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How to make a correct similarity between patterns is a groundwork in data mining, especially for graph data. Despite these
methods that can obtain great results, there may be still some limitations, for instance, the similarity of patterns in directed
weighted graph data. Here, we introduce a new approach by taking the so-called the second-order neighbors into
consideration. The proposed new similarity approach is named as relative entropy-based similarity for patterns in graph data,
wherein the relative entropy provides a brand new aspect to make the difference between patterns in directed weighted graph
data. The proposed similarity measure can be partitioned under three phases. First of all, strength set is given by degree and
weight of patterns; in this phase, four variables holding the strength about out-degree, in-degree, out-weight, and in-weight are
constructed. Then, with the help of Euclidean metric, pattern’s probability set is constructed, which contains influence of
similarity between pattern and its all one-order neighbors. Finally, relative entropy is used to measure the difference between
patterns. In order to examine the validity of our approach as well as its advantage comparing with the state-of-art approach,
two sorts of experiments are suggested for real-world and synthetic graph data. The outcomes of experiment indicate that the
recommended method get handy execution done measuring similarity and gain accurate results.

1. Introduction

At present, many practical networks like Facebook social
networks, protein interaction networks, aviation networks,
and disease transmission networks can be presented as
graph data. This type of data is no longer a straightforward
portrayal of pattern’s attribute information and composes
possible topological information between patterns addition-
ally, i.e., degree and weight of patterns. Due to the extensive
use of graph data, many practical problems including pattern
analysis, link prediction, and community detection can be
abstracted into problems of graph data for research. Among
these researches, how to calculate similarity between patterns
in graph data is considered as one of the fundamental prob-
lems. Many researches on graph data are based on the
pattern’s similarity measure, for example, traffic networks
[1], image classification [2], and pattern recognition [3, 4].

Over the past few decades, discovering similarity between
patterns has attracted substantial consideration [5, 6].
Scholars proposed a range of methods to measure pattern’s

similarity, for example, shared neighbor-based similarity,
random walk-based similarity, path-based similarity, and
information theory-based similarity; these methods discuss
the similarity of patterns from different perspective.

The shared neighbor-based similarity measure takes into
account the shared information of the connected neighbors
between patterns, and the greater the coincidence rate of
shared neighbors means the higher similarity of two pat-
terns. Cosine index [7], Sorensen index [8], Jaccard index
[9], AA (Adamic-Adar) index [10], and WAA (weighted
Adamic-Adar) index [11] are also common methods used
in the research of similarity measure, which take into
account the number of shared neighbors. Besides, LP (local
path) [12] index is an improvement of CN index [13]; on
the basis of CN index, the influence of neighbor with path
length of 3 on the connection between patterns is added.
These indicators reduce the computation time and earn
good results in the identification of the most similar pat-
terns. Unfortunately, they remain significant challenges,
only topological information of first-order neighbors is
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taken into account, and many patterns with high similarity
have no common neighbors, which leads to certain limita-
tions of such indicators.

Random walk-based similarity is widely used to measure
the topological similarity of patterns, such as MLRW
(Multiplex Local Random Walk) index [14], BRW (Biased
Random Walk) index [15], and LRW (Local Random Walk)
index [16]. In the process of calculation, these two methods
measure similarity moving from one to other patterns
through multistep random walk without the global informa-
tion of graph data. They simplify the similarity measure to
some extent, but these three similarity measures rely on
large-degree patterns and most similar patterns may be
large-degree patterns, which makes the similarity results
sensitive to large pattern dependence.

Path-based similarity is an important method used to
measure similarity of patterns, Katz index [17, 18] and
ACT (average commute time) [19]. Compared with local
index, global index requires the overall topological informa-
tion. Besides, Aziz et al. in [20] proposed global and quasilo-
cal extensions of some commonly used local similarity
index. Although global index provides more accurate simi-
larity than local index, the computation of global metrics is
time-consuming and generally not applicable to large-scale
graph data, and sometimes, global topology information is
unavailable, especially when implemented in a decentralized
manner.

In addition to the similarity measures mentioned above,
information theory-based similarity is a kind of similarity
measure that is often used. Hereinto, relative entropy is an
important concept of information theory, which are used
to measure similarity of patterns. Scholars have proposed
pattern similarity measure based on relative entropy such
as LRE (i.e., the abbreviation of local relative entropy)
[21, 22], LRWE-SNM (Local Network Relative Weighted
Entropy Based Similar Node Mining) [23], and RE-model
(relative entropy model) [24]. These methods have advan-
tages in their respective fields and can also measure the
similarity of patterns to a certain extent. Although it is fas-
ter and simpler to measure, some pattern’s information
and complex relationships between patterns are lost, for
example, information about second-order neighbors of
patterns. That is to say, it is hard to distinguish differences
between patterns with similar degree. In addition, there
are many other ways to calculate pattern similarity, see
[25–28] for details.

