IRD-SLAM framework, the principles of a new deep convo-
lutional neural network for semantic segmentation, and the
preprocessing stage of tracking. In Section IV, this paper dis-
cusses the results of applying the proposed method to the
TUM dataset [7] to verify the performance. Finally, the
paper is concluded in Section V.

2. Related Work

With the development of visual SLAM in recent years, an
increasing number of mature achievements are being dem-
onstrated, e.g., PTAM [8], ORB-SLAM [9], LSD-SLAM
[10], and DVO-SLAM [11]. However, these methods are
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Figure 1: The proposed system first performs semantic segmentation on the input original RGB image to detect dynamic objects in the
scene and combines multiview geometry to further improve dynamic object detection accuracy. Then, ORB feature points representing
dynamic objects are removed. Finally, the point cloud map is generated in a separate thread.
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primarily applied to static environments, and if they are dis-
turbed by dynamic objects in an indoor environment with
high dynamics, they cannot achieve effective results. Thus,
visual SLAM in dynamic situations has become a focus in
the robotics field. In recent years, the main tools in visual
SLAM for dynamic environments include deep learning,

deep learning combined with geometric methods, and deep
learning combined with other methods.

2.1. Deep Learning in Visual SLAM. Deep convolutional
neural networks, which are a key technique in deep learning,
are applied to target detection and semantic segmentation to
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Figure 2: The basic framework of visual SLAM in indoor dynamic environment. The local mapping thread, map thread, and closed-loop
detection thread in ORB-SLAM2 are adopted. A semantic segmentation thread is embedded before the tracking thread to detect dynamic
objects. After ORB feature points are extracted, the tracking preprocessing stage is implemented to uniformly remove the dynamic points
of the input RGB image and repair the background. Finally, a separate thread is employed to construct a dense point cloud map.
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Figure 3: Assume a 3 × 3 filter is used for max pooling with two steps. A 2 × 2 pooled map is generated via max pooling, and the relative
position of the weights selected by max pooling in the 2 × 2 filter is saved as pooling indices. In the upsampling process, the pooling indices
information is used to directly put the data back to the corresponding position, and then the input feature map and corresponding
upsampling layer are concatenated to enrich and deepen the texture features. Finally, deconvolution is performed to train and learn.
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Figure 4: Network structure diagram. The convolutional layer in the encoder is replaced by the Conv model given in the figure, which
effectively reduces the number of parameters and improves calculation speed. In the encoder, the residual block (comprising the Conv
block and identity block) is employed to stack to extract deeper features, and the features generated by each residual block establish the
pooling indices with the corresponding decoder part. In the decoder, the size of the input feature map is increased via upsampling two
times, and the concatenation feature fusion method is employed to improve the accuracy of each layer. Subsequently, deconvolution is
employed to fill in the missing weights, where the convolution layer is the original convolution operation. Finally, a SoftMax layer is
implemented as a full-connected layer to output the maximum value of the different categories.

Input: The original image frame F, the feature point set extracted from the image frame P = ½p1, p2,⋯,pn�.
Output: Dynalist.
1: Extract dynamic objects in the input image frames using FNet and overlay them with aMasks;
2: Multiview geometric approach to find potential dynamic points pd ;
3: For i = 1 : n do
4: If pf ∈Masks then
5: pf==dynamic;
6: Dynalist ⟵ added;
7: End if
8: If pf == pd then
9: pf==dynamic;
10: Dynalist ⟵ added;
11: End if
12: End for
13: Remove dynamic points from Dynalist;

Algorithm 1: Dynamic objects elimination strategy.
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obtain the classification or semantic labeling information for
each image pixel in an image. Many classical algorithms
have been developed, such as the YOLO series [12], single-
shot multibox detector (SSD) [13], Fast-RCNN [14], SegNet

[15], UNet [16], Mask-RCNN [17], PSPNet [18], and the
DeepLab series [19]. Pure deep learning has been used to
assist visual SLAM in earlier research. Zhang et al. [20]
employed YOLO to detect the dynamic objects in an envi-
ronment and removed them so that a visual SLAM system
would not be disturbed. Similarly, Zhong et al. [21] com-
bined visual SLAM with an SSD to detect objects in each
frame of an image and eliminate the detected dynamic
objects. In 2019, Wang et al. [22] proposed a unified frame-
work for the mutual improvement of SLAM and semantic
segmentation. This method employs the FCIS algorithm
for initial segmentation, and then culls possible dynamic
objects in a bounding box such that visual SLAM is not
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Figure 5: Multiview geometry diagram. The projected point x′ in (a) is a schematic diagram of a static point (z ′ = zproj). The projected point

x′ in (b) is a schematic diagram of a dynamic point (z′ ≪ zproj).
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Figure 6: Schematic of background restoration principle. The red human figure is a dynamic object, and the blue star is a static background.
The static background occluded using the red human figure is restored by the background restoration method, and the final optimized image
frame is obtained.

