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Computing offloading based on mobile edge computing (MEC) for mobile devices (MDs) has received great attentions in recent
years. Strategy selection is an extremely important part of computing offloading, so how to make an optimal decision quickly and
accurately during the computing offloading is a difficult point. Furthermore, MDs are likely to leak personal privacy when
interacting with edge cloud, and there is also an issue about commercial privacy leakage between different cloud service
suppliers. In this paper, we propose the privacy-protected edge cloud computing offloading (EPCO) algorithm based on online
learning to improve the efficiency of computing offloading while ensuring the privacy of system users. Simultaneously, EPCO
also supports different MDs customize their privacy level. We prove that adding privacy protection mechanism is almost no
effect on the convergence of the algorithm. The simulation results validate our conclusion using a real-world dataset.

1. Introduction

Mobile devices (MDs) have become extremely popular in
recent years due to their mobility and convenience [1,
3]. Meanwhile, the functionality of the application for
MDs becomes increasingly powerful [3], which leads to
lack of local resources of MDs, such as computing
resources, storage, and energy [4, 5]. To this end, comput-
ing offloading for MDs has emerged. Researchers proposed
mobile cloud computing (MCC) that source starvation can
be resolved by sending computing tasks of MDs to remote
cloud for execution [6, 7]. However, since cloud servers
are often far away from MDs, the data needs to be trans-
mitted for a long distance, which results in a long
response time. To this end, much research in recent years
has focused on mobile edge computing (MEC) [8], which
sends computing tasks to edge cloud servers (ECSs) [9].
ECSs are typically deployed around MDs, which enables
a short physical distance between MDs and servers, result-

ing a shorter latency [10]. The work of this paper is based
on the edge cloud network.

Strategy selection is an important part of computing
offloading between ECSs and MDs [1]. When a MD
decides to offload its computing tasks to an ECS, it must
first make a decision to select an optimal server for com-
puting offloading. Researchers have used game theory in
past research to solve the problem of selecting servers for
computing offloading [11], which was also significantly
effective at the time. However, with the increasing
demands of users on the quality of network services and
the challenges of big data [12, 13], most of the previous
studies are outdated. In recent years, online learning algo-
rithms have been greatly developed and used in various
fields to help improve system’s performance [14–18].
Therefore, we consider using online learning algorithms
to solve strategy selection problem of computing offload-
ing. Furthermore, not only the efficiency of computing off-
loading should be considered, but the privacy of system
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users should also be concerned. However, few researches
involve the above two aspects.

Privacy protection is an important part of the computing
offloading [19]. The privacy issues we consider include the fol-
lowing two parts: the privacy of the MDs and the service sup-
pliers. On the one hand, a MD’s privacy may be exposed
during data transmission or forwarding if there is a malicious
third party involved. The malicious third party can infer the
characteristics of the MD by accessing the computing offload-
ing records. For example, a large amount of computation indi-
cates the importance of the MD and the distance item exposes
the location of the MD. With multiple of these side informa-
tion, it is possible to identify a user in real world. For instance,
He et al. [19] proposed a privacy-aware task offloading algo-
rithm, which enabled low delay and energy consumption
while maintaining an appropriate level of privacy. Min et al.
[20] proposed a privacy-aware offloading algorithm that can
improve the offloading performance, save energy, and enable
privacy of healthcare IoT devices. Although these studies focus
on the privacy issue in offloading, they only avoid the possibil-
ity of privacy leakage through some transmission method, so
the privacy protection effect of these method is limited. On
the other hand, since there is commercial competition
between service suppliers, the privacy between them should
also be considered. Therefore, privacy protection is another
important part of the computing offloading. However, the
research that considers both strategy selection and privacy
protection is barely known.

To overcome above challenge, we consider introducing
differential privacy into our computing offloading scenario.
Differential privacy which proposed by Dwork et al. [21]
has received great attention in the field of privacy protection
in recent years. Differential privacy uses random noise to
ensure that the private information of the individual will
not be disclosed when the result of a query requests to dis-
close visible information. Zhang et al. and Hassan et al.
[22, 23] use differential privacy techniques to address the
risk of privacy leakage in their systems. This paper is moti-
vated by the unresolved privacy risks in computing offload-
ing scenarios. The privacy of mobile device users, such as
location and device usage, may be leaked through data
exchange during the offloading process, which is a potential
privacy breach risk for users. According to the research of
He et al. [19] and Min et al. [20], privacy risk has indeed
become an important issue in computing offloading.
Although they paid attention to the privacy issues in com-
puting offloading, these algorithms only avoided the possi-
bility of privacy leakage through a certain transmission
method and did not fundamentally solve the problem of pri-
vacy risks. Therefore, we introduce differential privacy tech-
nology and propose an algorithm EPCO that protects the
privacy of multiparty users in computing offloading. In this
paper, the system structure is shown in Figure 1. For
instance, a healthcare device needs to compute a large
amount of monitoring data, so part of the computing tasks
should be offloaded to the edge cloud for computing. The
device sends the encrypted offloading data to the edge cloud,
and then, each service supplier in the edge cloud gives an
optimal offloading plan through online learning algorithms,

and finally, the device makes a decision. Our main contribu-
tions are as follows:

(i) In this paper, we propose EPCO algorithm for MD
and edge cloud to perform computing offloading
based on online learning and differential privacy
technology

(ii) EPCO preserves the privacy of both MDs and ser-
vice suppliers. Moreover, we support different
MDs to customize their own privacy protection
levels. We proved it through theoretical derivation

(iii) We verified the theory through simulation experi-
ments. The results show that EPCO guarantees the
efficiency of computing offloading while protecting
the privacy of system users

2. Related Work

In this section, we introduce related work from two aspects:
optimal offloading and privacy management.

