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One of the main technologies for big data networking framework is online multihoming optimization that is large-scale dimension
table association technology in a distributed environment. It is often used in applications like real-time suggestion and research.
Big data is concerned with the quality of large datasets that are distributed. These datasets demand sophisticated network
technologies to adequately transmit massive share files. Dimension table association is the process of integrating multihoming
stream data with offline stored dimension table data and executing data processing using novel big data frameworks, as
described in this study. The current technological options for dimension table connection are assessed first, followed by
accompanying optimization technologies and the design route of mainstream distributed engines. The dimension table data
query is the one that has been optimized with the greatest performance. Nonetheless, the typical optimization approach is
influenced by the dimension, table size, and the design route of the mainstream distributed engine—limits on data flow rate.
Second, due to the limitations of existing optimization technologies for the overall consideration of the cluster in a distributed
environment, a computing model suited for hybrid computing of offline batch data and real-time streaming data is provided,
followed by a single-point reading. Dimension table data, the dimension table associated data technique for distribution and
calculation after segmentation, and optimization of the dimension table associated calculation logic adapt to a larger dimension
table scale and are no longer restricted to data connections. Since optimizing the query of dimension table, data is employed to
reduce the I/O overhead and delay caused by querying dimension table in big data. Finally, both the suggested and standard
dimension table association technologies are implemented on the Apache Flink stream computing engine. Through trials, the
throughput and latency on data created by Alibaba’s “Double Eleven” are compared, demonstrating the usefulness of
dimension table association techniques for Distributed Stream Computing optimization by utilizing multihoming networks.

1. Introduction

The amount of data generated in the network is continu-
ously increasing as the Internet develops and becomes more
popular. One of the main technologies for big data network-
ing framework is online multihoming optimization that is

large-scale dimension table association technology in a dis-
tributed environment. It is often used in applications like
real-time suggestion and research. Large companies and net-
work infrastructure are gradually shifting to multihoming as
a way to get the most out of their supplier connections. To
enhance quality over many ISP networks, multihomed
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terminal can now use a spectrum of products route control
tools. The present data scale has rendered traditional data
processing technologies ineffective. Developers have pro-
posed big data processing technology to extract the potential
value of these vast data [1]. Big data processing technology
has gone through three generations of computing engine
changes due to the continuous growth of big data processing
technology and the constantly changing of computing needs.
Apache Hadoop, which employs MapReduce to process
massive data, is the first significant data computing engine
generation [2, 3]. The computing model based on physical
storage is the distinguishing feature of this generation of
computing. The throughput of this type of computation is
really high [4]. Despite this, because each step of the compu-
tation is copied to physical storage, the discrepancy between
memory-based computing speed and disc I/O overhead
results in extremely high processing latency. This family of
computer engines is best suited for batch processing jobs
that do not necessitate high real-time performance [5]. Dur-
ing this time, the majority of big data analysis strategies are
focused on offline analysis, which necessitates the collection
of statistics and all data prior to inspection. A second-
generation big data computing engine, Apache Spark, is an
implementation of a second-generation big data computing
engine that uses memory for batch computing. The signifi-
cance of big data technologies can be defined as a piece of
software that evaluates, organizes, and recovers information
from exceedingly complicated and huge data sets that con-
ventional data processing software could not cope. Com-
pared with the first generation of technology, the
distinguishing feature of this generation is that the calcula-
tion data is moved into the memory, and the calculation is
performed based on the data in the memory [6]. This
memory-based computing method dramatically reduces
the latency caused by the I/O overhead of writing the results
to disk at each step of the first-generation technology. How-
ever, since the technology is still based on the batch comput-
ing mode, the data processing of each batch has a specific
time interval; so, it is still impossible to guarantee extremely
low latency in the face of some real-time computing tasks.
Big data analysis techniques are rapidly coming closer to
online analysis in this era, and real-time data processing is
already in demand. Apache Flink, the third-generation big
data computing engine, is a data processing engine that is
fully based on stream computing [1]. Apache Flink’s com-
puting infrastructure can process hundreds of millions of
messages or events per second with millisecond latency.
Stream computing technology, represented by Apache Flink,
is the preferred choice for real-time massive data analysis
due to its high data processing capability and low latency.
Stream computing technology is being used by an increasing
number of firms to construct their own real-time data anal-
ysis engines to replace traditional data warehouse research
[7], in processing and interchange databases, clustering
leverage datasets with comparable interconnections, initial
setup, and procedures. As a corollary, when heterogeneous
connections handshake together again to evaluate big data,
it restricts big data capabilities and needlessly complicates.
It also causes a range of latency challenges. In such data pro-
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cessing and analysis, the real-time stream data is often insuf-
ficient in information, and it is necessary to correlate with
the data stored offline to expand the data attributes. Dimen-
sion table data is data that is stored offline, and dimension
table association is the act of associating stream data with
dimension table data. One of the most important technolo-
gies in today’s online extensive data analysis is dimension
table association. In a distributed setting, dimension table
association technology optimization focuses on querying
dimension table data to reduce the I/O overhead and delay
generated by querying dimension table data. Through asyn-
chronous I/O technology, the data query optimization asso-
ciated with dimension tables primarily increases the number
of queries per unit time. Furthermore, it accelerates the
question by using data caching technology to cache the
queried dimension tables in the memory of the computing
nodes of the distributed engine. There are usually two
caching modes: caching query results and caching the
entire dimension table. The principle is shown in
Figure 1. These two optimization methods based on com-
puting nodes have their shortcomings. All data being
cached cannot support large-scale dimension tables due
to memory problems. In the method of caching query
results, the processing time of each piece of uncached data
is limited by the I/O capability of the database. It will
increase linearly with the increase in the size of the
dimension table data. When the data flow rate is low,
the cache timeout mechanism to ensure data validity will
cause each data query to point to the database, invalidat-
ing the local cache and reducing data processing efficiency.