Table 1: Training network parameter setting table.

The parameter name Selection strategy

Optimizer Adam

Learning rates Initial value 1e-3

The activation function ReLu

Batch size 4

Number of rounds 200
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affected by dynamic object interference. However, several
limitations are evident in these studies. On the one hand,
these methods only target dynamic objects with prior infor-
mation, and potential dynamic objects without prior infor-
mation cannot be identified. On the other hand, the target
detection and semantic segmentation results can be inaccu-
rate; thus, unreliable feature points can be input into visual
SLAM.

2.2. Deep Learning Combined with Geometric Methods in
Visual SLAM. Many previous studies have combined deep
learning with geometric methods to overcome the limita-
tions of purely using deep learning to assist visual SLAM.
For example, in 2018, Yu et al. [23] proposed DS-SLAM,
in which ORB-SLAM2 [24] is employed to embed the Seg-
Net deep convolutional neural network combined with a
moving consistency check to reduce the impact of dynamic
objects. Here, an object is considered to be dynamic only
when both SegNet and the moving consistency check
methods identify it as a dynamic object. In 2018, Dyna-
SLAM was proposed by Bescos et al. [25]. Dyna-SLAM com-
bines deep learning with geometric methods to eliminate
unreliable feature points. This method employs the Mask-
RCNN algorithm to segment out prior dynamic information
in a scene, uses a multiview geometry technique to further
detect potential dynamic objects, and removes the detected
dynamic objects to improve the accuracy and robustness of
visual SLAM. However, the calculation costs of Mask-
RCNN are high owing to the large number of parameters,
and the multiview geometry technique incurs high calcula-
tion costs. As a result, the Dyna-SLAM method cannot be
employed on mobile devices. In 2020, Ai et al. [26] proposed
DDL-SLAM, in which UNet was used to detect dynamic
points, and then the dynamic objects in the scene were elim-
inated with the help of UNet and multiview geometry.

2.3. Deep Learning Combined with Other Methods in Visual
SLAM. In visual SLAM for dynamic environments, deep

learning is combined with some other methods. For exam-
ple, Han and Xi [27] proposed PSPNet-SLAM, which pri-
marily eliminates dynamic points in two steps. First, the
optical flow is employed to remove feature points with large
optical flow values. Second, PSPNet is employed to eliminate
the remaining feature points in the prior objects. In 2019,
Xiao et al. [28] proposed dynamic-SLAM to improve the
SSD algorithm and improve the detection recall rate, which
is then used for dynamic object detection. Second, the selec-
tion tracking algorithm is employed to process dynamic
object points to further improve the pose estimation accu-
racy in a dynamic environment. In addition, Cui et al. [29]
proposed a tightly coupled SOF-SLAM method, which
embeds SegNet as a separate semantic segmentation thread
into ORB-SLAM2 to detect dynamic objects, and a semantic
optical flow method is implemented to further eliminate the
dynamic features. In 2020, Ai et al. [30] proposed visual
SLAM for dynamic environments based on object detection.
This method combines YOLOV4 and the dynamic object
probability (DOP) model to detect dynamic objects. Here,
the DOP model is employed to improve the efficiency of
object detection and enhance system performance in terms
of separating dynamic targets from static scenes. Thus, the
visual SLAM system has higher accuracy and robustness in
dynamic environments.

2.4. Proposed System. Here, this paper describes the pro-
posed visual SLAM system for an indoor dynamic environ-
ment in detail. First, provide an overview of the
framework. Then, a lightweight deep convolutional neural
network employed in the proposed system for semantic seg-
mentation is described. Finally, the preprocessing stage of
tracking is briefly described, including the potential dynamic
object detection and background restoration.

2.5. Basic Framework. The most relevant problem in visual
SLAM for indoor dynamic environments is interference
from movable objects, such as humans and accompanying
animals, which results in unsatisfactory positioning and
mapping. Thus, this paper proposes a lightweight robust
dynamic SLAM system that uses a new semantic segmenta-
tion method (LRD-SLAM). Figure 1 shows an overview of
the proposed LRD-SLAM system, and the basic framework
of the LRD-SLAM system is shown in Figure 2. It includes
the following features. First, a separate semantic segmenta-
tion thread is implemented. This semantic segmentation
thread takes the original RGB image as input to obtain
semantic labels for each pixel point. Second, the preprocess-
ing stage of tracking is implemented in the tracking thread
to remove interference from dynamic map points such that
the visual odometer for visual SLAM performs robustly for
camera pose calculation in dynamic environments.

