
Research Article
Driver’s Face Pose Estimation Using Fine-Grained Wi-Fi
Signals for Next-Generation Internet of Vehicles

Zain Ul Abiden Akhtar ,1 Hafiz Faiz Rasool,1 Muhammad Asif,2 Wali Ullah Khan,3

Zain ul Abidin Jaffri ,4 and Md. Sadek Ali 5

1Faculty of Engineering, Department of Information and Communication Engineering, The Islamia University of Bahawalpur,
Bahawalpur 63100, Pakistan
2College of Electronics and Information Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
3Interdisciplinary Centre for Security, Reliability and Trust (SnT)/ SigCom, University of Luxembourg, Luxembourg
4College of Physics and Electronic Information Engineering, Neijiang Normal University, Neijiang 641100, China
5Communication Research Laboratory, Department of Information and Communication Technology, Islamic University,
Kushtia-7003, Bangladesh

Correspondence should be addressed to Md. Sadek Ali; sadek@ice.iu.ac.bd

Received 25 November 2021; Revised 26 March 2022; Accepted 15 April 2022; Published 5 May 2022

Academic Editor: Antonio De Domenico

Copyright © 2022 Zain Ul Abiden Akhtar et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Driver’s behavior and gesture recognition are most significant in the emerging next-generation vehicular technology. Driver’s face
may provide important cues about his/her attention and fatigue behavior. Therefore, driver’s face pose is one of the key indicators
to be considered for automatic driver monitoring system in next-generation Internet of Vehicles (IoV) technology. Driver
behavior monitoring is most significant in order to reduce road accidents. This paper aims to address the problem of driver’s
attentiveness monitoring using face pose estimation in a nonintrusive manner. The proposed system is based on wireless
sensing, leveraging channel state information (CSI) of WiFi signals. In this paper, we present a novel classification algorithm
that is based on the combination of support vector machine (SVM) and K nearest neighbor (KNN) to enhance the
classification accuracy. Experimental results demonstrate that the proposed device-free wireless implementation can localize a
driver’s face very accurately with an average recognition rate of 91:8%.

1. Introduction

With the rapid growing automobile industry, Internet of Vehi-
cles (IoV) has attracted many researchers due to its enormous
commercial applications [1–4]. For the next generation fast-
paced intelligent vehicles, driver’s face estimation may provide
important cues to solve many human-centered problems, e.g.,
driver behavior recognition and driver attention analysis for
safe driving. Face localization is a special case of head pose
estimation that is widely used in various applications, e.g.,
saliency prediction, facial expression analysis, and video con-
ferencing [5]. The nominal face orientation while driving is
frontal. If the driver’s face orientation is in other directions

(e.g., tilting down or sideway), this is either due to inattention
or fatigue. From the literature, it is evident that driver’s head
analysis generally points out the attention level of a driver, as
well as his/her distraction and fatigue behavior [6, 7].

During the previous decays, various driver assistance sys-
tems are designed to avoid accidents. These systems could sig-
nificantly provide essential information at an early stage to
avoid possible accidental risks from occurring. The driver’s
attention can be analyzed from several visual or nonvisual
parameters, i.e., heart rate variability [8], motion of the hands
[9] or the feet [10], and gaze tracking [11] or eye blinking [12].
Among the others, face is an important indicator to measure
driver’s attention that deserves further consideration.
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In general, the choice of the most suitable driver’s inat-
tention monitoring system is crucial. For optimal perfor-
mance, the sensing system should be noninvasive and able
to perform accurately under various driving conditions,
e.g., nights, clouds, sunrises, and sunsets. During the recent
years, WiFi-based activity and gesture recognition systems
have been emerged with remarkable performance [13–27],
leveraging channel state information (CSI). Motivated by
the desire, a WiFi CSI-based wireless sensing framework is
presented that is simple yet accurate face localization system
to overcome the difficulties of existing methods. Our pro-
posed WiFi CSI-based wireless sensing solution is nonintru-
sive to user, calibration-free, and can work well in smoke,
darkness, line-of-sight, and nonline-of-sight. As low-
density parity-check codes (LDPC) scheme has become the
significant choice of WiFi (802.11n/ac/ad) [28–31], this
innovative idea may also accelerate the benefits of 5G in IoV.