2.1. Optimal Offloading. Computing offloading alleviates the
limitation of MDs’ resources by sending computing tasks to
the remote cloud for execution [24]. There has been a lot of
research work on computing offloading in the past two
decades [25–27]. Selecting ECSs for MDs is an indispensable
part of computing offloading [28]. Previous decisions about
server selection usually used the game theory method, which
mainly concerned about energy conservation, network envi-
ronment perception, and so on. Jošilo and Dán [29] made
the decision to choose the wireless access points for mobile
users during the computing offloading process. They proved
that there is a Nash equilibrium in the model they propose,
which can maximize the benefits of all users. However, this
solution requires multiple interactions between users and
computing resources to obtain better results, which is very

Edge cloud

Mobile devices
(MD)

Manager
(ECM)

Service supplier

Information of task
Response

ECS

Figure 1: The structure of edge cloud in this paper.
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unfriendly to time-sensitive applications. Barrameda and
Samaan [30] considered to use tree execution dependency
trees to enhance the accuracy, which is an important techni-
cal indicator in computing offloading. However, this solu-
tion is designed for a central cloud with a large number of
computing resources. First, it needs to use a large amount
of additional computing to run the algorithm, and secondly,
the service response time cannot be guaranteed. Although
these studies have solved some specific problems, they are
gradually unable to adapt to the more complicated situation
such as the challenges of big data and the personalized needs
of users.

In recent years, online learning has been used in various
fields to help improve system performance. Shahrampour
et al. [31] used online learning in object recognition to help
identify the current object through historical information
from other modes. Sakulkar and Krishnamachari [32] pro-
posed two online learning algorithms to help them solve
the power allocation problem modelled as a Markov deci-
sion process. We consider applying online learning to the
scenario of computing offloading, which can help us further
improve the efficiency of computing offloading. Cao and Cai
[33] used machine learning technology to solve the decision
problems of MD for achieving Nash equilibrium points in
the noncooperative game that they proposed, which shows
the prospect of machine learning in computing offloading
research. Therefore, these studies bring us new ideas for
strategy selection of computing offloading. We consider that
if we try to apply online learning theory and technology to
the scenario of computing offloading, this can help us fur-
ther improve the efficiency of computing offloading.

2.2. Privacy Management. As more and more people pay
attention to personal privacy, the issue of user privacy pro-
tection should also be considered in computing offloading.
Differential privacy is a popular research in recent years in
terms of privacy protection. Differential privacy was first
proposed by Dwork [34] and gave provable differential pri-
vacy protection. In recent years, people have realized the
importance of privacy, and privacy has been used in various
research fields to protect users’ privacy [35, 36]. Shin et al.
[37] proposed a novel matrix factorization algorithm that
guarantees per-user privacy under local differential privacy.
In addition, they reduced communication overhead between
the server and users by dimensionality reduction. Piao et al.
[38] proposed an algorithm that can reduce query sensitivity
and improved the effectiveness of published data. The above
researches on differential privacy only provide same level of
privacy protection, which is not practical in many applica-
tions. Dobbe et al. [39] proposed a customized local differen-
tial privacy mechanism to solve the privacy protection
problem in multiagent distributed optimization problems.
They proposed an approach for determining sensitivity,
and they derived analytical bounds for some quadratic prob-
lems. The customizable ideas mentioned here have been
adopted by us. In this paper, we allow different MDs to cus-
tomize their privacy protection levels.

Since few researchers have paid attention to the privacy
protection of computing offloading before, there are not

many related research contributions, but we will continue
to pay attention to the research progress in this area.

3. System Model

3.1. Computing Offloading. Consider an edge cloud network
with a set M = f1,⋯,Mg of mobile device and an edge
cloud manager (ECM) that manages a set V = f1,⋯, Vg
of service suppliers. Each supplier has a set S = f1,⋯, Sg
of servers that can provide computing service. Each mobile
device i ∈M has a task that has been determined to perform
computing offloading. As shown in Figure 1, at each slot t, a
MD sends a d-dimensional context in X ≔ ½0, 1�d denoted
by xt to all suppliers, where xt is added to Laplace noise
based on the privacy protection requirements of different
MDs. By receiving xt , the ECM first broadcasts it to all sup-
pliers. Each supplier then selects an optimal ECS and sends
the information of this ECS to the ECM. The ECM provides
the MD with the optimal ECS in this network that denoted
by st . Subsequently, the MD decides whether to perform
computing offloading.

Each st ∈ S has a two-dimensional vector denoted by
wt = ðwp

t ,wq
t Þ, where wp

t and wq
t denote the reward in the

price and reliability for performing computing offloading,
respectively. wp

t and wq
t are given by wp

t = ypstðxtÞ + πp
t and

wq
t = yqst ðxtÞ + πq

t , respectively, where ykstðxtÞ, k ∈ fp, qg
denotes the expected reward of selecting ECS s in k given
context x. πk

t , k ∈ fp, qg is a random noise, which satisfies
E½πk

t js1:t , x1:t , πp
1:t−1, π

q
1:t−1� = 0. We assume that πk

t , k ∈ fp, q
g is conditionally 1-sub-Gaussian. Formally, this means that

∀λ ∈ℝE expλπk
t s1:t , x1:tj , πp

1:t−1, π
q
1:t−1

h i
≤ exp λ2

2

 !
: ð1Þ

Let yp∗ðxÞ≔maxs∈Sy
p
s ðxÞ and yq∗ðxÞ≔maxs∈Sy

q
s ðxÞ

denote the expected reward of a ECS s in the price and the
reliability for context x, respectively. Let s∗ðxÞ denote the
optimal ECS for the context x.

Assumption 1. We assume that for all k ∈ fp, qg, s ∈ S and x,
x′ ∈X , yks ðxÞ satisfy the following condition:

yks xð Þ − yks x′
� ���� ��� ≤ L x − x′

�� ��α, ð2Þ

where L > 0, 0 < α ≤ 1. Assumption 1 means that if the
offloading price and reliability of two ESCs are similar, it is
expected that the cost of their offloading are similar.