2.6. Semantic Segmentation. This paper designed a fast deep
convolutional neural network (FNet) to realize semantic seg-
mentation. The core of this network includes a fast encoder,
a decoder corresponding to the encoder, and a pixel classifi-
cation layer. The network encoder use employs ResNet-50
[31] as the backbone for feature extraction. The network
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Figure 7: Graph of cost function during training. tr_loss represents
the training set loss curve, and val_loss represents the validation set
loss curve.
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head of ResNet-50 comprises a convolutional layer, a BN
layer, ReLU, and a max pooling layer, and then the residual
blocks, comprising a convolution block and an identity
block, are stacked to extract deeper features. First, in the
encoder part, all convolution kernels in the backbone net-
work are improved according to the lightweight design tech-
nique in GhostNet [32] such that the number is reduced to
one-half of the original. Subsequently, the final feature map
comprises the initial feature map convolved in sequence

and additional features obtained via the cheap operation.
Here, the cheap operation performs convolution on the fea-
ture map obtained by a small number of convolutions via
point convolution, i.e., a linear operation. It overcomes the
disadvantages of ResNet-50 in terms of the large number
of parameters, improves calculation efficiency, and ensures
sufficient. Here, if the size of the image is h ×w × c, the sizes
of the convolution kernel and initial feature maps are k × k
and h′ ×w′, respectively. The number of initial feature maps

(a) Original (b) Semantic segmentation

Figure 9: Visualization of real scenes.

Original FCN UNet SegNet FNet Groundtruth

Figure 8: Visualization of VOC2012 datasets.
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is denoted as m. Thus, the number of parameters in the
improved convolution is expressed as follows.

params1 =m ⋅ c ⋅ k ⋅ k: ð1Þ

The floating point operations (FLOPs) are calculated as
follows.

flops1 = h′ ⋅w′ ⋅m ⋅ c ⋅ k ⋅ k: ð2Þ

Assume that the size of the convolution kernel in the
cheap operation is d × d, and the number of cheap operation
transformations is s. Thus, the number of feature maps is
expressed as follows.

n =m ⋅ s: ð3Þ

Owing to the existence of identity transformation, the
actual number of effective transformations is s − 1; thus,
the number of parameters in the cheap operation transfor-
mation is obtained as follows.

params2 =m ⋅ s − 1ð Þ ⋅ d ⋅ d:: ð4Þ

The corresponding number of FLOPs is calculated as fol-
lows.

flops2 = s − 1ð Þ ⋅ h′ ⋅w′ ⋅m ⋅ c ⋅ d ⋅ d:: ð5Þ

Thus, the total number of parameters in the network is
the sum of Equation (1) and Equation (5). By substituting
Equation (3) into this sum, we obtain the following.

paramssum = n
s
⋅ c ⋅ k ⋅ k + n s − 1ð Þ

s
⋅ d ⋅ d:: ð6Þ

Similarly, the total number of FLOPs is the sum of Equa-
tions (2) and (6), and by substituting Equation (3) into this
sum, we obtain the following.

flopssum = n
s
⋅ h′ ⋅w′ ⋅ c ⋅ k ⋅ k + n s − 1ð Þ

s
⋅ h′ ⋅w′ ⋅ d ⋅ d::

ð7Þ

The number of parameters and FLOPs in the original
ResNet-50 convolution is expressed as follows.

paramsori = n ⋅ c ⋅ k ⋅ k: ð8Þ

flopsori = n ⋅ c ⋅ h′ ⋅w′ ⋅ k ⋅ k: ð9Þ
Note that these take very large values because the num-

ber of filters n and channel number c are typically very large.
The number of parameters paramssum can be reduced using
lightweight network techniques, which make the network
more suitable for deployment on mobile devices. The theo-
retical acceleration ratio of the original ResNet-50 convolu-
tion upgraded to lightweight convolution is given as follows.

rs =
flopsori

flops1 + flops2
= n ⋅ h′ ⋅w′ ⋅ c ⋅ k ⋅ k

n/sð Þ ⋅ h′ ⋅w′ ⋅ c ⋅ k ⋅ k + n s − 1ð Þ/sð Þ ⋅ h′ ⋅w′ ⋅ d ⋅ d
≈ s,

ð10Þ

where d × d is similar to k × k, and s≪ c. Similarly, the com-
pression ratio of parameters is expressed as follows.

rc =
paramsori

params1 + params2
= n ⋅ c ⋅ k ⋅ k

n/sð Þ ⋅ c ⋅ k ⋅ k + n s − 1ð Þ/sð Þ ⋅ d ⋅ d ≈ s:

ð11Þ

Note that this is approximately equal to the theoretical
acceleration ratio.