In this research work, we propose a novel hybrid classi-
fication technique that is based on the combination of sup-

port vector machine (SVM) classifier with K nearest
neighbor (KNN), to enhance the recognition performance.
Both SVM and KNN have been effectively used for various
WiFi-based activity and gesture recognition systems
[32–36]. The performance of KNN is dependent on the size
of the training samples. As a result, if the size of training
samples is very less, it often cannot predict very accurately
due to the problem of high variance. Therefore, nearest
neighbor classifiers do not have a good generalization capa-
bility. Meanwhile, SVM classifier has a good generalization
capability because it is based on finding the optimal hyper-
plane for nonseparable input data. On the other hand,
SVM uses all training samples which may cause time-
consuming computation. In order to overcome the issues
of the high computational burden of SVM and requirement
of large sample size of KNN, a combination of SVM and
KNN is proposed. The combination of KNN and SVM algo-
rithms (KSVM) yields excellent results and deals in the mul-
ticlass setting with reasonable computational complexity in
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practice. The proposed KSVM technique follows two simple
steps [37]. First, we find close neighbors to a query sample.
Second, we train a local SVM classifier which preserves the
minimal values on the set of collected neighbors. The pro-

posed method outperforms nearest neighbor and support
vector machines for large and multiclass data sets.

The presented scheme utilizes commercially available
WiFi devices to record and acquire channel information,
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which are readily available in the form of CSI measurements
[38]. The proposed mechanism leverages the variations in
WiFi channel information caused by driver’s poses in WiFi
coverage area. As per author knowledge, this is the pioneer
work for device-free WiFi CSI-based driver’s face localiza-
tion system using the combination of K nearest neighbor
with SVM.

Our remarkable contributions are summarized below:

(i) We present a wireless device-free driver’s face local-
ization system utilizing CSI of WiFi signals

(ii) We propose a novel hybrid classification method
based on the combination of SVM and KNN to
increase the recognition accuracy of the system with
less computational burden

(iii) To validate the reliability of our presented scheme,
comprehensive experiments are performed in clut-
tered scenarios

(iv) To evaluate the performance of our proposed classi-
fication method, we compare our experimental
results with conventional classification algorithms

The remaining part of the paper is organized as Section 2
briefly reviews the traditional methods relevant to our pre-
sented research work. Section 3 gives the highlights of sug-
gested framework. In Section 4, the detailed
implementation of our proposed system is discussed. In Sec-
tion 5, we explain the experimentation settings and results.
Section 6 demonstrates the main limitations of the presented
technique. Finally, Section 7 provides the conclusion with
future suggestions.

2. Related Work

This section will review the existing WiFi CSI-based device-
free gesture and activity recognition systems relevant to our
research work. WiFi-based fine-grained physical layer CSI
has attracted many scientists because of its high localization

accuracy. With the pervasiveness in wireless sensing tech-
nology, WiFi-based device-free indoor localization has been
entered into a modern era of life [14–16]. The emerging
device-free activity recognition takes the advantages of WiFi
CSI for the characterization of human activities [39–42].
WiFi-based localization and recognition has been extended
to Wi-COVID [26], a WiFi-based COVID-19 detection
and patient monitoring system.

Recently, WiPass [25] introduced WiFi CSI-based
smartphone keystroke recognition. The WiFi CSI-based
intrusion detection [33, 43, 44] and microactivity recogni-
tion [45] systems have been presented with remarkable
recognition performance. In recent years, ubiquitous
WiFi-based training-free localization system has been sug-
gested with good recognition results [46]. The authors of
[17] presented a multiuser gesture recognition system
using WiFi signals. DeepSeg [22] and Wihi [23] worked
on WiFi-based activity recognition using deep learning
approach. During the recent years, WiFi-based posture
recognition system has been developed with good recogni-
tion results [21]. WiAct [19] proposed a device-free pas-
sive activity recognition system exploiting the correlations
between WiFi CSI amplitude information and human
body movement. The authors of [20] demonstrated the
concept of temporal frequency for WiFi-based human
activity recognition.

