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Owing to the absence of hypotheses of the underlying distributions of the data and the strong generation ability, the k-nearest
neighbor (kNN) classification algorithm is widely used to face recognition, text classification, emotional analysis, and other
fields. However, kNN needs to compute the similarity between the unlabeled instance and all the training instances during the
prediction process; it is difficult to deal with large-scale data. To overcome this difficulty, an increasing number of acceleration
algorithms based on data partition are proposed. However, they lack theoretical analysis about the effect of data partition on
classification performance. This paper has made a theoretical analysis of the effect using empirical risk minimization and
proposed a large-scale k-nearest neighbor classification algorithm based on neighbor relationship preservation. The process of
searching the nearest neighbors is converted to a constrained optimization problem. Then, it gives the estimation of the
difference on the objective function value under the optimal solution with data partition and without data partition. According
to the obtained estimation, minimizing the similarity of the instances in the different divided subsets can largely reduce the
effect of data partition. The minibatch k-means clustering algorithm is chosen to perform data partition for its effectiveness
and efficiency. Finally, the nearest neighbors of the test instance are continuously searched from the set generated by
successively merging the candidate subsets until they do not change anymore, where the candidate subsets are selected based
on the similarity between the test instance and cluster centers. Experiment results on public datasets show that the proposed
algorithm can largely keep the same nearest neighbors and no significant difference in classification accuracy as the original
kNN classification algorithm and better results than two state-of-the-art algorithms.

1. Introduction

K-nearest neighbor classification algorithm is a lazy learning
method that does not require a training process but simply
stores training instances [1]. When given a test instance,
kNN classification algorithm first calculates the similarity
between the given instance and all instances in the training
set, then finds k-nearest instances according to the similar-
ity, finally predicts its label by the majority voting based on
the category of these instances. Owing to its advantages of
substantial theoretical foundation, strong generalization per-
formance, and no assumptions on data distribution, the
kNN classification algorithm has been widely used in many
fields [2–6]. It is selected as one of the top 10 classic algo-
rithms in data mining [7].

With the rapid development of sensing and Internet
technology, data from all walks of life is increasing by orders
of magnitude; big data becomes the focus of government,
academia, and industry; and the research results of data
analysis and mining have been widely used in the Internet
of Things, healthcare, e-commerce, finance, and so on. How-
ever, kNN needs to compute the similarity between the aim
instances and all the training instances so that its execution
efficiency faces a great challenge in the big data environ-
ment. An increasing number of acceleration algorithms are
proposed to improve the efficiency of kNN classification
algorithms to process the large-scale data [8–10]. The exist-
ing accelerating algorithms for kNN classification can usu-
ally be divided into two categories from the perspective of
data preprocessing: kNN classification based on data
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partition (DP-kNN) algorithm and kNN classification based
on instance selection (IS-kNN) algorithm [11, 12].

The basic ideology DP-kNN algorithm divides the train-
ing set into several subsets by feature space partition, then
classifies the test instances using some of the divided subsets.
Specifically, the feature space of the training set is divided
into several subregions, then determines which divided subre-
gions the test instance belongs to, and finally finds k-nearest
neighbors in the subset of instances corresponding to that
region. These algorithms mainly take advantage of the local
learning characteristics of kNN classification algorithms: the
label of the test instance in the prediction process is only
related to the most similar instances in the training set. There-
fore, it tries to ensure that k-nearest neighbors of each instance
in its divided subset are consistent with the ones in the original
dataset. However, most of the existing data partition algo-
rithms scarcely analyze this consistency from a theoretical
point of view, so they are difficult to guarantee that the algo-
rithm has high generalization performance.

Different from the DP-kNN algorithm, the IS-kNN algo-
rithm does not use all the training examples. At the same
time, it finds k-nearest neighbors of the test instance from
a representative subset of the training set, where the subset
is obtained by using the instance selection algorithm.
Because the size of the representative subset is smaller than
the original training set, it can greatly improve the efficiency
of finding neighbors for the test instance. Instance selection
is an important data preprocessing method; it removes noisy
instances and those instances far away from the classification
decision plane from the training set according to the similar-
ity and label differences of the training instances. Since there
are more instances far from the classification decision plane
in most datasets than those close to the classification deci-
sion plane, an instance selection algorithm can greatly
reduce the size of the training set and keep the classification
accuracy relatively unchanged. However, the time complex-
ity of most existing instance selection algorithms is the
square of the training set size, which makes it difficult to
effectively process large-scale data. Furthermore, it only uses
the information of the part data rather than all the data, so
its generalization performance could be negatively affected.

For the problem of the lack of consistency analysis about
nearest neighbors under data partition, this paper analyzes
its classification performance theoretically from the perspec-
tive of optimization. The contribution of this paper is as
follows:

(1) Theoretically analyzing the effect of data partition on
the classification performance of the kNN classifica-
tion algorithm and giving the difference measure-
ment between k-nearest neighbors obtained with
data partition and without data partition

(2) Obtaining the fact that minimizing the similarity of
the instances in different divided subsets can largely
reduce the effect of data partition on the classifica-
tion based on the theoretical analysis

(3) Adopting the minibatch k-Means clustering algo-
rithm to execute data partition, because it divides

the dataset into several subsets with a large difference
in similarity

(4) Searching k nearest neighbors from the union of sev-
eral candidate divided subsets for the test instance,
where the candidate divided subsets are selected by
the similarity between the test instance and cluster
centers

(5) Compared with the two existing typical algorithms,
the experimental results on the public dataset show
that the proposed algorithm could largely hold k
same nearest neighbors and similar classification
accuracy of the original kNN classification algorithm

The rest of this paper is organized as follows. Section 2
reviews related methods about kNN classification accelera-
tion algorithm. Section 3 analyzes the effect of data partition
on the classification performance of the kNN classification
algorithm and proposes a novel algorithm, called the large-
scale kNN classification algorithm based on neighbor rela-
tionship preservation (NPR-kNN algorithm). Section 4
reports the experimental results through the comparison
with existing methods. Section 5 gives the conclusion of this
paper and the future work.