Given the shortcomings of single-node optimization
technology such as reduced 1/0O overheads, delays in query
generation, and increased number of queries per time in
dimension table, this paper first proposes a calculation
model of novel big data framework that can be used for
hybrid computing of offline stored data and real-time gener-
ated data and then designs a new optimization scheme to
address numerous latency issues, and we employ a multi-
homing network strategy, which entails numerous networks
interacting with a single network activity at the same time
and exchanging database effectiveness to provide guidance
of dimension table association technology based on this
model. Its principle is shown in Figure 2.

This approach reads data from a single dimension data-
base, separates it, distributes it among processing nodes, and
associates it with stream data. Hence, the model of novel big
data computing diverse networks concurrently interact with
an unique network activity and assist in transferring data-
base efficacy to provide dimension table connection technol-
ogy which will further do all the processing like separation,
distribution, processing, and association itself using the pro-
posed approach. Each computer node only needs to cache a
portion of the dimension table data in this optimization
strategy, which enhances the dimension table data cache
capacity and greatly reduces the consumption of the dimen-
sion table data query. This system integrates batch process-
ing and stream computing technologies, as well as the
study of offline batch data and real-time stream data in
hybrid computing.
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The main contributions of this paper are as follows:

(a) A computing model suitable for mixed computing of
offline batch data and real-time streaming data is
proposed. The computing model can process both
streaming and batch data in a set of API (application
programming interface) or process streaming data
alone or batch data alone

(b) A dimension table associative data caching method
is proposed, which reads dimension table data at a
single point and distributes and calculates it after
splitting, reducing the pressure on the database
caused by dimension table data queries and improv-
ing the accuracy of the computing system in the
cluster environment—the upper limit of dimension
table size support by using a multihoming strategy
for data distribution. Simultaneously, the calculation
logic of dimension table association is improved,
allowing the dimension table association technology
to go beyond data connection

(c) The optimized dimensions in the stream computing
engine Apache Flink, table association technology,
and the traditional dimension table association tech-
nology are implemented. The dimension table asso-
ciation technology is verified through experiments.

table association method under the same conditions.
Reduce the computing delay by more than 40%
when the computing power is sufficient

Organization is as follows: the paper is outlined into sev-
eral sections where Section 1 states about the Introduction of
the research followed by Section 2 which discusses about the
related work. Section 3 states about experimental analysis,
and the ultimate sections discuss the conclusion of the work.