WiFi vision [13] introduced the idea of indoor posi-
tioning, WiFi imaging, daily activities recognition, gesture
recognition, gait recognition, human identification, fall
detection, and human detection using WiFi devices.
WiGer [47] presented a WiFi-based hand gestures recogni-
tion system via a fast dynamic time warping algorithm. In
recent years, the idea of writing in air [18, 48] is intro-
duced for virtual reality devices using WiFi signals which
is much complex in comparison to simple gestures recog-
nition. DF-WiSLR [27] is a sign language recognition
model exploiting WiFi signals.

Traditionally, support vector machine (SVM) and K
nearest neighbor (KNN) methods have been widely used in
numerous device-free WiFi CSI-based localization, activity,
and gesture recognition systems, as stand-alone classifier.
In this context, WiCatch [49] presented a WiFi CSI-based
hand gesture recognition system leveraging SVM classifica-
tion method. Wi-Key [34] is WiFi CSI-based system to rec-
ognize keystrokes using KNN classifier. WiFall [35] is WiFi
CSI-based abnormal behavior detection system leveraging
local outlier factor. In this model, one-class SVM is used to
successfully classify the features.

In recent decades, WiFi-based driver’s in-vehicle activity
and gestures recognition systems have been introduced with
good recognition performance [50–52]. WiFind [36] pre-
sented a WiFi CSI-based driver fatigue detection system.
This model is based on one-class SVM technique. WiDriver
[53] is dependent on driver’s hand movements to recognize
driver actions using CSI of WiFi signals. Different from
existing systems, we use hybrid classification approach, i.e.,
combination of KNN and SVM algorithms for WiFi CSI-
based driver’s face localization.

Table 1: Driver face poses.

Activity
type

Activity performed
Activity
label

Distraction

Looking over right shoulder RS

Looking over left shoulder LS

Looking in right rear view mirror RM

Looking in left rear view mirror LM

Looking at road ahead RA

Looking down at infotainment
system

LI

Looking at center rear view mirror CM

Fatigue

Head tilting down HD

Head tilting right HR

Head tilting left HL
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3. System Overview

In this section, we will demonstrate the important facts
about WiFi CSI, basic system architecture, and overview of
our presented classification mechanism.

3.1. CSI Overview. The proposed system is based on WiFi
devices having IEEE 802.11n/ac enabled protocols. The
channel state information (CSI) of WiFi signal is used as
information source. Commercially available off-the-shelf
WiFi devices that exploit IEEE 802.11n/ac usually support
multiple-input multiple-output (MIMO) technology and
thus comprises of multiple transmitter (Tx) and receiver
(Rx) antennas. The CSI of WiFi signal is fine-grained infor-
mation containing physical layer data that is based on widely
used orthogonal frequency division multiplexing (OFDM)
technology.

In this work, a WiFi router or access-point is used as a
transmitter. The receiver is an Intel 5300 NIC that is used
to collect CSI information from physical layer. Both trans-
mitter and receiver are enabled with IEEE 802.11n protocol.
The channel properties are usually available in the form of
CSI measurements on commercial WiFi devices [38]. Intel
5300 network interface card (NIC) supports 30 subcarriers
to records and acquire the channel variations of each CSI
Tx-Rx antenna pair in orthogonal frequency division multi-
plexing (OFDM) system.

The commonly used narrowband flat-fading channel for
ith packet, leveraging OFDM and MIMO technique is for-
mulated as

Yi =HiXi +N i i ∈ 1,N½ �, ð1Þ

where Yi is the received signal, and Xi is transmitted signal.
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Figure 5: Confusion matrix of activity recognition using our proposed algorithm.
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N is the total number of packets received. Hi refers to the
CSI channel matrix for ith packet, and N i represents the
Gaussian noise vector.

Let ℕRx and ℕTx refer to the total number of receiving
and transmitting antennas, respectively. For each stream,
the CSI matrix comprises ofℕTx ×ℕRx × 30 complex values.