In the decoder, FNet combines SegNet and UNet and
designs the upsampling of the low-resolution feature maps
by indexing and concatenating. Thus, the pooling indices,
i.e., the index to the maximum value, selected via maximum
pooling are saved after each feature extraction process in the
encoder layer. The obtained indices are used for upsampling
in the decoder layer. Simultaneously, a concatenation feature
fusion method is employed to map each layer feature in the
encoder to the corresponding layer in the decoder to enrich
the texture deepening feature. Note that the upsampled fea-
ture maps are sparse; thus, a trainable deconvolution opera-
tion is performed on the feature maps to generate dense
feature maps. The principle of the decoder is illustrated in
Figure 3. Then, these feature maps are sent to the SoftMax
classifier. An overall schematic diagram of FNet is shown
in Figure 4. The network is trained on the Pascal
VOC2012 [33] dataset to segment the movable classes in real
life (e.g., people, birds, horses, sheep, cats, cows, and dogs).

2.7. The Preprocessing Stage of Tracking. After the ORB fea-
ture points are extracted in the tracking thread, a prepro-
cessing stage of tracking is implemented to process the
dynamic objects in the current environment. This stage
comprises three main steps, i.e., dynamic object detection,
dynamic object elimination, and background repair. The
semantic segmentation thread detects dynamic objects and
covers them with a binary mask. Using multiview geometry,
potential dynamic objects are further detected and elimi-
nated together with the ORB feature points under the mask.
Finally, only reliable ORB feature points are retained. The
dynamic object culling strategy is shown in Algorithm 1.
After removing the dynamic objects, the blocked part is
missing, which affects subsequent reconstruction of the
point cloud map. Here, LRD-SLAM employs a background
repair method to solve the above problems.

Table 3: The performance of the proposed FNet with different s on
VOC2012.

s Parameters Accuracy (%)

2 12.2M 85.3%

3 10.8M 84.9%

4 10.1M 84.4%

5 9.7M 83.8%
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Although most moving objects can be detected by FNet,
some dynamic objects cannot be recognized. Such undetect-
able dynamic objects are movable although they are not in a
predefined category, e.g., cups, books, and telephones on a
table are all potential moving objects. Thus, LRD-SLAM
applies a multiview geometry technique to the system to fur-
ther improve the accuracy of dynamic object detection. In
this technique, the distance and rotation between the new
frame and each keyframes are used to select keyframe that
overlap highly with the new frame. For these keyframes,
the projection of each key point x to the current frame is cal-
culated, and the projection point x′ and depth zproj are
obtained. Then parallax angle α is obtained in consideration
of the connection of each key point x, projection point x′
and their corresponding 3D point X. If α > 30 ° , the point
is considered a dynamic object and cannot be used for track-
ing and mapping. The difference between the projected
point’s depth zproj and the current frame’s depth z′ is also
considered. If this difference is too large, the key point is also
considered a dynamic object. This method is illustrated in
Figure 5.

The absence of a background by removing a dynamic
object will affect the subsequent establishment of the point
cloud map. Thus, in the proposed method, the previous 10
keyframes before the current frame are selected and pro-
jected in sequence to the current frame such that the
occluded part of the current frame is recovered using the
original static background information. The basic principle
of this background restoration process is illustrated in
Figure 6.

3. Experimental Results

The proposed method was evaluated experimentally on the
large open-source TUM RGB-D dataset. This data set con-
tains real-time ground data, RGB images, and corresponding
depth images. This paper took a sequence of the dynamic
environment in this dataset, including halfsphere, static,
xyz, and rpy.

First, this paper executed ORB-SLAM2 and LRD-SLAM
on the above sequences, and the absolute pose error (APE)
and relative pose error (RPE) were evaluated to verify the
improvement realized by the proposed method. Second,
the proposed method was compared with several state-of-
the-art visual SLAM systems for dynamic environments.
Finally, the number of parameters in other advanced deep
convolutional neural networks for semantic segmentation

was compared to that in FNet to verify the real-time perfor-
mance of the proposed system. These experiments were con-
ducted using the Ubuntu18.04 operating system, where the
deep convolutional neural network was implemented using
Python 3.6, and the deep learning frameworks were Keras
and Tensorflow. This paper used C++ to call Python to inte-
grate the deep convolutional neural network into the visual
SLAM thread. All experiments were conducted on a com-
puter with Intel (R) Core (TM) i7-10750H 2.60GHz CPU,
an NVIDIA GeForce RTX 2060 GPU, and 6GB memory.

3.1. Comparison and Analysis of Experimental Results

3.1.1. Semantic Segmentation. The Pascal VOC2012 dataset
and its extended semantic boundary datasets and bench-
mark (SBD) datasets in the semantic segmentation experi-
ments. The SBD datasets include all images and labels
from VOC2012, containing a total of 11,335 images with
semantic segmentation labels.