2. Related Work

In the past few years, there has been a lot of progress in the
optimization research of dimension table association opera-
tions in distributed environments and the typical interaction
between streaming and static data.

To solve the problem of massive data association com-
puting, the literature proposed a MESHJOIN algorithm,
which optimizes the connection process of continuous data
flow and dimensional data in single-point computing using
multihoming basis. Still, the algorithm is not efficient
enough for memory allocation [8]. To this end, we proposed
an improved algorithm to improve the memory allocation
problem. Authors proposed an algorithm based on the idea
of the block to improve the connection performance of the
MESHJOIN algorithm [9, 10]. The MESHJOIN technique,
which employs multithreaded concurrent connection tech-
nology, is illustrated by the author to provide a concept of
its working. It achieves the optimal scheduling of join oper-
ations and relational R read operations, ensuring that the
join algorithm’s efficiency is maximized and the connection
efficiency is further improved, according to engineering
principles. Based on the MESHJOIN algorithm, the litera-
ture proposed the EHJOIN algorithm, which improved the
traditional hash join method. It used the index to store some
frequently used primary data in the memory, solving the
problem of frequent disk access under high-speed data flow
[11, 12]. The above algorithms are based on dimensional



data to optimize the connection process of dimension tables
without considering the skew of streaming data. Based on
this, the literature proposed the CSJR (cached-based stream
relation join) algorithm, which optimized the skewed envi-
ronment in streaming data connection efficiency [13].

In the field of distributed computing engines, many
development contributions come from the community. For
example, the mainstream distributed systems Apache Spark
and Apache Flink have adapted for the dimension table
association scenario. Apache Spark proposed Spark Stream-
ing to improve computing latency and provide stream com-
puting support [14]. This computing model minimizes each
elastic distributed dataset by splitting the unlimited stream-
ing data into discrete (discredited) streams (Resilient Dis-
tributed Dataset, RDD) size, built microbatch data set, to
achieve the effect similar to stream computing, and the delay
of stream computing at this stage is 100 ms. In the technical
background of Spark Streaming, Apache Spark can define
dimension table data as an independent RDD and cache it
on each associated node. After each batch of microbatch
data sets arrives, they are processed in a local batch process
association. At the same time, the RDD content can be
updated to achieve the same state as the offline dimension
table data. The above update operations require users to
define their update logic. Since the data transmission of
Spark Streaming is based on the method of the microbatch
data set, it is not the real meaning of the data transmission.
For continuous transmission, Spark proposed structured
streaming [15].

This research was done to arrive at a solution faced by
company network in the incident of node failures as well
as what routing protocols they must use to mitigate network
delay, queuing delay, convergence rate, and backup and
recovery time complexity for improved network quality
[16]. The paper suggests that achieving a balance among
innovation process and the multihoming of a multitransac-
tion medium is the right strategy to mitigate the impacts of
the service sector and accomplish long-term development
[17]. In this computing model, the concept of constant pro-
cessing is introduced, which reduces the delay of stream
computing to the level of 1 ms. At the same time, Structured
Streaming natively supports Stream-Static Join, but its
underlying implementation logic is still to perform indepen-
dent caching operations for each computing node.

Apache Flink itself is a distributed computing engine
based on stream computing. However, to be compatible with
batch processing, it still maintains a set of dataset APIS for
batch processing. In addition, Apache Flink does not provide
official support for dimension table association calculation
in version 1.8. Therefore, users must manually implement
dimension table association calculation support in stream
computing through some operators.