Initially, the MD does not know any reward of ECSs. The
MD learns the reward of ECSs over time. In order to evalu-
ate the performance of our method, we define the 2D regret
of the ECS as the tuple ðRpðTÞ, RqðTÞÞ, where

Rk Tð Þ≔ 〠
T

t=1
 yk∗ xtð Þ − 〠

T

t=1
 ykst xtð Þ, k ∈ p, qf g: ð3Þ
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When RpðTÞ =OðTβ1Þ and RqðTÞ =OðTβ2Þ, we consider
that the 2D regret is OðTmax ðβ1,β2ÞÞ.
3.2. Differential Privacy

Definition 2 (differential privacy). An algorithm G has ε dif-
ferential privacy if there is only one entry different in all
pairs D,D′ ∈ℝd , and all set of outcomes R ∈ RangeðGÞ.

P G Dð Þ ∈R½ �
P G D′

� �
∈R

h i ≤ exp εð Þ: ð4Þ

This definition mentioned above applies only to the identical
level of privacy protection used by all suppliers. We now
consider that each supplier i in our system specifies its
own privacy εi.

Definition 3 (local differential privacy). An algorithm ~G has
M nodes in the system, and we say that the algorithm ~G is εi
locally private for node i, i = 1,⋯,M if for any Ri ∈ Range
ð~G iÞ it satisfies that

P ~G i D1,⋯,Di,⋯,DMð Þ ∈Ri

n o
P ~G i D1,⋯,D′i,⋯,DM

� �
∈Ri

n o ≤ exp εið Þ: ð5Þ

And we say that the algorithm ~G is ðε1,⋯, εMÞ-differ-
entially private, if ~G is εi-differentially locally private for all
suppliers, where s = 1,⋯,M.

Definition 4 (sensitivity). The sensitivity of the function y
: X↦ Rd is as follows:

Δf =
max

X, X′ X−X ′k k1
=1

f Xð Þ − f X ′
� ���� ���

1
: ð6Þ

Definition 5 (sensitivity). The sensitivity of the function h
: G↦ Rd is as follows:

Φi =
max

Gi,G′i Gi−G′ik k1
=1

g Gið Þ − g G′i
� ���� ���

1
: ð7Þ

3.3. The Learning Algorithm. In this section, we detail our
proposed EPCO as shown in Algorithm 1 (EPCO(1)), Algo-
rithm 2 (EPCO(2)), and Algorithm 3 (EPCO(3)). Since the
computing offloading decision of each ECS for different
MDs has stochastic distributions, we decide to let our pro-
posed system learn an ECS’s performance by online learning
method. According to the sample mean reward of each ECS
for the same context vector update, service suppliers learn
the performance of each ECS. In order to understand the
EPCO, we divide it into three algorithms which are named
as EPCO(1), EPCO(2), and EPCO(3), respectively. As
shown in Figure 2, the MDs run EPCO(1) to customize their

privacy protection level. ECM runs EPCO(2) to interact with
the MD and send the best option among all agents to the
MD for decisions. Service suppliers run EPCO(3) to select
the optimal ECS and interact with the ECM.

First, we analyse the privacy problem of MDs. Since dif-
ferent MDs have different requirements for privacy protec-
tion, MDs are allowed to customize the privacy level of
each user. In order to protect personal privacy when MDs
send computing information, the information is added with
a noise which is drawn from the Laplace distribution in
EPCO(1). Then, we discuss the privacy issues of the sup-
pliers. When suppliers have selected optimal ECSs for
MDs, they send the information to ECM. Since any supplier
can access to this information in ECM, the Laplace mecha-
nism is used in EPCO(2) to protect the privacy of service
suppliers.

In this paper, the context space X is divided into md

identical hypercubes with side length n−l. Let C denote the
subspace context space of X . For ECS s and each c ∈C ,
EPCO maintains a counter Ns,c recording the number of
times that s was selected for the context that belongs to c.
When a MD needs to perform a computing offloading, it
first sends a message to the ECSs containing information
about the computing task. In order to protect the privacy
of the MD, it adds Laplace noise to this information in
EPCO(1). Upon each context data of a MD arrival, the sup-
pliers first identify to which subspace c the context belongs.
Then, each service supplier first calculates the indices for
the rewards (line 5 in EPCO(3)), which is given as follows:

hks,c ≔ ŷks,c + μs,c + ηks , k ∈ p, qf g, ð8Þ

where ŷks,c = yks,c/Ns,c estimates the sample mean of the reward
for the selection of s in subspace c. ŷps,c and ŷqs,c denote the
price objective and reliability objective, respectively. μs,c =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Sn,T /Ns,c
p

, where Sn,T = ð1 + 2 log ð4jSjndT3/2ÞÞ denotes
the uncertainty of the reward estimate, which is commonly
used to tradeoff exploration and exploitation in online learn-
ing [40]. ηks is a random noise obeying the Gaussian distribu-
tion. Then, the Upper Confidence Bound (UCB) for yks ðxÞ is
hks,c + b for context x in subspace c, where b≔ Ldα/2n−α

denotes the uncertainty due to context partition. Its main
purpose is to inflate the reward of ECSs that are seldomly
selected, which is more conducive to exploring more suitable
servers than just servers with high estimated reward.

We add Laplace noise ηks to the index function to protect
the privacy of ECSs. When μs∗p ,c + ηks ≤ γb, it means that the

Input: _x.
Output: x.
1: MD is ready for computing offloading;
2: f ð _xÞ = _x + LapðΔf /εÞ;
3: Set x = f ð _xÞ;
4: Send x to the edge cloud;

Algorithm 1: EPCO(1).
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confidence of s∗p is high, and EPCO(3) calculates the candi-
date set of the optimal ECSs, which is given as follows:

Ŝ
∗ ≔ s ∈ S : hps,c ≥ ŷps∗p ,c − μs∗p ,c − ηks − 2b

n o
= s ∈ S : ŷps,c ≥ ŷps∗p ,c − μs∗p ,c − ηks − μs,c∗ − 2b
n o

:

ð9Þ

When μs∗p ,c + ηks ≥ γb, EPCO(3) just set s∗p = arg maxs∈S

hps,c to improve the confidence of s∗p (lines 6-7 in EPCO(3)).
Simultaneously, an optimal ECS ŝ is selected by the expo-
nential mechanism (lines 12-15 in EPCO(2)). We use hs,c
to denote the total reward of ECS s that can be compared,
which is given as follows:

Js,c = ψŷps,c + 1 − ψð Þŷqs,c, ψ ∈ 0, 1½ �, ð10Þ

where ψ represents a MD’s preference and is adjusted
according to the actual needs of a MD. For example, if a
MD requires strict service payment, the value of ψ is larger.
However, if a MD requires strict reliability, the value of ψ is
relatively small. We select the ECS with the highest total
reward and sent it to the MD (line 12 in EPCO(3)). Finally,
according to the computing offloading decision of the MD
(line 7 in EPCO(2)), the service suppliers update the sample
mean reward and the counter (lines 14-16 in EPCO(3)).