The training parameters are shown in Table 1, and the
cost function for training is shown in Figure 7. During the
training process, the SBD dataset was used as the training
set, and 10% of the SBD dataset was randomly selected as
the validation set for training. Note that FNet employs the
frozen training method for training. First, the encoder part
was frozen at the beginning of training, and only the decoder
part was trained and converged 70 times. Then, the encoder
part was unfrozen and trained together with the decoder
part. The learning rate during training is attenuated if the
loss does not decrease for three times.

Under the same hardware conditions, semantic segmen-
tation experiments were conducted for four methods on the
Pascal VOC2012 validation set. The experimental results
were compared and calculated the corresponding evaluation
indicators. The visualization results are shown in Figure 8
FNet exhibits a better segmentation effect compared to the
other methods.

FNet also performed semantic segmentation experi-
ments on real-scene environments other than the
VOC2012 dataset, and the results are shown in Figure 9.
As shown, FNet also exhibits good effects in real scenes.

As shown in Table 2, the average pixel accuracy (MPA)
and mean intersection over union (mIoU) of FNet are
higher than those of UNet and SegNet and similar to those
of FCN [34]. In terms of processing time, FNet is the fastest
in terms of processing time per frame, compared to the four
semantic segmentation network models FNet, UNet, SegNet,
and Deeplabv3+, which improve the processing time per

Table 4: Absolute pose error (APE [m]) results for different variants.

Sequence
ORB-SLAM2 (RGB-D) LRD-SLAM (P) LRD-SLAM (C)

RMSE Mean Median S.D. RMSE Mean Median S.D. RMSE Mean Median S.D.

w_half 0.6282 0.5479 0.5136 0.3073 0.0201 0.0175 0.0156 0.0100 0.0194 0.0170 0.0154 0.0094

w_xyz 0.6650 0.5617 0.4855 0.3558 0.0159 0.0135 0.0119 0.0084 0.0141 0.0116 0.0100 0.0079

w_rpy 1.0360 0.9162 0.7605 0.4836 0.0409 0.0326 0.0261 0.0247 0.0379 0.0299 0.0242 0.0232

w_static 0.3879 0.3540 0.3202 0.1586 0.0068 0.0061 0.0057 0.0029 0.0074 0.0066 0.0061 0.0034

s_half 0.0236 0.0200 0.0185 0.0125 0.0227 0.0194 0.0165 0.0121 0.0173 0.0155 0.0142 0.0078
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Table 5: Results of metrics absolute pose error (APE [m]).

Sequence
ORB-SLAM2 (RGB-D) LRD-SLAM (C) Improvement

RMSE Mean Median S.D. RMSE Mean Median S.D. RMSE Mean Median S.D.

w_half 0.6282 0.5479 0.5136 0.3073 0.0194 0.0170 0.0154 0.0094 96.91% 96.90% 97% 96.95%

w_xyz 0.6650 0.5617 0.4855 0.3558 0.0141 0.0116 0.0100 0.0079 97.88% 97.93% 98% 97.77%

w_rpy 1.0360 0.9162 0.7605 0.4836 0.0379 0.0299 0.0242 0.0232 96.34% 96.73% 97% 95.20%

w_static 0.3879 0.3540 0.3202 0.1586 0.0074 0.0066 0.0061 0.0034 98.10% 98.15% 98% 97.87%

s_half 0.0236 0.0200 0.0185 0.0125 0.0173 0.0155 0.0142 0.0078 26.50% 22.65% 23% 37.49%

Table 6: Results of metrics translational drift (RPE [m/s]).

Sequence
ORB-SLAM2 (RGB-D) LRD-SLAM (C) Improvement

RMSE Mean Median S.D. RMSE Mean Median S.D. RMSE Mean Median S.D.

w_half 0.5099 0.4095 0.3838 0.3038 0.0315 0.0287 0.0289 0.0130 93.82% 92.99% 92% 95.73%

w_xyz 0.4515 0.3704 0.3550 0.2581 0.0523 0.0462 0.0354 0.0244 88.42% 87.52% 90% 90.55%

w_rpy 0.4915 0.3823 0.3078 0.3089 0.0553 0.0516 0.0510 0.0199 88.75% 86.50% 83% 93.56%

w_static 0.4145 0.3044 0.1868 0.2813 0.0112 0.0109 0.0111 0.0027 97.29% 96.42% 94% 99.05%

s_half 0.0287 0.0257 0.0249 0.0127 0.0247 0.0230 0.0237 0.0090 13.85% 10.43% 5% 29.53%

Table 7: Results of metrics rotational drift (RPE [deg/s]).