Blink, an open-source engine built by Alibaba based on
Apache Flink, proposes the operation mode of dimension
table association at the level of table API. Users need to
implement the query logic for dimension table data manu-
ally. Relying on the asynchronous query of dimension table
data and caching of query results reduces database I/O over-
head and improves query efficiency. The cache mode of this
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scheme is that all data is cached and updated regularly and
LRU Cache, both of which are based on the cache mode of
computing nodes [18]. The above dimension table associa-
tive computing designs essentially initiate the queries
directly to the database during the stream computing pro-
cess, binding the query logic to each independent computing
node. All computing nodes must simultaneously access the
data source or cache—complete dimension table informa-
tion. In the face of high-speed streaming big data input, que-
rying the database asynchronously will cause significant
pressure on the database; in front of massive dimension table
data, due to the memory limitation of each computing node,
the dimension table data cannot be written entirely. In mem-
ory and cause, the execution engine generates a memory
exception. As mentioned above, the existing big data com-
puting platforms do not have a dimension table association
mechanism that supports the horizontal expansion of the
cache. Therefore, in the face of large-scale dimension table
data, the dimension table cannot be utterly cached in each
computing node in the full cache mode. However, using
the asynchronous connection method will generate a large
amount of data I/O during high-speed computing, which
will cause excessive pressure on the database, and even cause
the database connection to time out and lose its response.
Aiming at this problem, this chapter designs and proposes
a dimension table association mechanism for large-scale dis-
tributed computing using the multihoming model as a novel
big data framework. This paper introduces several specific
designs of dimension table association technology optimiza-
tion. Firstly, a hybrid computing model is presented, achiev-
ing unified batch data processing and stream data processing
in the same computing task. Then, the cache optimization of
dimension table association technology is introduced,
including the cache design of dimension table data source
and the cache design of dimension table data by each com-
puting node. Finally, the calculation design of dimension
table association technology is introduced, including the
processing of big data distribution under parallel computing
by employing multihome system base and the processing of
association calculation by each computing node.

2.1. Definitions and Concepts. This section gives some basic
definitions and concepts involved in the text.

Definition 1. (dimension table). A dimension table is a type
of data table stored in an external database with the charac-
teristics of a large data scale and slow update time.

Definition 2. (operator). An operator refers to the minimum
calculation unit for data processing in the calculation pro-
cess. Different operators have different calculation logic.
For example, batch and stream computing have operators
that functions the same but operate differently.

Definition 3. (hybrid computing). Hybrid computing refers
to stream computing operators and batch operators in the
same computing task, also known as batch-stream fusion
computing.
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Definition 4. (dimension table association). Dimension table
association means a specific relationship between data flow
and dimension table, and data processing is performed
according to this relationship. The process of determining
connection information and combining data tables accord-
ing to the relationship is called connection. In a broad sense,
dimension table association includes but is not limited to
join operations. Operations such as calculation and analysis
of dimension table data also belong to the dimension table
association.

Definition 5. (back pressure). Backpressure refers to the
backlog of received data when the data processing speed of
a computing node is lower than the data transmission speed.
In turn, the input cache of a single computing node exceeds
the limit and refuses to receive new data. Finally, the entire
stream computing system starts from a series of upstream
nodes from the overloaded node until the chain buffer over-
flow of the data source node stops receiving data and waits
for the congested node to process the data.

Definition 6. (multihoming strategy). We employ a multi-
homing networking strategy, which entails numerous net-
works interacting with a single network activity at the same
time and exchanging dataset efficiency to reduce uncertainty.

2.2. Hybrid Computing Model. This section introduces the
hybrid computing model proposed in this paper. In the tra-
ditional batch computing architecture, the operation logic of
the calculation is shown in Figure 3.

The computing nodes are started in stages. After each
group of measures is completed, the synchronization wait
will be released. The next group of computing tasks will be
created, and the computing data will be redistributed to
the next round of computing nodes. In the traditional
streaming computing architecture, the operation logic of
computing is shown in Figure 4. All computing nodes are
created at the beginning of the calculation, and then the data
flows continuously between the computing nodes. Each
node achieves continuous stream processing by constantly
pulling and consuming the data of the upstream computing

nodes. Stream computing does not redistribute data as much
as possible, allowing data to be processed continuously.

This paper redesigns the computing operator to be com-
patible with batch data processing in stream computing. In-
stream computing, an operator marked as batch processing
is constructed, and a hybrid computing model is proposed.
Streaming analysis, often referred to as real predictive
modeling, is a technique of big data that exhibits real-time
information and uses basic computations to be executed on
it. When contrasted to functioning with past information,
interacting with real world data necessitates entirely differ-
ent practices. It does so by employing a technique known
as stream computing, which involves extracting massive
amounts of constantly evolving data.