For the similarity of patterns in directed weighted
graph data, similarity is affected by the direction of the
edge and edges in different directions have an impact on
its weight. Besides, each pattern has information such as
out-degree and in-degree, out-weight, and in-weight, and
the relationship between the pattern and its neighbors in
different scales is complex. Therefore, the similarity mea-
sure of patterns in directed weighted graph data cannot
start from a single direction. Generally speaking, the above
measure of similarity has been used extensively. Nonethe-
less, there are still some inevitable limitations. These index
that used mutual information are limited to the common
neighbor structure or local information of patterns; so, it

is easy to make the patterns of larger degree become the
general patterns in the similarity calculation. Even if
existing submethods simplify the measure of topological
information, they ignore the directivity of the pattern’s
connection and its corresponding degree and weight diver-
sity of the relationship between patterns. Under the cir-
cumstances, some edge information of pattern is lost,
leading to their performance for calculating the similarity
of patterns failing to get further enhancement. In particu-
lar, there may be a poor effect when the above indices are
applied to ink prediction. To sum up, calculating similarity
of patterns from the aspects of degree and weight diversity
is still a hotspot [29–31].

In this paper, we aim at similarity of pattern in directed
weighted graph data. To this, an extended version of the
similarity measure approach from a relative entropy point
of view is proposed. For more details, the comprehensive
process can be considered as three stages. First, compute
strength set. By using degree and weight of pattern’s infor-
mation in its first-order neighbors, four variables that con-
tain the influence of topological information about degree
and weight diversity are constructed. Second, generate prob-
ability set. To take advantage of the second-order neighbor
information of patterns, Euclidean metric is presented to
measure the similarity between pattern and its first-order
neighbors. On this basis, the value of similarity is normalized
to construct probability set of each pattern. Third, Quantify
similarity of pattern. With the help of relative entropy, the
dissimilarity of any two patterns is measured, and similarity
can be gained subsequently. We numerically simulated the
proposed similarity measure and verified its effectiveness
and efficiency in similarity measure and link prediction. In
this paper, there is a proposed relative entropy-based simi-
larity for patterns in graph data with the following several
contributions in mind.

(1) This paper presents a similarity measure based on
relative entropy, which considers the information
of second-order neighbors of patterns

(2) In the process of pattern’s similarity measure, the
proposed method considers both degree information
and weight information

(3) Compared with most benchmark methods, the pro-
posed similarity measure has a great advantage in
measuring similarity of patterns and gets good per-
formance the link prediction

To make a detailed description of the above proposed
similarity approach, in this section, we will provide a brief
introduction to the structure of this paper. Section 2 con-
tains some preliminaries. Section 3 describes generation of
strength set for patterns in detail. Section 4 proposes proba-
bility set calculated by similarity set. Section 5 constructs a
measure to compute the similarity of pattern in graph data,
and a novel algorithm is proposed. Section 6 carries out
two type experiments to prove the effectiveness of the pro-
posed method. Conclusion is given in section 7.
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2. Preliminaries

In this section, we propose some basic concepts used in this
paper, such as graph data [26], relative entropy [32], and
pattern’s neighbor [23].

2.1. Graph Data. A graph data G is defined as a set of pat-
terns and a set of edges. Generally speaking, the so-named
directed weighted graph data can be expressed as a 4-tuple
G = ðV , E,D,WÞ, formally, where

(i) V = fviji = 1, 2,⋯, ng is the set of patterns, and
vi ∈ V represents the ith pattern

(ii) E = feijji, j = 1, 2,⋯,ng is the set of edges, and eij ∈ E
indicates the set of edges. Hereinto, eij = 1 if pattern
vi and vj are connected; otherwise, eij = 0

(iii) D = fðdðviÞ, d+ðviÞ, d−ðviÞÞji = 1, 2,⋯,ng is the set of
corresponding weight with respect to patterns, there-
into d+ðviÞ and d−ðviÞ represent in-degree and out-
degree of vi ∈ V , respectively, and the value of them,
take vi for example, can be determined by equations

d+ við Þ = 〠
n

j=1
eji,

d− við Þ = 〠
n

j=1
eji:

ð1Þ

Moreover, the degree dðviÞ can be calculated by the sum
of in-degree and out-degree, i.e.,

d við Þ = d+ við Þ + d− við Þ = 〠
n

j=1
eij + eji
� �

: ð2Þ

(iv) W = fðwðviÞ,w+ðviÞ,w−ðviÞÞji = 1, 2,⋯,ng is the set
of weights with respect to the corresponding edges.
Analogously, wðviÞ,w+ðviÞ,w−ðviÞ represent the
weight, in-weight, and out-weight of pattern vi,
respectively. The value of in-weight and out-weight
can be determined by following equations:

w+ við Þ = 〠
n

j=1
wji,

w− við Þ = 〠
n

i=1
wij,

ð3Þ

Thereinto, wij represents weight on edge of vi and vj. Fur-
thermore, the value of weight can be calculated by the sum
of in-weight and out-weighted, i.e.,

w við Þ =w+ við Þ +w− við Þ = 〠
n

j=1
wij +wji

� �
: ð4Þ

2.2. Relative Entropy. As we known, relative entropy is an
asymmetric measure and can be applied to measure the dif-
ference between two probability distributions. In general, its
mathematical version can be expressed as