For each Tx-Rx antenna pair CSI matrix, H is presented as

Hi = h1, h2,⋯, h30½ � i ∈ 1,N½ �, ð2Þ

where h carries both phase and amplitude measurements in
the form of complex number; calculated as

h = hj jejsin ∠hf g, ð3Þ

where jhj stands for the amplitude while ∠h denoted the
phase information.

3.2. System Architecture. Our WiFi CSI-based driver’s face
localization system consists of following three main mod-
ules: (1) CSI preprocessing module, (2) feature extraction
module, and (3) classification module, as shown in Figure 1.
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Figure 6: Precision, recall, and F − 1 score.

Table 2: Overall detection rate with precision, recall, and F1-score.

Experiment
Average rate (%)

Precision Recall F1-score
Min. Max Min. Max. Min. Max.

Scenario-I 89 93 86 96 89 94

Scenario-II 90 94 88 95 90 93
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CSI preprocessing module collects and acquires the CSI
data from physical layer. Using basic filtering techniques,
the CSI data is preprocessed to remove unwanted noises.
Feature extraction module detects the relevant face poses
and extracts the meaningful features from pre-processed

CSI data. The classification module relies on hybrid classifi-
cation technique to recognize different poses. In the next
section, each module is explained briefly.

4. Methodology

In this section, we will explain the complete flow of our sys-
tem methodology, i.e., CSI preprocessing, pose detection,
features extraction, and classification.

4.1. CSI Preprocessing. The acquired CSI data is a composite
signal which comprises of useful information and embedded
unwanted noises from the surroundings. First, the CSI
received information is filtered using basic filtering tech-
niques. From the literature, it is clear that the human
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Figure 7: Comparison of KSVM with stand-alone KNN and SVM classifiers.

Table 3: Comparison of KSVM with stand-alone KNN and SVM
classifiers.

Experiment
Average recognition accuracy (%)

SVM KNN KSVM

Scenario-I 86.8 87.2 91.1

Scenario-II 87.1 87.9 91.8
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activities and poses have less frequency in comparison to the
frequency of noise [43]. Therefore, we need to remove high-
frequency noise. For the purpose, a second order low pass
Butterworth filter is implemented. In our experiments, the
packets sampling rate (Fs) is adjusted at 80 packets/second
that is equal to the normalized cutoff frequency wn = 2πf /
Fs = 0:025π rad/sec. The received CSI data may be affected
by some static path components. Therefore, we subtract
the corresponding constant offsets from the streams to alle-
viate these static path components. The raw CSI data cannot
be directly used and can give wrong information because it is
wrapped between −π and π [54]. Therefore, it is required to
unwrap the measured CSI data. The raw and unwrapped CSI
data are shown in Figures 2 and 3, respectively.

Due to unsynchronized time clock between transmitter
and receiver, the CSI raw phase data behaves extremely ran-
dom. The relation between true phase and measured phase
can be formulated as

∠ bhi = ∠hi + 2π
ni
N
Δt + β + z, ð4Þ

where ∠ bhi represents the measured phase of ith subcarrier
while ∠hi shows the actual phase, Δt is the time lag, ni stands
for the subcarrier index, N is used for the size of FFT, β rep-
resents the unknown phase offset, and z indicates the ran-
dom noise.

The phase error 2πni/NΔt + β is linear function of sub-
carrier index ni. We can formulate two calibration parame-
ters A and B for phase represented as

A =
∠ĥiN−∠ĥi1
iN − i1

, ð5Þ

B =
1
N
〠
N

k=1
∠ĥik : ð6Þ

We subtract Aik
+ B from raw phase ∠ĥik and get the san-

itized phase ∠~hik as

∠~hik = ∠ĥik − Aik
− B: ð7Þ

The phase sanitization is performed on all the subcar-
riers and reassembled according to the corresponding
amplitudes.