This style of intelligence specifically for data transfers rather
than more sophisticated analytical activities. Its prime objective
is to provide consumers with speed knowledge and to keeping
information in a current state. This type of model operator is
divided into three categories: stream computing operators,
batch operators, and hybrid computing operators. The flow
operators in this model are still consistent with the calculation
logic of traditional flow computing and are calculated in real-
time as the data flows in. Batch operators can achieve the same
effect as conventional batch computing by modifying the data
distribution and computing logic in the stream computing envi-
ronment. The upstream operators are stream computing oper-
ators and batch operators, respectively, while the hybrid
computing operator is utilized for hybrid computing of stream
and batch data. Before the batch data arrives, the hybrid com-
puting operator will stop the flow computation and begin the
analysis after the batch data distribution is complete.

2.2.1. Cache Optimization of Dimension Table Association
Technology. This section introduces the design and optimi-
zation of the data source node cache and the compute node
cache in the large-scale dimension table associative comput-
ing environment.

2.2.2. Cache Design and Optimization of Data Source Nodes.
Since the dimension table data also changes, if all read data
is sent to the computing node every time, it will still cause
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a significant network transmission overhead and block
streaming data processing during the update. This article
refers to the idea of the database operation record log. It only
distributes the data that needs to be modified when the
information is updated to reduce the network transmission
overhead. To determine the specific content of the data
update, this paper establishes a caching mechanism at the
data source to cache the distributed data records according
to the slow change of the dimension table. In the key-value
pair of the caching tool, the key value is obtained by merging
the data of the primary key columns required for the associ-
ation. The value is changed to an array that stores multiver-
sion dimension table data with the same primary key and
other data. However, caching the complete dimension table
data will occupy too much memory of the data source oper-
ator and cannot support too large dimension tables. Since
the data source does not need to operate the data, the hash
value is calculated after splicing the dimension table data
into a string and stored in the corresponding array, without
saving the original data. When reading the dimension table
data in each round, the primary key and hash value are
cached, and the data distribution behavior is judged accord-
ing to the last cached result [19]. The specific algorithm first
builds the critical value by calling the associated information
selection function and constructing the entire big data’s hash
value and then writes the essential value and the hash value
into the new cache. Finally, compare the vital importance
with the old store to determine whether the data exists.
Then, the data is skipped, and the corresponding old cache
is cleaned up. If it does not exist, a new behavior request is
issued. The initial value of the old cache is empty in the first
data distribution so that all data will be distributed the first
time. After the data read and distribution is completed, since
the read data and the old cache have been matched and
deleted during the data read process, all data still existing
in the old stock is the data that needs to be deleted. The dis-
tribution of data deletion behavior for expired information is
performed and is specific. Traverse the old cache after data
reading is completed, generate a data deletion request for
each piece of data in the old store, and send it to the down-
stream computing node to clean the expired data.

2.2.3. Cache Design and Optimization of Compute Nodes. In
the standard dimension table association calculation, the
data is cached in key value. The Key value is calculated
through the associated primary key column, and the value
stores the specific data content of the dimension table.
Unfortunately, this traditional data caching mode cannot
support multiversion dimensions with the same primary
key. Table data is cached; so, it cannot support fully caching
and querying historical dimension table data. Aiming at this
problem, this paper proposes a layer-2 caching strategy in
computing nodes. In the original key-value cache mode,
the value format is optimized; the dimension table data with
the same key value is converted into a JSON string and
stored in value in the form of an array. The cache structure
supports historical dimension table data. At the same time,
compared with keeping the complete dimension table struc-
ture, converting to JSON strings can reduce specific memory
storage requirements.

In the process of data acquisition by computing
nodes, the data acquisition algorithm should be rede-
signed to support the optimized data distribution of data
source nodes. Judging the behavior of data change, if it is
adding data (ADD), write the data to the cache. If delet-
ing data (DEL), delete the cache-related data according to
the critical value.

2.3. Computational Design of Dimension Table Association
Technology. The calculation design of dimension table asso-
ciation technology is divided into two parts: data analysis
district mode design and data calculation mode design.