DKL P Qkð Þ = 〠
m

i=1
P ið Þ ln P ið Þ

Q ið Þ , ð5Þ

where P and Q are two probability distributions, and “m” in
equation (5) represents the number of variables that P and Q
depended on. Certainly, the greater value of DKLðPkQÞ
reflects the smaller similarity of P and Q, and vice versa.

2.3. Pattern’s Neighbor. For a graph data G = ðV , E,D,WÞ, if
there exists at least two patterns vi and vj such as eij ≠ 0 or
eji ≠ 0. Then, one can say that vi is the neighbor of vj, and
vice versa. All the neighbors of vi constitute the so-named
neighborhood with respect of vj, in aspect of topological
information. For the need of simplicity and uniformity, we
summarize it as the following definition.

Definition 1. (first-order neighborhood). Given that G =
ðV , E,D,WÞ is a directed weighted graph data, if eij ≠ 0 or
eji ≠ 0 for j = 1, 2,⋯, n, then the pattern vj is a first-order
neighbor of vi. Certainly, all of the neighbors of vi constitute
the first-order neighborhood of it and can be expressed as

N við Þ = vj eij
�� ≠ 0 or eji ≠ 0

� �
: ð6Þ

Generally speaking, if pattern vi has pfirst neighbors, then
NðviÞ can be represented as NðviÞ = fv1i , v2i ,⋯,vpi g. Obvi-
ously, the elements of NðviÞ reflect the topological informa-
tion of vi directly. For the case that eij ≠ 0 and ejk ≠ 0 but
eik = 0, how to depict the direct relationship of vi and vk in
aspect of topological information is no longer an obvious
question. To this, next definition gives the concept of
second-order neighborhood to depict such situation.

Definition 2. (second-order neighborhood). Given that G =
ðV , E,D,WÞ is a graph data and vi ∈ V , the second-order
neighborhood of a pattern vi denoted as the set contained
neighbors of its all first-order neighbors, which notes as
Nðvi, 2Þ, which can be expressed as

N vi, 2ð Þ = N v1i
� �

,N v2i
� �

,⋯,N vpi
� �� �

: ð7Þ

Definition 3. (local neighborhood). Given that G = ðV , E,
D,WÞ is a graph data and vi ∈ V , the so-named local
neighborhood of vi can be expressed as

L við Þ = vi ∪N við Þ = vi, v1i ,⋯,vpi
� �

, ð8Þ

where vki ∈NðviÞ is the kth first order neighbor of vi, for
k = 1, 2,⋯, p.
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3. Degree and Weight-Based Pattern’s
Strength Set

In this section, we investigate the problem of how to con-
struct the pattern’s strength set in terms of degree and
weight.

For any pattern vi in G = ðV , E,D,WÞ, its first order
neighborhood NðviÞ depends on the corresponding topolog-
ical connection. Whatever the connection, the topological
information for each pattern can be described by four vari-
ables: in-degree d+ðviÞ, out-degree d−ðviÞ, in-weight w+ðviÞ,
and out-weight w−ðviÞ.

In what follows, we introduce the concept of strength set
for any pattern vi in a graph data G.

Definition 4. (strength set). Given that G = ðV , E,D,WÞ is a
graph data, for any pattern vi ∈G, its strength set UðviÞ can
be expressed by following equation:

U við Þ = uvi , uvi1,, uvi2,,⋯,uvip
� �

, ð9Þ

where k = 1, 2,⋯, p and p = jNðviÞj. Each variable in UðviÞ
contains four strength values consisting of in-degree, out-
degree, in-weight, and out-weight, take vi for example,
uvi = ðud+ðviÞ, ud−ðviÞ, uw+ðviÞ, uw−ðviÞÞ, in which case

(i) ud−ðviÞ represents the strength of out-degree and
can be computed by equation

ud− við Þ = d− við Þ
d við Þ ⋅

d− við Þ
∑n

i=1d
− við Þ + 1 : ð10Þ

(ii) ud+ðviÞ represents the strength of in-degree and can
be computed by equation

ud+ við Þ = d+ við Þ
d við Þ ⋅

d+ við Þ
∑n

i=1d
+ við Þ + 1 : ð11Þ

(iii) uw−ðviÞ represents the strength of out-weight and
can be computed by equation

uw− við Þ = w− við Þ
w við Þ ⋅

w− við Þ
∑n

i=1w
− við Þ + 1 : ð12Þ

(iv) uw+ðviÞ represents the strength of in-weight and can
be computed by equation

ww + við Þ = w+ við Þ
w við Þ ⋅

w+ við Þ
∑n

i=1w
+ við Þ + 1 : ð13Þ

Analogously, uvki represents the strength of kth first-order
neighbor to vi, which can be calculated by equations men-
tioned above. One can find that the above proposed strength

fully depicts personal properties and topological information
with respect to corresponding its first-order neighbors.