4.2. Pose Detection. In this section, we discuss how to detect
the driver’s face-related activities or poses using the received
CSI data and how we can distinguish it from other in-vehicle
activities. The first step towards driver’s face localization
using CSI data is to detect whether a driver has performed
some activity or not. For this purpose, the meaningful CSI
streams caused by human motion are initially segmented
using step-by-step moving variance technique [41]. In each
step, a sliding window of length L is used across neighboring
CSI packets. The high values in moving variance are caused
by dynamic motions while, on the other hand, low values
mean slight fluctuation due to surroundings. The moving
variance is given as

V CSIð Þ = 〠
n

m=1


1
W − 1

〠
W

k=1
∣CSIk∈W − μj2

" #
, ð8Þ

here, μ is the mean and can be defined as

μ = 1
W

〠
W

k=1
CSIk, ð9Þ

where n is the number of packets. k is the packet number in
sliding window while m is the packet number in CSI stream.
Afterward, we calculate the variance for 30 CSI filtered
streams and obtain a 30 × t matrix, where t is the sliding
window moving times. After detecting the moving part of
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CSI sequence, we accurately detect the face-related activities.
Through experimental investigations, we find that the face
activities cause large fluctuation in CSI streams. Therefore,
we apply a threshold based technique. We set a threshold
τth and compare the maximum value of V ðCSIÞ with τth
for activity related component selection. Mathematically,

Ψ =
1, max V CSIð Þð Þ τth,
0, otherwise,

(
ð10Þ

where Ψ represents the presence of face-related activity.
If Ψ is set to 1, it means face-related activity is detected.
The value of threshold τth is empirically selected based on
the variance of our preliminary measurements, which varies
with the activities. To reduce the dimensionality of the
acquired data, we perform principle component analysis
(PCA) as demonstrated in [55]. After getting the required
profile, we can apply extract feature extraction method.

4.2.1. Feature Extraction. Based on the detailed analysis of
extracted moving average data and our preliminary experi-
mental investigations, we specifically choose following six
statistical features: (i) mean, (ii) standard deviation, (iii)
median absolute deviation, (iv) maximum value, (v) 25th
percentile, and (vi) 75th percentile. In order to differentiate
multiple poses features, we integrate all obtained features
into a tuple F and can be defined as

F = f1, f2,⋯, f nf g ⊂ F, ð11Þ

where F represents the set of all features, and f i stands for a
feature.

4.3. Classification Module. Our presented KSVM classifica-
tion algorithm combines the benefits of both KNN and
SVM. It finds the K nearest neighbors of query sample x
and then trains an SVM classifier to perform the recogni-
tion [37].
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Figure 9: Accuracy test using LOPO-CV scheme with SVM.

9Wireless Communications and Mobile Computing



4.3.1. KNN Classifier. The K nearest neighbor (KNN) is a
very simple machine learning algorithm that is based on sta-
tistical data for the classification of features. The KNN
method chooses the most relevant class of a testing sample
from the available K nearest samples. Suppose we have a
training dataset D can be represented as

D = c1, l1ð Þ, c2, l2ð Þ,⋯⋯ cn, lnð Þ, ð12Þ

where n is the number of samples ciði = 1, 2,⋯, nÞ, and l is
the corresponding class label liði = 1, 2,⋯, nÞ.

According to K nearest neighbor rule, any unknown
sample c is assigned to the class obtained by majority voting
of its K nearest neighbors in dataset D. For binary classifica-
tion problems, the decision rule of the KNN classifier is

mathematically represented as

KNN cð Þ = sign 〠
K

i=1
ci

 !
: ð13Þ

4.3.2. SVM Classifier. The support vector machine (SVM) is
a linear discriminant classification algorithm. This machine
learning method is based on the principle of maximizing
the classification effect by establishing a hyperplane. The
classification hyperplane provides the decision surface and
maximizes the isolation boundary between different types
of samples. A support surface is drawn on both sides of
hyperplane containing the samples that are close to classifi-
cation interface. The training samples on the support surface
are called support vectors.
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Figure 10: Accuracy test using LOPO-CV scheme with KNN.
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The training dataset D is defined as

D = c1, d1ð Þ, c2, d2ð Þ,⋯, cn, dnð Þ½ �, ð14Þ

where n is the number of samples. Each sample ci is a d
-dimensional vector while class label di is either 1 or -1.