2.3.1. Design of Data Partitioning Method. In the traditional
dimension table association, the dimension table data is
stored independently among each computing node so that
the streaming data can be distributed according to the distri-
bution strategies of different computing systems, and the
dimension table data can be obtained by querying the
remote database when flowing through the computing
nodes. In the globally distributed dimension table associa-
tion policy, if the flow data distribution rule does not match
the dimension table data distribution rule, the association
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result will be empty. Therefore, to commonly perform the
optimized dimension table association, the big data distribu-
tion strategy for streaming data and dimension table data
will be redesigned [20]. The associated primary key will be
calculated uniformly. The primary key will be hashed to
obtain the corresponding data partition.

2.3.2. Data Calculation Mode Design. In the standard dimen-
sion table association calculation, the connection informa-
tion is determined by specifying the input data and the
primary key column of the dimension table. The output is
the set of data columns after the association. This paper
firstly redesigned the data cache to support distributed cache
strategy and multiversion data cache. This paper redesigns
the big data association calculation mode to adapt to the
connection selection problem for multiversion data. It
abstracts the association logic and the associated solid value
selection logic [21]. It separates the associated calculation
function and the strongly associated value selection function
that the user can define and implement. Based on the con-
nection calculation, the user can determine the big data asso-
ciation key value of the data flow and dimension table
according to the actual calculation requirements and cus-
tomize the associated calculation result. Since each cell of
the association calculation function is to pass on the entire
version the dimension table data obtained through the asso-
ciation information selection function, the user can flexibly
process the dimension table association to support the
requirements of specifying a specific historical version of
the association, calculating a particular relationship, etc. A
typical not-connected association scenario is the commodity
association calculation in actual production and life scenar-
ios [22]. By processing the similarity relationship between
the input commodity and the order in which the item exists
in the chronological order in the calculation function, other
things related to the entity are calculated to obtain the
related commodity of the input commodity.

3. Experimental Analyses

In this paper, the abovementioned optimized dimension
table association technology is implemented in Apache
Flink, and the efficiency difference between the multihoming
optimized dimension table using big data frameworks asso-
ciation technology and the traditional dimension table asso-
ciation technology is compared and verified at various
stream data and dimension table data scales.

3.1. Coding Implementation. Coding implementation is
divided into traditional dimension table association imple-
mentation and optimized dimension table association
implementation.

3.1.1.  Traditional  Dimension  Table  Association
Implementation. In Apache Flink 1.8.0, the DataStream
API does not natively support dimension table association
calculations. Since the traditional dimension table associa-
tion is essentially stream computing, this paper transforms
the asynchronous computing operators according to the
computing logic, adding support for database query and data

TABLE 1: Size of the data table.

Table name rI:::rls;/rl 82 Data capacity/MB
User information form 1 000 11 969.00
Product information sheet 1 000 11 115.00
User clicks on data table 10 000 11 118.06

caching mechanisms based on LRU (least recently used)
strategy. Then, the operator is encapsulated to support the
definition and reading of dimension tables and the setting
of connection conditions.

3.1.2.  Optimized  Dimension  Table  Association
Implementation. The optimized multihoming dimension
table association is implemented based on the mixed APIL
By designing a new dual-input operator, one input is stream
data, and the other is dimension table data to support hybrid
computing. Then, the data source method of dimension
table data is designed separately. The actual data distribution
process in the system is transformed to adapt to the new
data distribution logic. Finally, the whole process is encapsu-
lated, and the abstraction and default logic are realized for
the data connection information selection function and the
dimension table association calculation function. For the
cache, relying on the features of the mixed API, the stream
data processing is blocked until the batch data calculation
and distribution is completed, which ensures the integrity
of the dimension table cache.

3.2. Dataset. For the calculation type encountered in the
actual production activity of dimension table association,
this paper uses the real production scene in Alibaba’s “Dou-
ble Eleven” for performance testing. After data desensitiza-
tion and business simplification, this scenario involves a
total of 3 data tables: user information table, product infor-
mation table, and user click data table. In this experiment,
a corresponding data table is established in the MySQL data-
base according to the table format, and the corresponding
data is generated. The data records and data capacity of
the data table are shown in Table 1. At the same time, a cor-
responding data table of 100,000 pieces of user information
data and 1,000,000 pieces of user information data is con-
structed according to the same proportion of this table for
comparative testing. The key-value columns required by
the query are all indexed to ensure query efliciency during
asynchronous access.