2. Related Work

The existing acceleration algorithm for k-nearest neighbor
classification from the perspective of data preprocessing
can be categorized into the acceleration algorithms based
on data partition (DP-kNN algorithm) and the acceleration
algorithms based on instance selection (IS-kNN algorithm).

The DP-kNN algorithm is mainly divided into three
steps: the feature space of the current training instance is
firstly divided into several subregions; then, the divided
region where the test instances stay is determined, and
finally, k-nearest neighbors are found from the subset of
instances within this region. Because the kNN classification
algorithm is a local learning algorithm, it is necessary to
ensure that the neighboring sequences of the instance before
and after data partition are consistent when dividing the
training set. Most of the existing data partitioning algo-
rithms for kNN classification algorithms are based on the
binary tree structure; the current data is recursively divided
into two subsets of similar capacity until the termination
condition is met starting from the original set. Friedman
et al. [13] firstly have proposed the concept of the KD tree,
which uses the attributes of the data to recursively divide
the k-dimensional feature space into several subregions
and treat the data falling in each region as a subset. However,
in the face of high-dimensional complex data, there will be a
phenomenon that some attributes with a large amount of
information are not used in the process of building a tree.
To solve this problem, Verma et al. [14] have proposed a
KD tree that maximizes variance (MKD-tree) algorithm,
which selects the attribute with the largest variance of the
attribute value on the current data as the node for division.
The MKD-tree algorithm uses only a certain attribute each
time the current data is divided, which will cause partial
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information loss. For this reason, a binary tree algorithm
based on principal component analysis is proposed [15],
which divides the current data based on the score of the first
m principal components and the corresponding median
value. In addition, there also exist some data partition algo-
rithms based on the structure of the nearest neighbor graph
and hash approximation [16–19]. However, most of the
existing data partitioning algorithms do not theoretically
study the effect of data partitioning on the kNN classifica-
tion algorithm.

The IS-kNN algorithm mainly searches k-nearest neigh-
bors of the test instance in a representative subset of the
training set with a relatively small size. The representative
subset is obtained by various instance selection algorithms
[12]. Hart [20] has proposed a compressed nearest neighbor
based on 1NN (CNN) algorithm, which obtains a subset S of
the training set T so that the instances in the set T − S are
correctly classified by S. That is, the instances in T − S have
the same labels as their neighbors in S. The CNN algorithm
first randomly selects an instance from the training set into
the set S. Then each time select an instance from T − S and
determine whether it is the same as the label of its neighbor
in the set S: if it is consistent, put it in S, and repeat the above
process until the set T − S is empty. Although the CNN algo-
rithm can obtain a relatively small subset S, this algorithm is
very sensitive to the order of reading data, and the time com-
plexity is the square of the number of instances in the train-
ing set. To overcome this difficulty, Angiulli [21] has
proposed a fast compressed nearest neighbor (FCNN) algo-
rithm. The FCNN algorithm first selects the instances closest
to each center. It puts them into the set S and then iteratively
selects representative instances from the set of instances in
T − S that are not correctly classified by the set S and puts
them into the set S and repeats the selection process until
S can correctly classify all instances in T − S. The FCNN
algorithm is independent of the order of reading data, but
its time complexity is OðjTjjSjÞ, where T is the size of the
set T . To improve the efficiency of the FCNN algorithm in
processing large-scale data, [22] has proposed an FCNN
algorithm based on parallel distributed computing.
Although the proposed algorithm can achieve the purpose
of greatly reducing the data size, it does not consider the
impact of noise instances. To solve this problem, many edit-
ing algorithms have been proposed; its main idea is to
remove instances that are inconsistent with their nearest
neighbor labels. CNN series of algorithms and editing algo-
rithms have achieved the goal of greatly reducing the size
of the training set while the training error remains relatively
unchanged. However, none of these algorithms consider the
local sparsity of training examples in the feature space; it
takes a negative effect on the classification performance of
the kNN algorithm. For this reason, Nikolaidis et al. [23]
have proposed a kind of boundary preservation algorithm,
which first uses an editing algorithm to remove the noise
instances in the training set and then uses the geometric
characteristics of the potential distribution of the training
instances in the feature space to divide the training set into
border instances and interior instances. Finally, the repre-
sentative instances from these two kinds of instances are

selected and merged into the final instance selection subset.
Furthermore, there are lots of improved kNN classification
algorithms based on graphics and search algorithms [24].
However, most kNN classification algorithms based on
instance selection need to calculate the similarity between
all instances, which makes it difficult to process large-scale
data [12].

3. Main Content

3.1. Related Concepts. Let T = fðx1, y1Þ, ðx2, y2Þ,⋯,ðxN , yNÞg
be the labeled training set of instances from l different clas-
ses, where each instance xi is expressed by m-dimensional
feature vector ðxi1, xi2,⋯,ximÞ and xij is its jth feature value,
yi is the label of the instance xi, m,N are the number of fea-
tures and instances, i = 1, 2,⋯,N , j = 1, 2,⋯,m:

KNN classification algorithm is learned by comparing
the similarity between the unlabeled instance and all the
training instances. When given a test instance x, kNN first
calculates the similarity di with each instance xi in the train-
ing set T and then sorts all the training instances according
to the order of the similarity di and takes the first k instance
as k nearest neighbors of xi. Finally, the class of the k neigh-
bors with the largest number of instances will be determined
to be the label of the instance x.