4. Regret Analysis

In this section, we prove that the 2D regret of EPCO is sub-
linear functions of T . The regret RkðTÞ is due to selecting
suboptimal ECSs from S i by time T .

Let

Rk
c Tð Þ≔ 〠

T

t=1
yk∗ xc tð Þð Þ − 〠

T

t=1
ykεδs xc tð Þð Þ, k ∈ p, qf g ð11Þ

denotes the regret for objective k in round T c. The best
fixed ECS is denoted by yk∗ðxÞ, yk∗ðxÞ =maxs∈Syk∗ðxÞ, and k
∈ fp, qg. Then, we have the total regret for selecting subop-
timal ECSs

Rk Tð Þ = 〠
c∈C

Rk
c Tð Þ: ð12Þ

Then, the corresponding expected regret is given as fol-
lows:

E Rk Tð Þ
h i

= 〠
c∈C

E Rk
c Tð Þ

h i
: ð13Þ

Let hks,cðtÞ≔ ŷks,cðtÞ − μs,cðtÞ − ηks ðtÞ and �h
k
s,cðtÞ≔ ŷks,cðtÞ +

μs,cðtÞ + ηks ðtÞ denote lower and upper bounds for k ∈ fp, qg
, respectively. Then, hks,cðtÞ − b and �h

k
s,cðtÞ + b are the lower

Input: xi.
Output: s∗.
1: Receive xi from the MD;
2: Broadcast xi to each service suppliers;
3: Receive optimal ECSs from all service suppliers;
4: Set s∗i = arg maxfv∈V gfJv,sg;
5: Send s∗i to the MD;
6: Observe the decision of the MD and send it to the service suppliers

Algorithm 2: EPCO(2).

Input: xi, γ.
Output: s∗.
1: Initialize: C ⊆X ,Ns = 0, ∀s ∈ S i;
2: Receive xi from the ECM;
3: fort = 1, 2,⋯, T , xt ∈ cdo
4: Compute hks,c, k ∈ fp, qg via (4);

5: Iks,c ≔ hks,c + ηks , k ∈ fp, qg
6: ifμs∗p ,c + ηks > γbthen

7: Set s∗p = sp
∗
;

8: else
9: Find the candidate optimal set of ECSs S∗ via (5);
10: Set s∗p = arg maxs∈S∗gqs,c;
11: end if
12: Send s∗ and hs∗ ,c to the ECM;
13: Receive wt = ðwp

t ,wq, tÞ;
14: ŷkst ,c ⟵ ðŷkst ,cNk

st ,c +wk
t Þ/ðNk

st ,c + 1Þ, k ∈ fp, qg
15: Nk

st ,c ⟵Nk
st ,c + 1

16: t⟵ t + 1 ;
17: end for

Algorithm 3: EPCO(3).

𝜖
𝑖

EPCO(1):
Customizable differential

privacy mechanism(in MD)

EPCO(2):
Interaction mechanism

(in ECM)

EPCO(3):
Multi-armed bandit

(in supplier)

Online learning (in edge cloud)

𝝕

Figure 2: Algorithm mechanism.
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and upper confidence bounds, respectively. Let

Qk
s,c ≔

[Nc Tð Þ

t=1
yks xs tð Þð Þ ∉ hks,c tð Þ − b, �hks,c tð Þ + b

h in o
ð14Þ

denote that the service supplier is not confident about
the reward estimate by time T with the context x in subspace
c. Then, we partition the regret into following and bound
them, respectively.

E Rk1
c Tð Þ

h i
= E Rk1

c Tð Þ Qj
h i

P Qð Þ + E Rk1
c Tð Þ ~Q

��h i
P ~Q
� �

≤ Ak1maxNc Tð ÞP Qð Þ + E Rk1
c Tð Þ ~Q

��h i
,

ð15Þ

where ~Q denotes the complement of event Q and Ak is the
maximum difference between the expected reward in opti-
mal server and other server for objective k. We use s to
denote the server selected in EPCO(3) algorithm, s ∗ to
denote the optimal server, and ŝ to denote the server whose
index is highest. Next, we will bound the items in Equation
(15). We first bound PðQÞ.

Lemma 6. For any c ∈C , we have the following:

P Qcð Þ ≤ 1

ndT
: ð16Þ

Proof. Let Wk
s,cðtÞ denote the random reward of server s in

objective k in round t. We know

Wk
s , c tð Þ = yks xc tð Þð Þ + πk

c tð Þ + ηkc ,

yks , c tð Þ = ∑t−1
l=1W

k
s , c lð ÞI sc lð Þ = sð Þ
Ns,c tð Þ

:
ð17Þ

We define upper and lower bounds of the random
reward as follows:

Ŵ
k
s , c tð Þ = ŷks xc tð Þð Þ + πk

c tð Þ + ηkc ,

W̆
k
s , c tð Þ = y̆ks xc tð Þð Þ + πk

c tð Þ + ηkc :
ð18Þ

Let

ŷks xc tð Þð Þ = ∑t−1
l=1Ŵ

k
s , c lð Þ1 sc lð Þ = sð Þ
Ns,c tð Þ

,

y̆ks xc tð Þð Þ = ∑t−1
l=1W̆

k
s , c lð Þ1 sc lð Þ = sð Þ
Ns,c tð Þ

:

ð19Þ

Then, we have the following:

L̂
k
s,c tð Þ≔ ŷks xc tð Þð Þ − μs,c tð Þ − ηkc ,

Û
k
s,c tð Þ≔ ŷks xc tð Þð Þ + μs,c tð Þ + ηkc ,

L̆
k
s,c tð Þ≔ y̆ks xc tð Þð Þ − μs,c tð Þ − ηkc ,

Ŭ
k
s,c tð Þ≔ y̆ks xc tð Þð Þ + μs,c tð Þ + ηkc :

ð20Þ

Since when Ns:cðtÞ = 0, Pðyks ðxcðtÞÞ∈½L̂
k
s,cðtÞ − b, Ûk

s,cðtÞ +
b�Þ = 0, so below, we only focus on the case of Ns:cðtÞ > 0,
which can be expressed as follows:

yks yc tð Þð Þ∈ Lks,c tð Þ − b,Uk
s,c tð Þ + b

h in o
⊂

yks yc tð Þð Þ∈ L̂
k
s,c tð Þ − b, Ûk

s,c tð Þ + b
h in o

∪

yks yc tð Þð Þ∈ L̆
k
s,c tð Þ − b, Ŭk

s,c tð Þ + b
h in o

:

ð21Þ

From the Hölder continuity, we have the following der-
ivation:

ŷks xcð tð Þ = sup
x∈c

yks yð Þ = yks x′
� �

,

ŷks,c − yks xc tð Þð Þ ≤ L x′ − xc tð Þ
�� ��α = L

ffiffiffiffiffiffiffiffiffiffiffi
d · 1

n2

r !α

= L

ffiffiffi
d

p

n

 !α

:

ð22Þ

Then, integrating the above derivation, we have the fol-
lowing:

yks xc tð Þð Þ ≤ ŷks,c ≤ yks xc tð Þð Þ + L

ffiffiffi
d

p

n

 !α

, ð23Þ

yks xc tð Þð Þ − L

ffiffiffi
d

p

n

 !α

≤ y̆ks xc tð Þð Þ ≤ yks xc tð Þð Þ: ð24Þ

Using Equation (23) and Equation (24), the question can
be expressed as follows:

yks xc tð Þð Þ∈ L̂
k
s,c tð Þ − b, Ûk

s,c tð Þ + b
h in o

⊂ ŷks xc tð Þð Þ∈ L̂
k
s,c tð Þ, Ûk

s,c tð Þ
h in o

,

yks xc tð Þð Þ∈ L̆
k
s,c tð Þ − b, Ŭk

s,c tð Þ + b
h in o

⊂ y̆ks xc tð Þð Þ∈ L̆
k
s,c tð Þ, Ŭ

k
s,c tð Þ

h in o
:

ð25Þ

Thus, plugging Equation (23) and Equation (24) into
Equation (21), we obtain the following:

yks xc tð Þð Þ∈ Lks,c tð Þ − b,Uk
s,c tð Þ + b

h in o
⊂

ŷks∈ L̂
k
s,c tð Þ, Ûk

s,c tð Þ
h in o

∪ y̆ks∈ L̆
k
s,c tð Þ, Ŭ

k
s,c tð Þ

h in o
p:

ð26Þ
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Using Equation (26), we have the following:

P ~U
� �

≤ P
[Nc Tð Þ

t=1
  ŷks∈ L̂

k
s,c tð Þ, Ûk

s,c tð Þ
h in o !

+ P
[Nc Tð Þ

t=1
  y̆ks∈ L̆

k
s,c tð Þ, Ŭ

k
s,c tð Þ

h in o !
:

ð27Þ

Using the concentration inequality, the right side of the
above inequality is bounded as follows:

P ~U
� �

≤
1

2 Sj jndT : ð28Þ

Using the union bound, we have the following:

P ~U
� �

≤
1

2ndT ,

P ~U
� �

≤
1

pndT
:

ð29Þ

Using the result of Lemma 10, PðUÞ and Pð~UÞ can be
bounded as follows:

P Uð Þ = P ∪k∈ p,qf gU
k
c

� �
=md · P Ucð Þ ≤ 1

T
,

P ~U
� �

≥ 1 − 1
T
:

ð30Þ

Lemma 7. Under Assumption 1, yps∗ðtÞðxcðtÞÞ and ypsðtÞðxcðtÞÞ
are generated by EPCO(3) algorithm. On event ~U , we have
the following:

yps∗ tð Þ xc tð Þð Þ − yps tð Þ xc tð Þð Þ ≤Up
s,c tð Þ − Lps,c tð Þ + 2 γ + 2ð Þb:

ð31Þ

Proof. There are two cases here. When μŝ∗p ,c + ηks ≤ γb, we

have the following:

Up
s,c tð Þ ≥ Lpŝ,c − 2b ≥Up

ŝ,c tð Þ − μŝ∗p ,c − 2ηks − 2b ≥Up
ŝ,c tð Þ − 2 γ + 1ð Þb:

ð32Þ

When μŝ∗p ,c + ηks ≥ γb, we have the following:

Up
s,c tð Þ =Up

ŝ∗ ,c tð Þ ≥Up
ŝ∗ ,c tð Þ − 2 γ + 1ð Þb: ð33Þ

According to the above two cases, we obtain the follow-
ing:

Up
s,c tð Þ ≥Up

ŝ∗ ,c tð Þ − 2 γ + 1ð Þb ≥Up
s∗ ,c tð Þ − 2 γ + 1ð Þb, ð34Þ

Up
ŝ∗ ,c tð Þ ≥Up

s∗ ,c tð Þ: ð35Þ

On event ~U , we have the following:

yps∗,c xc tð Þð Þ ≤Up
s∗ ,c tð Þ + b ≤Up

ŝ∗ ,c tð Þ + 2 γ + 1ð Þb + b, ð36Þ

yps,c xc tð Þð Þ ≤Up
s,c tð Þ − b: ð37Þ

Combined with Equations (34)–(37), we obtain the fol-
lowing:

yps∗ ,c xc tð Þð Þ − yps,c xc tð Þð Þ ≤Up
s,c tð Þ − Lps,c tð Þ + 2 γ + 2ð Þb: ð38Þ