We can map the samples to a feature space of higher
dimensions using a nonlinear mapping transformation func-

tion Φ. The SVM classifier takes the following decision rule:

SVM cð Þ = sign 〠
i=1

LaidiK cicð Þ + e

 !
, ð15Þ

where Kða, eÞ =ΦðaÞ:ΦðeÞ is the kernel function. The value
of ai and e are adjusted to maximize the marginal distance
of separating hyperplane. The sign function gives the results
in binary form. To obtain results in nonbinary form, we
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Figure 11: Accuracy test using LOPO-CV scheme with KSVM.

Table 4: Overall generalization performance.

Experiment
Average accuracy (%)

SVM KNN KSVM
Original LOPO-CV Original LOPO-CV Original LOPO-CV

Scenario-I 86.8 83.7 87.2 80.2 91.1 86.4

Scenario-II 87.1 84.9 87.9 81.7 91.8 88.2
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remove the sign function:

SVM cð Þ = 〠
i=1

LaidiK cicð Þ + e

 !
: ð16Þ

4.3.3. KSVM Classifier. The basic idea of KSVM method fol-
lows a very simple procedure to classify the features. In the
first step, it finds the K nearest neighbors to query sample
c. Afterward, it trains an SVM that is used to perform the
recognition. Finally, the samples with minimum values of
Kðci, ciÞ − 2Kðci, cÞ are considered to be the closest samples
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Figure 12: Comparison of KSVM with state-of-the-art classifiers.

Table 5: Comparison of accuracy with state-of-the-art
classification methods.

Experiment
Average recognition accuracy (%)

DT ANN SRC NB KSVM

Scenario-I 85.3 86.3 85.1 84.9 91.1

Scenario-II 86.5 88.4 86 85.4 91.8
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to sample c. In any transformed feature space, the following
inequality can be used for the said purpose:

Φ cið Þ −Φ cð Þk k2 =Φ2 cið Þ +Φ2 cð Þ − 2Φ cið ÞΦ cð Þ = K ci, cið Þ + K c, cð Þ − 2K ci, cð Þ:
ð17Þ

The final decision function follows

KSVM cð Þ = sign 〠
i=1

KaidiK cicð Þ + e

 !
: ð18Þ

5. Experimentation and Evaluation

This section describes the experimentation settings and eval-
uation performance of our proposed KSVM scheme.

5.1. Experimentation Settings. In our presented framework,
all experiments are performed with 802.11n enabled WiFi
devices as described in [50–52]. Specifically, a laptop is used
as a receiver that is equipped with Intel 5300 NIC and three
receiving antennas, i.e., ℕRx = 3. To record and acquire CSI
data, we run 802.11n CSI Tool [38] on the receiver with
Ubuntu 11.04 LTS operating system. A single antenna TP-
Link router, i.e., ℕTx = 1 is used as a transmitter or access-
point that operates at frequency of 2.4GHz. In this experi-
ment, the receiver pings the access-point that is set at 80
packets/s. The system is generating 3 CSI streams of 30 sub-
carriers each forming a 1 × 3 MIMO system with channel
bandwidth of 20MHz. We have used MATLAB R2016a to
perform signal processing. We setup our testbed in a locally
manufactured vehicle which is not equipped with prein-
stalled WiFi devices. Due to unavailability of WiFi access-
point in our test vehicle, we installed a commercially avail-
able router (TP-Link) as access-point, placed on the dash-
board in front of driver’s seat. To acquire CSI information,
the receiver (laptop) is configured at copilot’s seat. To eval-

uate the performance of our presented method, the follow-
ing two scenarios are chosen:

(i) Scenario-I. This is the actual driving scenario where
all prescribed poses are performed while driving a
vehicle. The vehicle is driven at an average speed of
20 km/hr on a straight road of 20 km long, as shown
in Figure 4(a). To avoid the interference of other in-
vehicle activities, during pose performance, no other
activity is performed

(ii) Scenario-II. In this scenario, all prescribed poses are
performed in a vehicle standing in a garage. The
garage size is 14 × 16 feet, as shown in Figure 4(b)

In each experiment, 10 in-vehicle human poses, as
shown in Table 1, are performed by five volunteers (3 male
and 2 female university students). For each experiment, each
volunteer repeated all poses 20 times. Therefore, the data set
consists of total 1000 samples
(5 − volunteers × 10 − poses × 20 − times repeated) for each
experiment. The 50% of the total samples are used for train-
ing purpose while 50% for testing purpose. For cross-valida-
tion, we keep the testing samples out, i.e., the training data
do not have the samples from testing data.