The basic idea of the existing kNN classification acceler-
ation algorithm based on data partition is quite similar. After
dividing the training set into several subsets of approxi-
mately equal size, it determines which of the divided subsets
the test instance is most similar to and finds its k neighbors
in this subset. The kNN algorithm is also a local learning
algorithm, and the predicted label of the test instance is only
related to the label of its nearest neighbors in the training set.
To obtain a similar classification performance with the one
using all the training instances, the DP-kNN algorithm
needs to guarantee the k-nearest neighbors in the divided
subset of the test instance to be consistent with the original
training set as much as possible. Specifically, it is ensured
that the test instance and its k-nearest neighbors in the train-
ing set are still in the same divided subset. Therefore, the
data partition should be carefully studied.

The test instance has randomness and is unknown
before executing prediction, and its location in the feature
space is difficult to be decided. This difficulty takes the trou-
ble to perform a good data partition. Fortunately, empirical
risk minimization takes an effective way to solve this prob-
lem in statistical learning theory. Minimizing the empirical
risk 1/N∑N

i=1lðyi, ŷiÞ can obtain the optimal solution, where
lðyi, ŷiÞ is the loss function between the true label yi and
the predicted label ŷi predicted by k-nearest neighbors of
the instance xi. In this way, it should ensure that each train-
ing instance and its k-nearest neighbors in the training set
are still in the same divided subset. To this end, we analyze
the effect of data partitioning on the neighbor relationship
from the perspective of optimization.

3.2. Transformation of the Problem. For a given training set
T , kNN classification algorithm finds k nearest neighbors
for each instance in T transformed into solving the following
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optimization problem:

max
A∈RN×N

tr A ×Dð Þ

s:t:〠
N

j=1
Aij = k,Aij ∈ 0, 1f g, i, j = 1, 2,⋯,N ,

ð1Þ

where A = ½Aij�N×N ∈ RN×N is a boolean matrix, Aij = 1 when
instance xi is one of k nearest neighbors of the instance xj,
and Aij = 0 when instance xi is not one of k nearest neigh-
bors of the instance xj; D is the similarity matrix and each
element Dij > 0 is the similarity between the instance xi
and the instance xj; and trðA ×DÞ is the trace of the matrix
A ×D which is the product of the matrix A and the matrix D,
i, j = 1, 2, 3,⋯,N . The optimization problem (1) has only
one optimal solution under the assumption that there exist
different similarities for different instances. Let A∗ be the
optimal solution to the optimization problem (1).

Suppose the training set T is divided into n disjoint sub-
sets Tl, where l = 1, 2, 3⋯ , n. The KNN classification algo-
rithm based on data partition is aimed at finding k-nearest
neighbors of each instance within its divided subset. For
each divided instance subset Tl, each element ðxi, yiÞ ∈ Tl
searching its k-nearest neighbors in Tl can be transformed
into solving the following optimization problem:

max
Al∈Rnl×nl

tr AlDl
� �

s:t:〠
nl

j=1
Al
ij = k, Al

ij ∈ 0, 1f g, i, j = 1, 2,⋯, nl,
ð2Þ

where Al ∈ Rnl×nl , Al is a boolean matrix, Al
ij = 1 if and only if

the instance xi is one of k-nearest neighbors of the instance
xj ∈ Tl, otherwise A

l
ij = 0; the matrix Dl ∈ Rnl×nl is a submatrix

of D with row and column indexes Vl, Vl = fi ∈N∗ : ðxi,
yiÞ ∈ Tlg, and nl = ∣Tl ∣ is the size of the set Tl. Let �A

l be the
optimal solution for solving the optimization problem (2) for
the instance subset Tl, where l = 1, 2,⋯, n.

3.3. The Estimation of the Effect of Data Partition. Let hðxiÞ
∈ f1, 2,⋯,lg be the index of the divided subset which the
instance xi belongs to, e.g., hðxiÞ = j when ðxi, yiÞ ∈ T j, where
i = 1, 2, 3,⋯,N , l = 1, 2, 3,⋯, n. In fact, the nearest neighbor
algorithm based on data partitioning approximately decom-
poses the optimization problem (1) into n suboptimization
problems (2) and independently solves this separate subop-
timization problem. Combine the optimal solutions of these
n subproblems (2) into a new matrix �A = ½�Aij�N×N ∈ RN×N ,

each element is �Aij = IðhðxiÞ,hðxjÞÞ
�Al
ij, where binary function

Iða,bÞ = 1 if and only if a = b; otherwise, Iða,bÞ = 0. The matrix
�A is an approximation of the optimal solution matrix A∗ of
the optimization problem (1). In order to ensure the perfor-
mance of the algorithm, the difference between f ðA∗Þ and

f ð�AÞ should be minimized. In order to measure the differ-
ence between the two, we introduce the following lemmas
and theorems.

Lemma 1. �A is the optimal solution to the following problem:

max
A∈Rn×n

tr A�D
� �

s:t:〠
N

j=1
Aij = k, Aij ∈ 0, 1f g, i = 1, 2,⋯,N ,

ð3Þ

where the matrix �D = ½�Dij�N×N ∈ RN×N , �Dij = IðhðxiÞ,hðxjÞÞDij.