The specific business of this production scenario is to
place advertisements to users, and the simplified business
process is as follows:

(1) Influx user IDs into the recommendation system

(2) The system obtains the user’s product click data and
user information data within one day according to
the user ID and calculates the recommended product
ID through the machine learning algorithm
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(3) Obtain the product’s specific information through
the recommended product ID and return it

To focus on testing the efficiency of dimension table
association, this experiment simplifies the recommendation
calculation part and only retains the dimension table associ-
ation part, and the modified business logic edit is as follows:

(1) Influx the user ID into the test system

(2) According to the user ID, the specific information of
the user and the ID of the product clicked by the user
are expanded

(3) Add a random number to each user clicked product
ID as the recommended product ID

(4) Obtain the product’s specific information through
the recommended product ID and return it

3.3. Experimental Environment. The related technical
details described in this article are all implemented in
Flink 1.8.0 written in Java. The operating environment
and software and hardware environment of the experi-
ment are as follows.

(1) Hardware environment: the distributed environment
used in the experiment consists of 4 servers, one con-
troller node, and three agent nodes. The server con-
figuration used by the agent node is as follows: ®
CPU Intel Xeon E5-2603 V4 *2, the number of cores
is 6; the central frequency is 1.7 GHz. @ The mem-
ory is 64GB, and the central frequency is 2
400 MHz and ® hard disk 400 GB SSD. The primary
node configuration is as follows: ® CPU Intel Xeon
E5-2603 V4 *2, the number of cores is 6; the central
frequency is 1.7 GHz, @ Memory 128 GB, clocked at
2 400 MHz, and ® hard disk 400 GB SSD

(2) Software environment: (O operating system Centos
7, @ Storage environment MySQL 5.6.45, and ®
Apache Flink version 1.8.0, JDK version 1.8.0

3.4. Experimental Results and Analysis. This article uses the
advertising test tool provided by Alibaba to test by modify-
ing the logic of the business calculation part. The test adds
timestamps to the data at the beginning and end of the cal-
culation and writes it to Redis and then obtains relevant sta-
tistical results by analyzing the data in Redis [21]. The
parallelism of all measures in this experiment is fixed at 12,
ignoring the cold start time of the dimension table full cache.
Generate 1 million pieces of flow data as experiment 1, gen-
erate 10 million reports of flow data as experiment 2, and
compare the impact of the data volume of the flow data
and the data volume of the dimension table on the computa-
tional throughput and latency.

3.4.1. Comparative Analysis of Throughput. Throughput
refers to the amount of data processed by the computing
engine per unit time, which reflects the system’s load capac-
ity. The higher the throughput, the greater the extreme load
on the system, helping to process more data per unit time. In
this experiment, the throughput is calculated by calculating
the amount of data written per unit time in Redis. The
throughput calculation formula is as follows:

curren_Num — last_ Num

through (1)

PU T yrren_Time — last_Time

Among them, last Num represents the last read data
number, and current_Time represents the time correspond-
ing to the existing data table number read. Last time means
the time corresponding to the last data number read. In
experiment 1, the average throughput of data generated by
different scales of dimension table data volume is shown in
Figure 5 with Table 2. The experimental results show that
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TaBLE 2: Experiment 1: average throughput statistics.

TABLE 4: Experiment 1 means delay.
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FIGURE 6: Experiment 2: average throughput statistics.

TaBLE 3: Experiment 2: average throughput statistics.

Serial Asynchronous connection Computing throughput
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100 1.2
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FIGURE 7: Experiment 1 means delay.

the total amount of data caching can effectively improve the
computing throughput, with a 10-fold improvement under
the three-dimension table scale. However, the throughput
of the asynchronous connection method decreases as the

10 100 1000

B Asynchronous connection

= Computing throughput

FIGURE 8: Experiment 2 means delay.

TABLE 5: Experiment 2 means delay.