5.2. Performance Evaluation. For performance evaluation,
we specifically choose recognition accuracy and confusion
matrix. The actual pose occurred is shown on the column
of confusion matrix while the pose classified is shown by
the rows of confusion matrix. As shown in Figure 5, the pre-
sented scheme can recognize 10 different in-vehicle poses
with an average accuracy of 91:1% and 91:8% for scenarios
I and II, respectively.

To evaluate the efficacy and reliability of presented
scheme, the obtained results are analyzed by choosing differ-
ent evaluation metrics, i.e., precision, recall, and F1-score,
defined as

Table 6: Classification accuracy (%) of KSVM with varying K values.

K value
Gesture class

RS LS RM LM RA LI CM HD HR HL

K = 1 87.5 88.2 88.4 88.7 89.1 86.9 89.2 88.1 90.3 89.7

1 < K < 5 <89.2 <88.9 <90.2 <89.7 <88.5 <89.3 <90.6 <87.7 <90.4 <90.4
K = 5 90.4 91.1 92.6 92.5 89.3 90.7 91.4 89.9 92.2 92.1

5 < K < 10 <90.5 <89.3 <91.7 <92.1 <89.7 <90.3 <89.9 <90.2 <91.6 <91.0
K = 10 89.3 91.0 90.5 90.6 89.4 89.6 90.1 88.9 90.6 90.1

10 < K < 15 <89.6 <91.3 <91.7 <88.5 <88.9 <90.3 <90.7 <88.4 <91.0 <90.4
K = 15 88.3 90.7 90.6 91.1 89.6 90.1 88.9 89.0 90.5 88.6

15 < K < 20 <90.5 <89.1 <89.5 <90.2 <89.8 <89.6 <88.7 <89.0 <90.3 <90.6
K = 20 87.5 90.0 88.7 87.3 88.1 87.7 89.3 88.4 89.0 87.6

20 < K < 25 <87.3 <89.4 <89.1 <88.2 <89.0 <86.9 <88.1 <87.5 <86.8 <88.2
K = 25 89.1 87.9 90.0 88.8 89.5 86.7 88.3 87.5 88.1 86.2

25 < K < 30 <86.3 <89.5 <89.1 <89.0 <87.7 <86.5 <88.2 <86.9 <90.0 <89.5
K = 30 86.5 86.3 87.6 89.0 86.3 88.9 88.2 90.1 86.2 87.8
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Figure 13: Varying layout.
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(1) Precision is the positive predictive measurement,
mathematically represented as

Precision =
TP

TP + FP
, ð19Þ

where TP stands for true positive, and FP is false positive.
True positive (TP) is defined as the probability that correctly
predicts the positive class of any model. On the other hands,
false positive (FP) is the probability that incorrectly predicts
the positive class of model.

(2) Recall measures the sensitivity of a model and
described as the true positive rate (TPR). Recall is
represented as

Recall =
TP

TP + FN
, ð20Þ

where FN stands for false negative. FN is defined as the
probability that incorrectly predicts the negative class.

(3) F-measure or F1-score is the weighted average of
recall and precision, represented as

F1 = 2 ×
Precision × Recall
Precision + Recall

: ð21Þ

Figure 6 shows the results related to precision, recall, and
F1-score. The average minimum and maximum values are
summarized in Table 2. It is clear from the results that for
both scenarios, all the prescribed poses are recognized with
reasonable limits of precision, recall, and F1-score.

The accuracy of KSVM is compared with stand-alone
KNN and SVM, as shown in Figure 7. The overall results
are summarized in Table 3. From the obtained results, it is
concluded that KSVM has high recognition accuracy as
compared to stand-alone KNN or SVM.