Proof. According to the definition �D, each element satisfies
the following rule:

�Dij =
Dij, h xið Þ = h xj

� �
,

0, h xið Þ ≠ h xj
� �

:

(
ð4Þ

Moreover, the result can be seen from the calculation
properties of the block matrix

tr A�D
� �

= 〠
n

l=1
tr AlDl
� �

: ð5Þ

Therefore, the original optimization problem (3) can be
decomposed into n suboptimization problems (2), i.e.,

max
A∈Rn×n

tr A�D
� �

= 〠
n

l=1
max

Al∈Rnl×nl
tr AlDl
� �

: ð6Þ

On the other hand, all suboptimization problems are

independent and the matrix �Al is the optimal solution of
the suboptimization problem (2), so the matrix �A is the opti-
mal solution of the problem max

A∈Rn×n
trðA�DÞ.

Theorem 2. For the given training set T = fðx1, y1Þ, ðx2, y2Þ,
⋯,ðxN , yNÞg and its partition index set fhðx1Þ, hðx2Þ,⋯, h
ðxNÞg, then

f A∗ð Þ − f �A
� �

≤ 〠
N

i=1
〠
j∉∧i

Dji, ð7Þ

where f ðAÞ = trðADÞ, ∧i = fl ∈N∗ : hðxlÞ = hðxiÞ, 1 ≤ l ≤Ng.
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Proof. Let �f ðAÞ = trðA�DÞ. According to the definition of the
matrix �A and A∗, we have

�f �A
� �

= 〠
N

i=1
〠
j∈∧i

�AijDji = 〠
N

i=1
〠
j∈∧i

�AijDji + 〠
N

i=1
〠
j∉∧i

�AijDji

 !

− 〠
N

i=1
〠
j∉∧i

�AijDji = 〠
N

i=1
〠
N

j=1
�AijDji − 〠

N

i=1
〠
j∉∧i

�AijDji

= f �A
� �

− 〠
N

i=1
〠
j∉∧i

�AijDji,

ð8Þ

�f A∗ð Þ = 〠
N

i=1
〠
j∈∧i

A∗
ijDji = 〠

N

i=1
〠
j∈∧i

A∗
ijDji + 〠

N

i=1
〠
j∉∧i

A∗
ijDji

 !

− 〠
N

i=1
〠
j∉∧i

A∗
ijDji = 〠

N

i=1
〠
N

j=1
A∗

ijDji − 〠
N

i=1
〠
j∉∧i

A∗
ijDji

= f A∗ð Þ − 〠
N

i=1
〠
j∉∧i

A∗
ijDji:

ð9Þ
Combining equations (8) and (9) and the result �f ð�AÞ ≥

�f ðA∗Þ according to Lemma 1, we have

f A∗ð Þ = �f A∗ð Þ + 〠
N

i=1
〠
j∉∧i

A∗
ijDji ≤ �f �A

� �
+ 〠

N

i=1
〠
j∉∧i

A∗
ijDji

= f �A
� �

+ 〠
N

i=1
〠
j∉∧i

A∗
ijDji − 〠

N

i=1
〠
j∉∧i

�AijDji

= f �A
� �

+ 〠
N

i=1
〠
j∉∧i

A∗
ij − �Aij

� �
Dji ≤ f �A

� �
+ 〠

N

i=1
〠
j∉∧i

Dji:

ð10Þ

It is often assumed that each training instance and other
instances in the training set have different similarity values
in the kNN classification task. This assumption ensures that
each training instance has k fixed nearest neighbors without
considering the order of reading data, and the optimal prob-
lem (1) has a unique solution. Combined with the above the-
orem, reducing the difference between the objective function
f ðA∗Þ and f ð�AÞ can help reduce the difference between the
approximate solution �A and the optimal solution A∗. There-
fore, we need to minimize the estimated difference ∑N

i=1
∑j∉∧iDji, i.e., the similarity between instances that are not
in the same partitioned subset should be promoted to
decrease as far as possible.

To achieve this aim, the minibatch k-Means clustering
(MKC) algorithm is adopted to perform data partition for
efficiently and effectively dealing with large data [25–27].
The MKC algorithm is one kind of the two-step k-Means
clustering algorithm; it first performs k-Means algorithms

on the randomly sampled instances from the original data
to obtain the cluster center; then, the rest of the instances
decide which cluster they belong to according to the similar-
ity to the cluster centers. Meanwhile, the MKC algorithm is
efficient because its time complexity is OðNmÞ, where m is
the size of the sampled subset. An additional advantage of
this algorithm is that the maximum number of clusters often
does not exceed

ffiffiffiffi
N

p
and the size of divided subsets has the

uniformity effect, which provides us with an important ref-
erence basis for determining the number of divided sub-
sets [28].

3.4. NPR-kNN Algorithm. Suppose the training set is divided
into n disjoint clusters T1, T2,⋯, Tn using the MKC algo-
rithm, and each cluster is to be a subset after division. It is
an important step to decide k nearest neighbors of the given
test instance after the training set partition. For the given test
instance x, the traditional way decides which divided subsets
the instance x belongs to according to the similarity between
the instance x and the cluster centers, then finds k nearest
neighbors within this aim subset. However, this way could
not be effective for those instances which are far from the
aim cluster center because it is difficult to guarantee that
these instances and their neighbors in the training set are
still in the same cluster. These instances and their k nearest
neighbors are very likely in several adjacent clusters because
they have higher similarity in the small local region of the
feature space than other instances. Therefore, the method
of cluster fusion is used to solve this problem. The aim clus-
ter where the test instance x search its k nearest neighbors
extends to be the union of λ candidate clusters, where the
cluster centers of these candidate clusters are the first λmost
similar with the instance x among all the clusters, and λ is an
integer greater than 1. In this way, it largely increases the
possibility that the test instance x can find the same k nearest
neighbors as the original training set. The fixed value of the
parameter λ for different datasets is not desirable for the
large difference in the sparseness of data distribution. We
adopt the early stopping rule to adaptively determine the
value of λ for different test instances. It successively merges
λ candidate clusters from λ = 1 to n until k nearest neighbors
in the merged set of the test instance x does not change. The
following algorithm shows the detailed procedure of the
NPR-kNN algorithm.