Sequence
ORB-SLAM2 (RGB-D) LRD-SLAM (C) Improvement

RMSE Mean Median S.D. RMSE Mean Median S.D. RMSE Mean Median S.D.

w_half 10.6200 8.4826 7.6227 6.3899 0.8592 0.7831 0.6680 0.3534 91.91% 90.77% 91% 94.47%

w_xyz 8.3940 6.9392 6.9721 4.7230 0.7849 0.7420 0.7236 0.2559 90.65% 89.31% 90% 94.58%

w_rpy 9.3985 7.3989 6.0966 5.7955 1.2416 1.0972 0.9473 0.5811 86.79% 85.17% 84% 89.97%

w_static 7.3653 5.4297 3.3028 4.9765 0.2021 0.1971 0.1793 0.0448 97.26% 96.37% 95% 99.10%

s_half 1.0089 0.9640 1.1497 0.2976 0.6990 0.6621 0.7130 0.2240 30.72% 31.32% 38% 24.72%

Original ORB-SLAM2 LRD-SLAM Dynamic information
extraction

Figure 10: Comparative effects of semantic segmentation and feature extraction in the f_w_halfsphere, f_w_xyz, and f_w_rpy sequences.
The first column shows the original image frame in the dataset, and the second, third, and fourth columns show renderings of the ORB-
SLAM2 feature extraction, LRD-SLAM feature extraction, and FNet semantic segmentation rendering.
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frame by 54%, 20%, 15.2%, and 33.3%, respectively, due to
the lightweight technology used in FNet, which greatly
reduces the amount of computation in the encoder. The net-
work architecture is relatively simple. In terms of accuracy, it
is not much different from the prediction accuracy of some
dynamic objects in Deeplabv3+, which verifies that the
method in this paper greatly improves the real-time perfor-
mance of the network model while ensuring accuracy.
Therefore, FNet shows better performance compared to
other methods and is more suitable for embedded visualiza-
tion SLAM tasks. In the table, we can find that FNet has bet-
ter prediction accuracy for objects with moving
characteristics, such as people, cats, dogs, and cars, while
the prediction accuracy for sofa class is less satisfactory,
which is mainly due to two reasons. One is that the number
of training sets of the sofa in the SBD extended dataset used

in this paper is low in the extended dataset, and the other is
that there are fewer images with the label of the sofa in the
test set used in this paper, and most of them are similar to
the style of chair, which causes FNet to confuse chair and
sofa. Therefore, it is expected that the prediction accuracy
of sofa class is low, and this paper targets dynamic objects
in an indoor environment. The performance effect of sofa
class will not affect the accuracy of embedding into visual
SLAM in dynamic environment.

For the parametric analysis of the network model, the
FNet designed in this paper has a hyperparameter in the
encoder part, i.e., the number of cheap operation transitions
s. In Table 3, the effect of the number of cheap operation
transitions s of the FNet on the number and accuracy of
the network parameters is tested. First, I fix the size of the
convolutional kernel d to 3 while adjusting the number of

(a) LRD-SLAM feature extraction effect diagram (b) ORB-SLAM2 feature extraction effect diagram

Figure 11: Comparison of feature extraction effects in real scenes.

(a) RGB original images (b) Inpainted RGB images

(c) Depth original images (d) Inpainted depth images

Figure 12: Composite images for background restoration: (a, b) RGB original and recovered images, respectively; (c, d) corresponding depth
images of (a) and (b), respectively.
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Figure 13: In the feiburg3_walking_halfsphere, feiburg3_walking_xyz, and feiburg3_walking_rpy sequences, ORB-SLAM2 and the
trajectory error map of LRD-SLAM. The black line is the original trajectory of the camera motion, the blue line is the camera motion
trajectory estimated by ORB-SLAM2 or LRD-SLAM, and the red line is the error between the estimated motion trajectory and the
original trajectory.
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parameters s in the range {2, 3, 4, and 5} and present the
results on the VOC2012 validation set in Table 3. Second,
since the number of s is directly related to the computational
cost of the final network, i.e., the larger s is, the larger the
compression and acceleration ratios are, and it is expected
that the number of parameters of the network decreases sig-
nificantly and the accuracy decreases gradually as s increases.
Finally, when s = 2, this means that the backbone network
ResNet-50, the encoder part of FNet, is compressed by a fac-

tor of 2 while having a better accuracy, demonstrating the
superiority of FNet.

3.1.2. Analysis of LRD-SLAM Experimental Results. The
absolute trajectory error results of LRD-SLAM with different
variants in five dynamic sequences are shown in Table 4,
where LRD-SLAM (P) represents only FNet and ORB-
SLAM2, and LRD-SLAM (C) represents the complete
system.
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Figure 14: 3D trajectory error plots of ORB-SLAM2 and LRD-SLAM in feiburg3_walking_halfsphere, feiburg3_walking_rpy, and feiburg3_
walking_xyz dynamic dataset sequences.
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As shown in Table 4, LRD-SLAM (C) has the best RMSE
value. LRD-SLAM (P) is slightly less accurate than com-
pared to ORB-SLAM2. LRD-SLAM (P) masks the multiview
geometry method; thus, it greatly outperforms LRD-SLAM
(C) in terms of calculating time. Then, the APE between
LRD-SLAM and ORB-SLAM2 in the five TUM datasets is
listed in Table 5.