To examine the computational complexity of our pro-
posed KSVM algorithm, we compare the execution time of
KSVM with KNN and SVM as illustrated in Figure 8. It is
notified that the execution time of KSVM is less as compared
to SVM but little higher in comparison to KNN. It can be
compromised because the recognition accuracy of KSVM
is comparatively far better than KNN.

User independence test is performed to evaluate the gen-
eralization of proposed KSVM scheme. For the purpose,
leave-one-participant-out cross-validation (LOPO-CV)
method is adopted. In LOPO-CV mechanism, the training

data is not familiar with testing data, i.e., the whole data
set is used as training data set except a specific users’ data
that is used as the testing data. This method is repeated for
each individual user until all users are treated as testing data.
We have separately applied LOPO-CV on SVM, KNN, and
KSVM to compare the results, as shown in Figures 9–11.
The overall results are concluded in Table 4. From the
obtained results, it is obvious that the proposed mechanism
has generalization capability with an average accuracy of
86.4% and 88.2% for scenario-I and II, respectively.
Although the stand-alone SVM algorithm has a compara-
tively good generalization capability but overall performance
is far better using KSVM.

The performance of proposed KSVM algorithm is evalu-
ated by comparing its recognition accuracy with conven-
tional classification methods, i.e., Naive Bayes (NB) [56],
artificial neural networks (ANN) [57, 58], decision tree
(DT) [59], and sparse representation-based classification
(SRC) [60, 61]. The overall comparison is shown in
Figure 12, and results are summarized in Table 5. One can
notice that the recognition performance of KSVM scheme
is higher as compared to conventional classification
methods.

Extensive experiments are performed to observe the
effect of nearest neighbors with varying K values, as
described in Table 6. One can observe that best results are
obtained at K = 5; therefore, optimal values K = 5 are used
throughout the experiments.

We have examined the robustness of our proposed
KSVM scheme with different locations of transmitter
(router) and receiver (laptop). Our actual layout is “L” as
shown in Figure 13(a), while two varying layouts are “L-1”
and “L-2,” as shown in Figures 13(b) and 13(c), respectively.
The results with varying layouts are described in Table 7.
From the results, it is clear that our presented mechanism
has acceptable recognition performance at all in-vehicle
layouts.

6. Results Analysis and Discussion

In this section, we will discuss about the obtained results
with prominent limitations. We observed that all poses are
recognized with very good accuracy using our proposed
KSVM classification method, however, the accuracy may
be degraded due to different limiting factors. In this context,
we observed that the CSI of WiFi signal is highly influenced
by moving objects. Therefore, other vehicles and people on
outside road may influence the recognition performance of
the system [36]. Furthermore, the presented mechanism is
designed by considering only a single person, i.e., the driver
in the vehicle. However, in practical, more than one people
may exist inside the vehicle which can make the recognition
system more complex. To overcome these issues, we suggest
to perform some additional signal processing which will be
considered in our future work. Moreover, the effect of
driver’s orientation and personalized driving habits is
needed to be considered in future study.

Despite these limitations, the proposed device-free WiFi
CSI-based driver pose localization system is easy to deploy

Table 7: Performance evaluation with varying layouts.

Experiment
Average recognition accuracy (%)

L-1 L-2 L

Scenario-I 89.9 90.7 91.1

Scenario-II 91.3 91.5 91.8
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and more scalable. It is clear that the presented classification
algorithm KSVM is a general solution. It can be imple-
mented to solve any device-free WiFi-based localization
and gesture or activity recognition problem. In this research
work, we have used this scheme for driver’s face localization.
The overall performance of our proposed KSVM is far better
as compared to existing methods. There are still several
aspects which need be considered in future.

7. Conclusion

In this research work, we have proposed a novel classifica-
tion scheme for WiFi CSI-based device-free driver’s face
localization. We have presented a hybrid classification algo-
rithm, i.e., KSVM that is based on the combination of tradi-
tional KNN and SVM classification methods. From the
experimental results, it can be concluded that recognition
performance has been remarkably improved by utilizing
our proposed KSVM algorithm. This hybrid classification
scheme opens a new window for diverse scale of potential
applications. For future, we are interested to explore more
complex driving scenarios and intend to observe the impact
of roadway types based on the findings presented in this
research work.
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