3.5. Complexity Analysis of the Proposed Algorithm. Besides
the classification performance, execution efficiency is another
important evaluation. The NPR-kNN algorithm includes
data partition stage and prediction stage. The minibatch k
-Means cluster algorithm is adopted to perform data parti-
tion in the first stage, and it is designed for dealing with big
data and gets several times more efficient than the traditional
k-Means cluster algorithm [29]. The test instance searches its
k-nearest neighbors using the aim divided subset rather than
all the training instances in the prediction stage. The aim
divided subset is obtained by only computing the similarity
between the cluster centers and the test instance. Moreover,
the NPR-kNN algorithm has the additional advantage of
allowing distributed storage of large-scale training data. The
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training data is divided into several disjoint subsets because
there is no intersection among these divided subsets. There-
fore, the proposed algorithm can effectively deal with large-
scale data.

4. Experiments

To test the proposed algorithm, an extensive experiment
comparison has been carried out on the real datasets with
two representative kNN classification acceleration algo-
rithms based on data partition.

4.1. Experiment Setup. Two representative algorithms are
selected in this paper: kNN classification algorithm based
on KD-tree (MKD-kNN) and kNN classification algorithm
based on PCA tree (PCA-kNN) [15]. Meanwhile, ten large-
scale public datasets are chosen to make a fair comparison
with other algorithms to verify the effectiveness of the pro-
posed algorithm [30, 31], where the scale of each dataset is
greater than 90000. Information of the ten selected datasets
is shown in Table 1.

The NPR-kNN algorithm, MKD-kNN algorithm, and
PCA-kNN algorithms are all approximations of the kNN
classification algorithm. To evaluate the degree of consis-
tency of k-nearest neighbors of each training instance before
and after the training set is divided, the training matching
ratio Rtr =Ntr/N , where Ntr is the number of instances
whose k-nearest neighbors in the divided subsets are the
same as the training set and N is the size of the training
set. The larger the value of Rtr , the stronger the locality of
the data maintained by the algorithm; otherwise, the weaker
the locality of the data maintained by the algorithm. The test
accuracy is an important index to evaluate the performance
of the classifier; it mainly characterizes whether the label of
the test instance is consistent with the predicted label. How-
ever, it does not reflect whether the nearest neighbor
sequence of the test instance obtained by the approximate
nearest neighbor algorithm is consistent with that obtained
by the original kNN algorithm. To this end, we also calcu-
lated the test matching ratio Rtr =Nts/N test, where Nts is

the number of test instances whose k-nearest neighbors
obtained by the approximate nearest neighbor algorithm
are the same as the ones obtained by the original kNN algo-
rithm, and N test is the number of all test instances. A tenfold
cross-validation method is used to estimate three perfor-
mance index values on different datasets. In addition, the
signed-rank test [32, 33] is adopted to test whether there is
a significant difference in performance between the NPR-
kNN algorithm and other algorithms.

In the following experiments, all attribute values of the
used datasets are normalized to the interval ½0, 1� to avoid
the influence of dimensions between different attributes.
The Euclidean distance is used to measure the similarity
between instances. The performance of the approximate
nearest neighbor algorithm based on the data partition is
affected by the size of the subset, so they need to be com-
pared under different numbers of divided subsets. We
choose these four different values s = 500,1000,2000,5000 as
the threshold of the divided subset size according to the sug-
gestion of the paper [17]. It determines the number of
divided subsets using the formula ½n/s�, where ½n/s� is the
minimum positive integer large than n/s. Moreover, k = 7
is chosen based on the experiment result of the paper [34].
The significant level is α = 0:05.

Input: The training set T = fðx1, y1Þ, ðx2, y2Þ,⋯,ðxN , yNÞg, the test instance x, number of subsets n.
Output: The predicted label ŷ.
1 Initialization: Δ = f0g, k-nearest neighbor set NNk =∅
2 Divide the set T into n disjoint T1, T2,⋯, Tn using Mini-batch k-Means clustering algorithm and get n cluster centers set C =
fc1, c2,⋯,cng;

whileðΔ ≠∅orC ≠∅Þdo
3 Find the set Tυ according to the similarity between x and each instance of C, where υ = arg max

cj∈C
dðx, cjÞ 1C = C − fcυg

4 C = C − fcvg ;
5 Update k-nearest neighbor set NNk of x to generate a new set NNnew by comparing the similarity between x and each instance
of Tυ

6 Δ = ðNNk −NNnewÞ
S ðNNnew −NNkÞ;

7 NNk =NNnew;
end

8 Obtain the predicted label ŷ based on the majority class on NNk
9 Returnŷ.

Algorithm 1: NPR-kNN algorithm.

Table 1: Summary of datasets.

Dataset Size Features Class

Acoustic 98528 50 3

Aloi 108000 128 1000

Cifa 60000 3072 2

Combined 98528 100 3

MiniBooNE 94158 50 2

Mnist 350000 95 2

Poker 1025010 10 10

Seismic 98528 50 3

Skin-noskin 245057 3 2

Webspam 350000 254 2
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4.2. Experiment Analysis. The following experiment analysis
is made from the three indicators of training matching ratio,
test matching ratio, and test accuracy.