As can be seen, LRD-SLAM has a lower RMSE value
than ORB-SLAM2 in the five dynamic environment
sequences, and consequently the median, mean, S.D., and
RMSE are all significantly reduced. The relative accuracy
improvement rate of LRD-SLAM for ORB-SLAM2 was also
calculated. In a low dynamic environment freiburg3_sitting_
halfsphere, the improvement rate of RMSE reached 26%. In
the other four sequences of highly dynamic environments,
the improvement rate was greater than 90%. These results
demonstrate that the LRD-SLAM is significantly better in
terms of accuracy, robustness, and stability in high dynamic

scenarios. The reference formula for the improvement rate is
given as follows.

η = o − r
o

× 100%: ð12Þ

Here, η is the improvement rate, and o and r are the cor-
responding values for ORB-SLAM2 and LRD-SLAM,
respectively. Similarly, in terms of the RPE, as shown in
Tables 6 and 7, LRD-SLAM demonstrates strong accuracy,
robustness, and stability compared to ORB-SLAM2. In addi-
tion, we found that LRD-SLAM can be used in most high
dynamic environments.

The RGB images in the f_w_halfsphere, f_w_xyz, and f_
w_rpy sequences were selected randomly to compare the
feature extraction and semantic segmentation performance
of both LRD-SLAM with ORB-SLAM2, and the results are
shown in Figure 10.
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Figure 15: APE results for the feiburg3_walking_halfsphere sequence: (a) APE of ORB-SLAM2 and the proposed method, (b) APE
statistical data comparison, and (c) APE box line comparison.
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As can be seen, LRD-SLAM effectively segmented the
dynamic objects in the video sequences, and the feature
points of the dynamic objects were eliminated effectively
during feature extraction. In the real scene, the feature
extraction effects of LRD-SLAM and ORB-SLAM2 are
shown in Figure 11.

As can be seen, the feature points of moving objects were
effectively eliminated in LRD-SLAM. For background resto-
ration, Figure 12 shows an image synthesized from a partial
sequence of input frames in the TUM RGB-D [6] datasets. It
can be seen that most of the parts occluded by the moving
objects have been correctly patched, which was beneficial
to the subsequent point cloud map construction.

Figure 13 shows the trajectory error curves for a highly
dynamic environment. Here, Figures 13(a), 13(c), and
13(e) show the errors between LRD-SLAM and the actual
trajectory; Figures 13(b), 13(d), and 13(f) show the errors
between ORB-SLAM2 and the actual trajectory.

The comparison in the 3D trajectory error is shown in
Figure 14. The comparison between LRD-SLAM and ORB-
SLAM2 in the sequence of feiburg3_walking_halfsphere

dynamic datasets is shown in Figure 14(a), where the blue
line is the trajectory of LRD-SLAM, the black line is the real
motion trajectory, and the orange line is the trajectory of
ORB-SLAM2. In the figure, it can be found that the trajec-
tory of ORB-SLAM2 in the dynamic environment at each
time step has a large error with the real trajectory, while
the trajectory of LRD-SLAM at each time step matches the
real trajectory, which is because LRD-SLAM adopts the FNet
designed in this paper to first semantically segment the
dynamic objects in each image frame before tracking, and
then the tracking threads added in the dynamic objects are
then removed from the preprocessing thread added in the
tracking thread, so that the image frames without dynamic
object interference are input to the whole vision SLAM for
bit pose estimation. Similarly, for the 3D trajectory compar-
ison between LRD-SLAM and ORB-SLAM2 in the other two
dynamic data sets sequences feiburg3_walking rpy and fei-
burg3_walking_ xyz are shown in Figure 14(b) and
Figure 14(c), respectively, it can be found that LRD-SLAM
has better localization accuracy and robustness compared
to ORB-SLAM2 in the dynamic environment.
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Figure 16: APE results for the feiburg3_walking_xyz sequence: (a) APE of ORB-SLAM2 and the proposed method, (b) APE statistical data
comparison, and (c) APE box line comparison.
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As can be seen, LRD-SLAM significantly reduced the
trajectory error and improved the accuracy of positioning.
ORB-SLAM2 demonstrates large errors in highly dynamic
environments and is not suitable for positioning and map-
ping in highly dynamic environments. Figures 15 and 16
compare the APE of ORB-SLAM2 and LRD-SLAM for two
highly dynamic sequences feiburg3_walking_halfsphere
and feiburg3_walking_xyz, respectively. The results demon-
strate that the LRD-SLAM system is more robust and stable
than ORB-SLAM2 under highly dynamic conditions.