Serial Asynchronous connection Computing throughput
10 4 7.8

100 4 8

1000 4 8

dimension table data increases. After analysis, it was con-
cluded that this was because the cache built by the asynchro-
nous connection was not hit, and many queries were entered
into the database using big data multihoming techniques. As
a result, the time used for data queries prolongs the process-
ing time of each piece of data, reducing the amount of data
that can be processed per unit time. In experiment 2, the
average throughput of data generated by different scales of
dimension table data volume is shown in Figure 6 with
Table 3. Same as experiment 1, the throughput statistics of
the full cache mode are similar, indicating that the data pro-
cessing efficiency has nothing to do with the incoming data.
Increasing the parallelism can further improve the through-
put. As the multihoming dimension table data increases, the
asynchronous connection throughput stabilizes. This phe-
nomenon occurs because the number of streaming data
increases, and the dimension table data queried in a short
period have all been loaded into the local cache. Asynchro-
nous computing mode throughput is still at a low level.

It is caused by the low concurrency of the connection
mechanism. Still, too high concurrency will directly lead to
the collapse of the storage system connection in the early
computing stage.

3.4.2. Delay Comparative Analysis. Latency refers to the time
taken by data from entering the computing system to be
processed and output in milliseconds (ms) in the case of
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big data networks. The size of the delay reflects the data
processing speed and real-time performance of the system.
The advertising system recommended in real-time has a
high demand for the delay, and the smaller the delay,
the better the user experience. In this experiment, the
weight is calculated by the start and end timestamps of
each piece of data recorded in Redis. The delay calculation
formula is as follows.
latenthime = endtime - begintime' (2)
end,;,. indicates when the data is processed, and begin
time indicates when the information is marked after it
flows into the system.

In experiment 1, the average delay of data generated by
dimension table data volume of different scales is shown in
Figure 7 with Table 4. The big data has been written to the
memory in the full cache mode, and there is no data I/O
overhead; so, the average latency does not fluctuate much.
However, the asynchronous connection based on the multi-
homing system calculation mode requires a lot of interaction
with the database because there is no cache of dimension
table data in the early stage. As the size of the dimension
table increases, the processing time of a single query
becomes higher and higher, resulting in an increasing aver-
age delay.

In experiment 2, the average delay of data generated by
dimension table data volume of different scales is shown in
Figure 8 with Table 5. In the full cache mode, the wait
increases compared to experiment 1 because to amortize
the memory pressure, there is no shared calculation slot
between multiple dimension table association calculations,
and the data distribution needs to go through serialization
and deserialization. Excessive throughput and data volume
lead to extreme data transmission pressure, resulting in
blocking. At the same time, since the caching mechanism
is manually implemented, there is no backpressure mecha-
nism for connecting to the Flink computing system, result-
ing in an excessive backlog of computing node data. The
asynchronous connection mode has temporarily cached all
the required dimension table data due to a large amount of
I/O in the early stage of the calculation. Multiple dimension
table associations using the multihoming system share com-
puting slots and data transmission that does not need to go
through the serialization and deserialization process and
are directly sent to downstream computing nodes. At the
same time, due to the backpressure mechanism of Apache
Flink, the data actually flagged flow into the system may be
later than when the data is produced.

4. Conclusion

This study looks into dimension table association technology
in novel big data frameworks that use multihoming optimi-
zation for distributed stream computing. In contrast to the
existing big data computing platform’s association tech-
nique, it first presents a range of data processing logic that
enables the integration of stream and batch processing,
followed by a dimension table associated data full cache
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solution that enables vertical expansion and data distribu-
tion optimization. A massive set of experimental results
show that using multihoming optimization technology, this
novel big data framework can effectively increase the loading
of dimension table data under full cache conditions and can
increase throughput by up to 10 times in the high-speed pro-
cessing link, significantly reducing data query pressure and
improving task parallelism. When the dimension table has
a large amount of data, the asynchronous query technique
has a significant chance of causing the database to freeze.
Due to the data I/O connection, high throughput is not pos-
sible. If you use the regular full cache mode, the system will
throw a memory overflow exception. The dimension table
association technique proposed in this paper has a high par-
allelism capability. The read and write burden on the data-
base does not grow in equality. As per the future scope of
this research is considered, we can focus on the asynchro-
nous query technique that has a high potential of suffering
the network to malfunction when the dimension table has
a giant amount of data, and hence high throughput is not
possible due to the data I/O connection. This can be the
future motivation to conduct the research to sort this issue.
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The data shall be made available on request.
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