Lemma 8. Under Assumption 1, yqs∗ðtÞðxcðtÞÞ and yqsðtÞðxcðtÞÞ
are generated by EPCO(3) algorithm. On event ~U , we have
the following:

yqs∗ tð Þ xc tð Þð Þ − yqs tð Þ xc tð Þð Þ ≤Uq
s,c tð Þ − Lqs,c tð Þ + 2b: ð39Þ

Proof. We know that when μŝ∗p ,c + ηks ≤ γb holds, all servers

Ŝ
∗
are in interval ½Lpŝ∗ ,cðtÞ − 2b,Up

ŝ∗ ,cðtÞ�. Then, we show that

Up
s∗ ,cðtÞ also satisfies this condition. On event ~U , we have the

following:

yps∗ ,c xc tð Þð Þ ∈ Lps∗ ,c tð Þ − b,Up
s∗ ,c tð Þ + b

	 

, ð40Þ

ypŝ∗ ,c xc tð Þð Þ ∈ Lpŝ∗ ,c tð Þ − b,Up
ŝ∗ ,c tð Þ + b

	 

, ð41Þ

yqs∗ tð Þ xc tð Þð Þ ≥ ypŝ∗ ,c xc tð Þð Þ: ð42Þ

By Equations (40)–(42), we obtain the following:

Up
s∗ ,c ≥ yps∗ ,c xc tð Þð Þ − b ≥ ypŝ∗ ,c xc tð Þð Þ − b ≥ Lpŝ∗ ,c tð Þ − 2b: ð43Þ

Since the selected server s is in ½Lpŝ∗ ,cðtÞ − 2b,Up
ŝ∗ ,c�, we

have Uq
s,c ≥Uq

s∗ ,c. Using this result, we obtain the following:

yqs,c ≥Uq
s,c − b, ð44Þ

yqs∗ ,c ≤Uq
s∗ ,c + b ≤Uq

s,c + b: ð45Þ

From Equation (44) and Equation (45), we have the fol-
lowing:

yqs∗ ,c − yqs,c ≤Uq
s,c − Lqs,c + 2b: ð46Þ

Lemma 9. Under Assumption 1, μŝ∗p ,c are generated by

EPCO(3) algorithm, and the upper limit of the number of
rounds for μŝ∗p ,c + ηks > γb is as follows:

Sj j 2Sn,T
γb − ηks
� �2 + 1

 !
: ð47Þ
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Proof. Since

μŝ∗p ,c =
ffiffiffiffiffiffiffiffiffiffi
2Sn,T
Nŝ∗ ,c

s
,

Nŝ∗ ,c =
2Sn,T
μŝ∗p ,c

< 2Sn,T
γb − ηks
� �2 :

ð48Þ

And each such event increases the value of Nŝ∗ ,c by one.

The number of rounds for μŝ∗p ,c + ηks > γb is bounded by 2
Sn,T /ðγb − ηks Þ

2 + 1. Summing all the servers together obtains
the final result.

Lemma 10. Under Assumption 1, Rp
c ðtÞ is generated by

EPCO(3) algorithm. On event ~U , we have the following:

Rp
c tð Þ ≤ Sj jAp

max + 2Bn,T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sj jNc tð Þ

p
+ 2 γ + 2ð ÞzNc tð Þ, ð49Þ

where Bn,T ≔ 2
ffiffiffiffiffiffiffiffiffiffi
2Sn,T

p
:

Lemma 11. Under Assumption 1, Rq
c ðtÞ is generated by

EPCO(3) algorithm. On event ~U , we have for all c ∈C

Rq
c tð Þ ≤ Sj jAq

max
2Sn,T
γ2z2

+ 1
� �

+ 2zNc tð Þ + 2Bn,T
ffiffiffiffiffiffiffiffiffiffiffiffi
Sj jNc

p
:

ð50Þ

More detailed proof of Lemma 10 and Lemma 11 is pre-
sented in [41] (see Lemma 10 and Lemma 11 in [41]).

Theorem 12. Under Assumption 1, RkðtÞ is generated by
EPCO(3) algorithm, and we have for any k ∈ p, q as follows:

P Rk tð Þ < ξk tð Þ
� �

≥ 1−, ∀t ∈ 1,⋯, Tf g, ð51Þ

where

ξp tð Þ = nd Sj jAp
max + 2Bn,T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sj jndt

q
+ 2 γ + 2ð Þzt,

ξq tð Þ = nd Sj jAq
max

2Sn,T
γ2z2

+ 1
� �

+ 2zt + 2Bn,T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sj jndt

q
:

ð52Þ

Proof. Combining Equation (12), Lemma 10, and Lemma 11,
we have the following:

Rp tð Þ ≤ nd Sj jAp
max + 2Bn,T〠

c∈C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sj jNc tð Þ

p
+ 2 γ + 2ð ÞzNc tð Þ,

≤ nd Sj jAp
max + 2Bn,T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sj jndt

q
+ 2 γ + 2ð Þzt,Rq tð Þ

≤ nd Sj jAq
max

2Sn,T
γ2z2

+ 1
� �

+ 2zNc tð Þ + 2Bn,T〠
c∈C

 
ffiffiffiffiffiffiffiffiffiffiffiffi
Sj jNc

p

≤ nd Sj jAq
max

2Sn,T
γ2z2

+ 1
� �

+ 2zt + 2Bn,T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sj jndt

q
: ð53Þ

Theorem 13. Under Assumption 1, RkðtÞ is generated by
EPCO(3) algorithm, and m and γ satisfy n = dT1/ð3ρ+dÞe and
γ > 0, and we have the following:

E Rp Tð Þ½ � ≤ Ap
max + 2d Sj jAq

maxT
d/3ρ+d + 2 γ + 2ð ÞLdρ/2T2ρ+d/3ρ+d

+ 2d/2+12Bn,T
ffiffiffiffiffiffi
Sj j

p
T1:5ρ+d/3ρ+d ,E Rq Tð Þ½ �

≤ 2d/2+12Bn,T
ffiffiffiffiffiffi
Sj j

p
T1:5ρ+d/3ρ+d

+ Aq
max + 2Ldρ/2 + Aq

max Sj j21+2ρ+dBn,T
γ2L2dρ

� �
T2ρ+d/3ρ+d

+ 2dAq
max Sj jTd/3ρ+d: ð54Þ

Proof. According to the Theorem 12 and Equation (15), E½
RkðTÞ� is bounded as follows:

E Rk Tð Þ
h i

≤ E Rk Tð Þ ~U
��h i

+ 〠
c∈C

 Ak
maxNc tð ÞP Uð Þ ≤ E Rk Tð Þ ~U

��h i

+ ∑c∈C Ak
maxNc tð Þ

T = E Rk Tð Þ ~U
��	 


+ Ak
max

ð55Þ

Then, we obtain the following:

E Rp Tð Þ½ � ≤ ξp tð Þ + Ap
max,

E Rq Tð Þ½ � ≤ ξq tð Þ + Aq
max:

ð56Þ

When n = dT1/ð3ρ+dÞe, we have the following:

E Rp Tð Þ½ � ≤ Ap
max + 2d Sj jAq

maxT
d/3ρ+d + 2 γ + 2ð ÞLdρ/2T2ρ+d/3ρ+d

+ 2d/2+12Bn,T
ffiffiffiffiffiffi
Sj j

p
T1:5ρ+d/3ρ+d ,E Rq Tð Þ½ �

≤ 2 d/2ð Þ+12Bn,T
ffiffiffiffiffiffi
Sj j

p
T1:5ρ+d/3ρ+d + Aq

max

+ 2Ldρ/2 + Aq
max Sj j21+2ρ+dBn,T

γ2L2dρ

� �
T2ρ+d/3ρ+d

+ 2dAq
max Sj jTd/3ρ+d: ð57Þ

The result shows that not only the regret of EPCO is sub-
linear, which is OðTð2ρ+dÞ/ð3ρ+dÞÞ, but also added privacy dif-
ferential mechanism does not affect its convergence.
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5. Differentially Private

The privacy protection mechanism applied in this paper uses
differential privacy mechanism, which is originally intro-
duced by Dwork et al. [21].

Theorem 14. EPCO(1) preserves ðεi, 0Þ-differential privacy
for MD i where

εi =Φi 〠
T

t=1
  1

ρti
, ð58Þ

and each MD i of the noise ηti is independently selected
according to the Laplace distribution, where the density func-
tion is pðηtiÞ = ð1/2ρtiÞ exp ð−kηtik/ρtiÞ for i = 1,⋯,M and t
= 1,⋯, T .

Proof. We first show that ~G i is locally ðεi, 0Þ-differential pri-
vacy for MD i. Now we start by studying the quantity of
interest

P ~G
T
i D1,⋯,Di,⋯,DMð Þ ∈W

n o
P ~G

T
i D1,⋯,D′i,⋯,DM

� �
∈W

n o ð59Þ

of MD i. We use a random variable Wt
i , for t = 1,⋯, T , to

denote the output of ~G
T
i with input ðD1,⋯,Di,⋯,DMÞ

and W′ti to denote the output of ~G
T
i with input ðD1,⋯,D

′i,⋯,DMÞ.

According to the definition above, we can rewrite the
issue as follows:

P W1
i =w1

i ,⋯,WT
i =wT

i


 �
P W ′1i =w1

i ,⋯,W ′Ti =wT
i

n o : ð60Þ

We use Wt to denote the tuple ðWt
1,⋯,Wt

MÞ. Then, we
have the following:

P W1
i =w1

i ,⋯,WT
i =wT

i


 �
P W ′1i =w1

i ,⋯,W ′Ti =wT
i

n o = P W1 =w1,⋯,WT =wT

 �

P W ′1 =w1,⋯,W ′T =wT
n o

=
YT
t=1

  P Wt =wt Wτ =wτ, τ < tj
 �
P W ′t =wt W ′τ =wτ, τ < t

���n o :

ð61Þ

We form this process into a Markov chain where the
random vector at denotes the Lagrangian ðνt1,⋯, νtMÞ,
which is presented in [39] (see Theorem 3.1 in [39]). Then,

we have the following relationship:

P Wt =wt Wτ =wτ, τ < tj
 �
P W ′t =wt W ′τ =wτ, τ < t

���n o = P Wt =wt at−1 = νt−1
��
 �

P W ′t =wt a′t−1 = ν′t−1
���n o

= P Wt =wt at−1 = νt−1
��
 �

P W ′t =wt a′t−1 = νt−1
���n o ≤ exp

y νt−1i

� �
− y ν′t−1i

� ���� ���
ρti

0
@

1
A

≤ exp Φi

ρti

� �
:

ð62Þ

With Φi in Definition 5, we obtain the following:

P GT
i D1,⋯,Di,⋯,DMð Þ ∈W
 �

P GT
i D1,⋯,D′i,⋯,DM

� �
∈W

n o

=
YT
t=1

  P Wt =wt Wτ =wτ, τ < tj
 �
P W ′t =wt W ′τ =wτ, τ < t

���n o ≤
YT
t=1

 exp Φi

ρti

� �

= exp 〠
T

t=1
  Φi

ρti

� � !
:

ð63Þ

This result proves the privacy guarantee in Equation
(58).

Thus, Theorem 14 proves that our proposed EPCO(1)
can guarantee the MD’s privacy and different MDs have dif-
ferent privacy protection levels.

Theorem 15. EPCO(1) preserves ðε, 0Þ-differential privacy for
the contextual information of ECSs.

Proof. Let D = ðh1,⋯, hTÞ denote true information of a sup-
plier and D′ denote a dataset which differs from D in only
one data. We define the reward that adds noise as It . Then,
for different suppliers s1 and s2, we have the following:

P M s1, tð Þ = It½ �
P M s2, tð Þ = It½ � =

exp − ε′ hs1,t − It
�� ��/Δf� �� �

exp − ε′ hs2,t − It
�� ��/Δf� �� �

= exp ε′
Δf

hs2,t − It
�� �� − hs1,t − It

�� ��� � !