In a complex real scene, the mobile robot platform was
used to carry the Kinect2 camera to drive in a straight line.
At the same time, the two methods of LRD-SLAM and
ORB-SLAM2 are compared and tested. The experimental
tracking trajectory comparison effect is shown in Figure 17
Because the mobile robot drives in a straight line, the track-
ing trajectory of LRD-SLAM is smoother, and more stable
than ORB-SLAM2, which verifies that LRD-SLAM also has
better accuracy and robustness in real scenarios.

In addition, LRD-SLAM was compared to recent state-
of-the-art semantic SLAM systems: PSPNet-SLAM, system
in [35], DS-SLAM, and Dyna-SLAM. These systems are
based on ORB-SLAM2 and were tested in the dynamic envi-

ronment sequence of TUM. The improvement rate of RMSE
of these systems relative to ORB-SLAM2 was used as the
evaluation index. The results are shown in Table 8. As can
be seen, these semantic vision SLAM systems eliminated
moving objects and realized higher accuracy in the five
dynamic sequences. The data in Table 4 were compared to
several other methods. We found that LRD-SLAM has
higher accuracy in the feiburg3_walking_halfsphere, fei-
burg3_walking_static, feiburg3_walking_xyz, and feiburg3_
walking_rpy sequences. By comparing LRD-SLAM to DS-
SLAM and another existing system [35], we found that the
improvements are more obvious because multiview geome-
try is employed to further eliminate potential dynamic
objects, and FNet also exhibits more accurate detection of
dynamic objects. With the feiburg3_walking_xyz sequence,
LRD-SLAM is very close to the effect of PSPNet-SLAM.

Figure 18 shows the final point cloud map. As can be
seen, most of the dynamic objects were eliminated, the static
background was repaired, and a complete point cloud map
was generated. In the real scene, the dense point cloud
map construction effect is shown in Figure 19. In the map-
ping effect of LRD-SLAM, most dynamic objects are culled,
and a clean and accurate point cloud map is constructed.

3.2. System Real-Time Analysis. The time costs of the imple-
mented semantic segmentation thread and multiview geom-
etry technique are important factors in an online visual
SLAM system because they indirectly reflect the calculation
costs and GPU memory requirements.

Table 9 compares the number of parameters of FNet and
other deep convolutional neural networks. As the light-
weight LRD-SLAM incurs lower computational costs than
the other methods, it is more suitable for mobile devices.

For the entire visual SLAM system, run LRD-SLAM (C),
LRD-SLAM (P), and Dyna-SLAM on four high-dynamic
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Figure 17: Qualitative comparison of estimated camera trajectory between ORB-SLAM2 and LRD-SLAM.

Table 8: Comparison of relative RMSE [m] for proposed and existing systems on dynamic sequences of TUM dataset.

Sequence walking_halfsphere walking_xyz walking_rpy walking_static sitting_halfsphere

PSPNet-SLAM 94.33% 98.05% 95.98% 97.87% —

Detect-SLAM 90.72% 97.62% 66.94% — -29.8%

Zhao et al. 93.90% 95.10% 80.80% 72.00% —

DS-SLAM 93.76% 96.71% 46.97% 97.91%

Dyna-SLAM 92.88% 96.73% 94.71% 93.33% 15%

LRD-SLAM (C) 96.91% 97.88% 96.34% 98.10% 26.50%

Figure 18: Point cloud map reconstruction.
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video sequences under the same hardware environment, and
the average tracking time of these systems was calculated in
real time. As shown in Table 10, LRD-SLAM (C) consumed
less time than Dyna-SLAM on the high dynamic video
sequences. The average tracking time of LRD-SLAM (C)
was less and the real-time performance was better.

4. Conclusions

This paper has proposed a lightweight visual SLAM system
for dynamic environments. FNet was designed and inte-
grated into the proposed visual SLAM system. In this sys-
tem, a dynamic target detected by FNet is combined with a
multiview geometry method, the feature points of the
dynamic target are removed, and the static background
missing because of the removal of dynamic points is recov-
ered. Experiments conducted using the TUM RGB-D dataset
have demonstrated that LRD-SLAM is significantly better
than ORB-SLAM2 in indoor dynamic environments, and it
obtains higher accuracy than the existing state-of-the-art
visual SLAM systems for dynamic environments. FNet is
also compared with the model parameters of existing state-
of-the-art deep convolutional neural networks available.
The results demonstrate that LRD-SLAM is lightweight
and can run on mobile devices.

We found that the multiview geometry methods contrib-
ute a large amount to the computational costs, which leads
to the slow operation of the visual SLAM system. Thus, in
the future, the multiview geometry method should be
improved to reduce the time costs and improve the real-
time performance of the proposed system.
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