4.2.1. Training Matching Ratio. The training matching ratio
Rtr is the measurement to evaluate the consistency of k
-nearest neighbors of all the training instances searched
using data partition. To make a fair comparison with other
algorithms, each training instance finds its k-nearest neigh-
bors in the single divided subset rather than the union of
some divided subsets. Tables 2–5 list the training matching
ratio Rtr of different algorithms under different s, where
two descriptive statistics and the p value of the Wilcoxon
signed-rank test between the NPR-kNN algorithm and one
of the other algorithms are also listed in the last three lines
of the tables.

The following experiment analysis is made from the
value of s, because it takes a great effect to the measurement
Rtr. From the results of Tables 2–4 under three different
smaller values of s, the value of Rtr of the NPR-kNN algo-
rithm is serval times than the MKD-kNN algorithm and
PCA-kNN algorithm on most datasets except the Skin-
noskin dataset. Besides the value of s, the sparseness of the
data distribution also takes an effect on the value Rtr. If most
instances of the dataset are distributed densely in the input
space, then data partition takes a small effect on the nearest
neighbor relationship preservation, and the value Rtr could
be large. The dataset Skin-noskin is relatively densely dis-
tributed and the divided subsets with hundreds of data so
that the value Rtr of all three algorithms have larger than
0.9 under different values of s on it. Meanwhile, the mean
and median of the NPR-kNN algorithm on different datasets
are close to or greater than 0.5 and have the largest value
among the three algorithms under s = 500,1000,2000.
Finally, the p value of the Wilcoxon signed-rank test
between the NPR-kNN algorithm and one of the other algo-
rithms is smaller than the given significant level α = 0:05.
Therefore, the NPR-kNN algorithm obtains the best result
of the measurement Rtr compared with the MKD-kNN algo-
rithm and PCA-kNN algorithm under the smaller s.

Table 2: Rtr of different algorithms under s = 500.

Dataset NPR-kNN MKD-kNN PCA-kNN

Acoustic 0.357 0.117 0.205

Aloi 0.582 0.386 0.396

Cifa 0.068 0.005 0.022

Combined 0.287 0.079 0.135

MiniBooNE 0.382 0.126 0.123

Mnist 0.665 0.321 0.35

Poker 0.132 0.081 0.076

Seismic 0.342 0.17 0.2

Skin-noskin 0.956 0.907 0.915

Webspam 0.752 0.327 0.354

Mean 0.460 0.252 0.278

Median 0.370 0.148 0.203

Wilcoxon p 0.002 0.002

Table 3: Rtr of different algorithms under s = 1000.

Dataset NPR-kNN MKD-kNN PCA-kNN

Acoustic 0.445 0.164 0.293

Aloi 0.626 0.378 0.412

Cifa 0.078 0.005 0.042

Combined 0.412 0.119 0.206

MiniBooNE 0.481 0.24 0.173

Mnist 0.728 0.335 0.404

Poker 0.126 0.111 0.076

Seismic 0.405 0.227 0.136

Skin-noskin 0.985 0.907 0.923

Webspam 0.756 0.617 0.444

Mean 0.504 0.310 0.311

Median 0.463 0.234 0.250

Wilcoxon p 0.002 0.002

Table 4: Rtr of different algorithms under s = 2000.

Dataset NPR-kNN MKD-kNN PCA-kNN

Acoustic 0.551 0.230 0.395

Aloi 0.723 0.456 0.543

Cifa 0.254 0.013 0.085

Combined 0.525 0.167 0.306

MiniBooNE 0.584 0.279 0.236

Mnist 0.821 0.120 0.508

Poker 0.232 0.180 0.118

Seismic 0.492 0.300 0.357

Skin-noskin 0.961 0.944 0.942

Webspam 0.812 0.657 0.484

Mean 0.596 0.335 0.397

Median 0.568 0.255 0.376

Wilcoxon p 0.002 0.002

Table 5: Rtr of different algorithms under s = 5000.

Dataset NPR-kNN MKD-kNN PCA-kNN

Acoustic 0.755 0.745 0.749

Aloi 0.921 0.876 0.887

Cifa 0.719 0.715 0.714

Combined 0.828 0.824 0.825

MiniBooNE 0.880 0.878 0.876

Mnist 0.981 0.981 0.976

Poker 0.538 0.539 0.536

Seismic 0.717 0.716 0.714

Skin-noskin 1.000 1.000 1.000

Webspam 0.982 0.975 0.972

Mean 0.832 0.825 0.825

Median 0.854 0.850 0.851

Wilcoxon p 0.023 0.004
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For the result in Table 5 under the large value s = 5000,
three algorithms have the similarity value of Rtr on all the
datasets except the Acoustic and Aloi datasets. And the
mean of Rtr of these algorithms is 0.832, 0.825, and 0.825,
and their median values are 0.854, 0.850, and 0.851. More-
over, these algorithms get larger values of Rtr under s =
5000 than the results under s = 500, 1000, 2000. The reason
for this issue is that there are lots of elements in the divided
subset under the large value of s which largely increases the
probability that each element and k-nearest neighbors are
still in the same divided subset. However, the p value of
the Wilcoxon signed-rank test between the NPR-kNN
algorithm and one of the other algorithms is smaller than
the given significant level α = 0:05. Therefore, there exists
a significant difference between the NPR-kNN algorithm
and one of the other algorithms, and the NPR-kNN algo-
rithm also obtains the best result under s = 5000. In con-
clusion, the experiment result shows that the NPR-kNN
algorithm largely keeps the instances and their k-nearest
neighbors still in the same divided subsets, and it also ver-
ifies the correctness of Theorem 2.