≤ exp ε′
Δf

hs1,t − hs2,t
�� �� !

= exp ε′
Δf

hs1,t − hs2,t
�� ��

1

 !
≤ exp ε′

� �
:

ð64Þ

Employing Theorem 3.6 in [42] (see page 32 in [42]),
Theorem 15 is proved.
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Therefore, Theorem 15 proves that service supplier fails
to extract information about ECSs in ECM by the rewards.
In summary, Theorem 14 and Theorem 15 prove that EPCO
can preserve both privacy of MDs and service suppliers syn-
chronously. In addition, EPCO also supports different MDs
to customize their privacy protection levels.

6. Simulation Results

In order to verify the efficiency and privacy of our proposed
algorithm, we conducted the following simulation experi-
ments with real-world datasets [43]. We compare EPCO
with P-UCB1, S-UCB1 [44], and MOC-MAB [41] algo-
rithms. We use Python 3.6 version to implement these algo-
rithms. We run these algorithms on an Acer computer with
Intel(R) Core(TM) i5-4460 @ 3.2GHz and 8GB RAM. The
operating system is Windows 10 Professional. We set L, α,
and γ to 1. We give the sets P = f0:2,0:4,0:6g and R = f

0:1,0:25,0:5,1g. We let the time horizon T = 105 and T = 1
06 to satisfy different experiments. We take X = ½0, 1�2, and
the context is chosen randomly from X at each round. We
use 6 arms in each algorithm and every algorithm runs 20
times. We take the average result of the simulation
experiment.

6.1. Analysis of Regret. Figure 3 shows the change of the
regret of the algorithm in price and reliability objectives over
time. The simulation results show that the regret of EPCO is
at a lower position to both price and reliability objectives.
But its regret is not the lowest, which is slightly higher than
the MOC-MAB algorithm. Because we added a privacy pro-
tection mechanism to EPCO, it affected the convergence of
the algorithm, but this effect was almost negligible.

6.2. Analysis of Rewards. We compare the rewards of these
algorithms in two objectives, and the results are shown in
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Figure 3: Regret of multiobjective.
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Figure 4: Reward of multiobjective.
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Figure 4. Compared with other multiobjective optimization
algorithms, EPCO performs relatively well. Figure 4(a)
shows that the EPCO algorithm performs well in price
objective, outperforming other algorithms, but slightly infe-
rior to the MOC-MAB algorithm. Figure 4(b) shows that
the EPCO algorithm also performs well in reliability objec-
tive. This is because although our algorithm has high effi-
ciency, due to the addition of a privacy protection
mechanism, a small part of the error is caused, which affects
the reward of different objectives.

6.3. Analysis of Privacy Protection. The effect of different pri-
vacy protection levels on the performance of the EPCO algo-
rithm is shown in Figures 5 and 6. We set the privacy
parameter ε to 0.25, 0.5, 0.75, and 1, respectively, represent-
ing different levels of privacy protection. Figure 5 shows the
relationship between different privacy levels and regret.

Obviously, when the value of ε is larger, the regret of the
EPCO algorithm is smaller. This is because as the value of
ε increases, the availability of data increases, resulting in a
smaller regret. Similarly, in Figure 6, as the value of ε
increases, the availability of data also increases, resulting in
a larger reward for the EPCO algorithm.

6.4. Discussion. The simulation results show that EPCO’s
regret is at a low level in P-UCB1, S-UCB1, and MOC-
MAB, because P-UCB1 and S-UCB1 are not suitable for
multiobjective optimization. The regret of MOC-MAB is
lower than that of EPCO. This is due to the extra work done
by EPCO to protect the privacy of users. With ε taking 0.25,
0.5, 0.75, and 1.0, respectively, the regret and reward EPCO
also produced different consequences. We noticed that when
the value of the privacy parameter ε is larger, the regret of
EPCO is smaller, the reward and privacy leakage is larger.
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Figure 5: The relationship between regret and privacy.
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Figure 6: The relationship between reward and privacy.
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This is because a larger ε has little effect on the calculation
performance of the algorithm. Although there is a difference
in privacy leakage values from the data point of view, this
difference is almost impossible to detect in real scenarios;
that is to say, regardless of whether the privacy parameter
ε is set to 0.1 or 0.5, this means that user privacy is almost
impossible to be leaked.

6.5. Lessons Learned. The purpose of our simulation experi-
ment is to verify the performance of EPCO from three per-
spectives, namely, regret, reward, and privacy. We used the
Python programming language to implement the EPCO
algorithm and used real-world datasets for operations. By
comparing with three multiobjective optimization algo-
rithms from the perspectives of regret and reward, namely,
P-UCB1, S-UCB1, and MOC-MAB, it is concluded that
EPCO does a good job in these two aspects. Meanwhile, it
is concluded that EPCO can also effectively protect the pri-
vacy of users in the system through the method of privacy
leakage. This is because differential privacy mechanism inte-
grates well with online learning algorithms. No matter
whether ε is set to 0.1 or 1.0, there is no trending change
in the performance of EPCO. That is to say, theoretically,
the value of b can be adjusted as large as possible within a
certain range, which can not only ensure the privacy of users
but also minimize the impact of privacy protection mecha-
nisms on the calculation performance of the algorithm.

7. Conclusion

We have proposed a privacy-protected algorithm and EPCO
algorithm, for two types of users of computing offloading.
One is for MDs whose privacy is protected by a customizable
differential privacy mechanism. The other is for ECS sup-
pliers whose privacy is protected by using a common differ-
ential privacy mechanism. In addition, we proved no
significant impact on the performance of the EPCO algo-
rithm with our privacy protection mechanisms. Simulta-
neously, an online learning algorithm is introduced to
improve the computing offloading efficiency and a detailed
theoretical proof of the method is given. The simulation
results verify the effectiveness of the EPCO algorithm.
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