4.2.2. Test Matching Ratio. Besides the training performance
measured by the training matching ratio Rtr , we pay more
attention to the test performance of the algorithm. Test
matching ratio Rts is adopted to measure the extent that
the test instances and their k-nearest neighbors are still in
the same divided subset, and it also evaluates whether the
improved algorithm using data partition can obtain a similar
performance of the original k-nearest neighbor classification
algorithm. Tables 6–9 list the Rts results of three algorithms
under different values of s, and the statistical results are also
listed in the last three lines of the tables.

The results of Tables 6–9 show that the value of Rts of the
NPR-KNN algorithm is several times larger than that of
other algorithms on all the datasets except the Skin-noskin
dataset under different values of s. The values of Rts on the
Skin-noskin dataset of three algorithms are larger than 0.9;
this is because its elements are distributed densely in the
input space, and each divided subset has hundreds of ele-

Table 6: Rts of different algorithms under s = 500.

Dataset NPR-KNN MKD-kNN PCA-kNN

Acoustic 0.755 0.113 0.200

Aloi 0.908 0.389 0.401

Cifa 0.368 0.006 0.023

Combined 0.828 0.076 0.135

MiniBooNE 0.879 0.130 0.124

Mnist 0.979 0.321 0.346

Poker 0.536 0.088 0.076

Seismic 0.716 0.164 0.199

Skin-noskin 0.998 0.907 0.913

Webspam 0.937 0.331 0.350

Mean 0.790 0.256 0.278

Median 0.854 0.147 0.200

Wilcoxon p 0.002 0.002

Table 7: Rts of different algorithms under s = 1000.

Dataset NPR-KNN MKD-kNN PCA-kNN

Acoustic 0.755 0.164 0.290

Aloi 0.914 0.378 0.412

Cifa 0.398 0.005 0.043

Combined 0.827 0.119 0.206

MiniBooNE 0.880 0.240 0.172

Mnist 0.980 0.335 0.401

Poker 0.534 0.111 0.075

Seismic 0.718 0.227 0.136

Skin-noskin 0.995 0.907 0.924

Webspam 0.979 0.617 0.440

Mean 0.798 0.310 0.310

Median 0.854 0.234 0.248

Wilcoxon p 0.002 0.002

Table 8: Rts of different algorithms under s = 2000.

Dataset NPR-KNN MKD-kNN PCA-kNN

Acoustic 0.755 0.388 0.227

Aloi 0.917 0.547 0.456

Cifa 0.781 0.088 0.013

Combined 0.828 0.302 0.161

MiniBooNE 0.880 0.231 0.280

Mnist 0.980 0.505 0.452

Poker 0.537 0.116 0.180

Seismic 0.716 0.354 0.294

Skin-noskin 0.999 0.941 0.944

Webspam 0.980 0.480 0.651

Mean 0.837 0.395 0.366

Median 0.854 0.371 0.287

Wilcoxon p 0.002 0.002

Table 9: Rts of different algorithms under s = 2000.

Dataset NPR-KNN MKD-kNN PCA-kNN

Acoustic 0.754 0.297 0.498

Aloi 0.919 0.517 0.647

Cifa 0.851 0.033 0.108

Combined 0.827 0.223 0.398

MiniBooNE 0.879 0.385 0.300

Mnist 0.981 0.512 0.614

Poker 0.534 0.418 0.305

Seismic 0.717 0.379 0.450

Skin-noskin 0.999 0.960 0.958

Webspam 0.997 0.711 0.670

Mean 0.846 0.444 0.495

Median 0.865 0.402 0.474

Wilcoxon p 0.002 0.002
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ments. Meanwhile, the mean and median of Rts of the NPR-
kNN algorithm on different datasets are close to or greater
than 0.8 and have the largest value among three algorithms
under s = 500, 1000, 2000, 5000. Finally, the p value of the
Wilcoxon signed-rank test between the NPR-kNN algorithm
and one of the other algorithms is smaller than the given sig-
nificant level α = 0:05. Therefore, the NPR-kNN algorithm
obtains the best result of the measurement Rts compared with
the MKD-kNN algorithm and PCA-kNN algorithm. The
NPR-kNN algorithm searches k-nearest neighbors from the
union of several divided subsets rather than only one divided
subset. This increases the probability that the test instance
and its k-nearest neighbors are still in the candidate subset.

On the other hand, the value of the parameter s has a differ-
ent effect on the values of Rts of these algorithms. The NPR-
KNN algorithm has the value of Rts with a small change on each
data under different values of parameter s, while other algo-
rithms have a large difference in the value of Rts. This fact is that
these algorithms use different numbers of divided subsets to
find k-nearest neighbors, and the parameter s controls the num-
ber of instances in the divided subset. Each test instance finds its
k-nearest neighbors using only one divided subset for both
MKD-kNN algorithm and PCA-kNN algorithm, and then, this
takes a great effect on the value of Rts. k-nearest neighbors are
continually updated by successivelymerging the divided subsets
until they do not change rather than only one divided subset,
and this operation greatly reduces the effect of the parameter s
to the NPR-KNN algorithm. Therefore, the performance of
the NPR-KNN algorithm on Rts is not sensitive to the value
of s, and this advantage increases its availability for dealing with
practical problems.

4.2.3. Test Performance. The generation ability can be mea-
sured by the classification accuracy on the test data, which
is the most commonly used performance indicator.
Tables 10–13 list the results of three algorithms under differ-
ent values of the parameter s.

The results on Tables 10–13 also show that the classifica-
tion accuracy of the NPR-KNN algorithm is not less than

Table 10: The test accuracy of different algorithms under s = 500.

Dataset NPR-KNN MKD-kNN PCA-kNN kNN

Acoustic 0.756 0.723 0.736 0.756

Aloi 0.913 0.842 0.838 0.916

Cifa 0.722 0.709 0.718 0.728

Combined 0.828 0.805 0.802 0.828

MiniBooNE 0.880 0.865 0.861 0.880

Mnist 0.979 0.969 0.971 0.981

Poker 0.542 0.531 0.535 0.546

Seismic 0.721 0.712 0.716 0.718

Skin-noskin 0.998 0.996 0.998 0.999

Webspam 0.980 0.976 0.975 0.982

Mean 0.832 0.813 0.815 0.833

Median 0.854 0.824 0.820 0.854

Wilcoxon p 0.002 0.004 0.125

Table 11: The test accuracy of different algorithms under s = 1000.

Dataset NPR-KNN MKD-kNN PCA-kNN kNN

Acoustic 0.757 0.742 0.744 0.756

Aloi 0.958 0.852 0.854 0.916

Cifa 0.724 0.709 0.718 0.728

Combined 0.829 0.818 0.821 0.828

MiniBooNE 0.828 0.818 0.811 0.880

Mnist 0.983 0.970 0.974 0.981

Poker 0.545 0.535 0.534 0.546

Seismic 0.725 0.714 0.715 0.718

Skin-noskin 0.998 0.995 0.996 0.999

Webspam 0.982 0.975 0.972 0.982

Mean 8.329 0.813 0.814 0.833

Median 0.829 0.818 0.816 0.854

Wilcoxon p 0.002 0.002 0.805

Table 12: The test accuracy of different algorithms under s = 2000.

Dataset NPR-KNN MKD-kNN PCA-kNN kNN

Acoustic 0.755 0.742 0.747 0.756

Aloi 0.918 0.865 0.872 0.916

Cifa 0.728 0.715 0.714 0.728

Combined 0.831 0.821 0.828 0.828

MiniBooNE 0.880 0.862 0.867 0.880

Mnist 0.984 0.972 0.975 0.981

Poker 0.545 0.542 0.533 0.546

Seismic 0.726 0.718 0.715 0.718

Skin-noskin 1.000 0.996 1.000 0.999

Webspam 0.980 0.975 0.972 0.982

Mean 0.835 0.821 0.822 0.833

Median 0.856 0.842 0.848 0.854

Wilcoxon p 0.002 0.002 0.242

Table 13: The test accuracy of different algorithms under s = 5000.

Dataset NPR-KNN MKD-kNN PCA-kNN kNN

Acoustic 0.765 0.745 0.749 0.756

Aloi 0.911 0.876 0.887 0.916

Cifa 0.729 0.715 0.714 0.728

Combined 0.832 0.824 0.825 0.828

MiniBooNE 0.882 0.878 0.876 0.880

Mnist 0.985 0.981 0.976 0.981

Poker 0.538 0.539 0.536 0.546

Seismic 0.728 0.716 0.714 0.718

Skin-noskin 1.000 1.000 1.000 0.999

Webspam 0.983 0.975 0.972 0.982

Mean 0.835 0.825 0.825 0.833

Median 0.857 0.850 0.851 0.854

Wilcoxon p 0.002 0.004 0.223
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that of the MKD-kNN algorithm and PCA-kNN algorithm
on all the datasets under different values of s, and it obtains
the similar classification accuracy as the kNN classification
algorithm. Moreover, the NPR-KNN algorithm has much
better test performance than the MKD-kNN algorithm and
PCA-kNN algorithm on the multiclassification dataset Aloi
with 1000 classes. For the mean and median of classification
accuracy on all the datasets, the NPR-KNN algorithm has a
better performance than other improved algorithms and
obtains similar results. Finally, the p values of the Wilcoxon
signed-rank test between the NPR-kNN algorithm and one
of the other improved algorithms are smaller than the given
significant level 0.05 under different values of s. Then, the
NPR-kNN algorithm achieves better classification than
them. There exists no significant difference between NPR-
kNN algorithm and kNN classification algorithm because
the p values between them are larger than the given signifi-
cant level 0.05. The reason for this fact is that the NPR-
kNN algorithm obtains k-nearest neighbors that are most
likely to be the same as the original algorithm compared
with other algorithms, and this conclusion is also verified
in the above subsection experience results.

5. Summary

We have proposed a novel algorithm to explore the effect of
data partition on the classification performance of kNN clas-
sification algorithm, which could largely keep k same nearest
neighbors as the original algorithm. Different from previous
improved kNN classification algorithms based on data parti-
tion, the proposed algorithm theoretically studies the effect
of data partition from the perspective of optimization, and
it proves that the similarity of instances within the different
partitioned subsets to be smaller is the key factor for the gen-
eration ability of the classifier. To this end, the minibatch k
-Means clustering algorithm is adopted to execute the data
partition for its high efficiency and effectiveness, and an
early stopping rule is designed to search k-nearest neighbors
from the divided subsets. Moreover, it can effectively deal
with large-scale data for its linear time complexity. Experi-
ment results on multiple real datasets show that the pro-
posed algorithm gets the similar k-nearest neighbors and
classification performance with the original kNN classifica-
tion algorithm and better results than two state-of-the-art
algorithms. The method in this paper takes a paradigm to
handle large-scale data, and it also offers a promising way
to scalable algorithms based on data partition. In future
work, we will study how to combine the result of multiple
data partitions to improve the performance of the kNN clas-
sification algorithm.

Data Availability
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dataset (https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
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