As discussed above, take vi and vj for example, if vi and
vj are two different patterns, then NðviÞ ≠NðvjÞ is nothing
unusual to some extent. In particular, there would be one
extreme situation that NðviÞ ≠NðvjÞ if vi ≠ vj, for i, j = 1,
2,⋯, n and i ≠ j.

By making a deeper investigation of relative entropy, one
can see that the patterns with more neighbors will lose cer-
tain information, for it only calculates the value of nonzero
elements in probability set, and the information of nonzero
elements in the probability set of its corresponding patterns
will also be lost. Considering this deficiency, we introduce a
concept, the scale of strength set, to depict the strength set.
Before doing this, we suppose that for a graph data G, there
exists at least one pattern vi that having the most neighbors,
in which we denote the number of it as np =maxvi∈V jNðviÞj.
To this, for the pattern vi with jNðviÞj = p1 and pattern
vj with jNðvjÞj = p2, we take the following cases into
consideration:

Case 1. If p1 = p2 = p = np, then the UðviÞ and UðvjÞ can be
represented as

Unew við Þ = uvi , uv1i , uv2i ,⋯,uvpi
� �

,

Unew vj
� �

= uvj , uv1j , uv2j ,⋯,uvpj
� �

:

ð14Þ

Case 2. If p1 = p2 = p < np, then the UðviÞ and UðvjÞ can be
changed into

Unew við Þ = uvi , uv1i , uv2i ,⋯,uvpi , 0, 0,⋯, 0
np−p

	 

,

Unew vj
� �

= uvj , uv1j , rv2j ,⋯,uvpj , 0, 0,⋯, 0
np−p

	 

:

ð15Þ

In other words, append np − p zeros, i.e., 0 =ð0, 0, 0, 0Þ to
the end of UðviÞ and UðvjÞ.

Case 3. If p1 < p2 < np, we append p2 − p1 average strength
values uv∗i of vi to the end of UðviÞ by the equation

uv∗i =
uv1i + uv2i +⋯+uvp1i

p1
: ð16Þ

Generally speaking, the UðviÞ and UðvjÞ can be changed
into

Unew við Þ = uvi , uv1i , uv2i ,⋯,uvp1i , uv∗i ,⋯, uv∗i
p2−p1 , 0, 0,⋯, 0

np−p2
	 


,

Unew vj
� �

= uvj , uv1j , uv2j ,⋯,uvp2j , 0, 0,⋯, 0
np−p2

	 

,

ð17Þ
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where the insufficient p2 − p1 locations of UðviÞ will be
appended by strength values uv∗i calculated with the help of

equation (16), and the rest location of UðviÞ and UðvjÞ will
be appended by p − p2 zeros, i.e., 0 = ð0, 0, 0, 0Þ.

Case 4. If p2 < p1 < np, the UðviÞ and UðvjÞ can be changed
into

Unew vj
� �

= uvj , uv1j , uv2j ,⋯,uvp2j , uv∗j ,⋯, uv∗j
p1−p2 , 0, 0,⋯, 0

np−p1
	 


,

Unew við Þ = uvi , uv1i , uv2i ,⋯,uvp2i , 0, 0,⋯, 0
np−p1

	 

,

ð18Þ

where strength value uv∗j of vj can be calculated as the

following equation:

uv∗j =
uv1j + uv2j+⋯+uvp2j

p2
: ð19Þ

4. Generating Probability Set

Relative entropy is applied to compare the difference of two
probability set. To some extent, the similarity can be
regarded as the difference. For this, we try to calculate the
similarity between patterns in aspect of relative entropy.
Before do this, how to construct the probability set of each
pattern vi ∈ G constitutes the first step of similarity measure.

We have known that the strength set UðviÞ, take vi for
example, and its one order-neighbors can be determined in
terms of degree and weight. To make full use of relative
entropy for the purpose of similarity measure, in what fol-
lows, we construct an approach to generate the probability
set of patterns vi ∈ V for i = 1, 2,⋯, n. Each strength value
of the j first-order neighbors is composed by four variables;
here, the Euclid metric can be applied to compute the simi-
larity between vi and vj ∈NðviÞ for j = 1, 2,⋯, p with respect
to its strength set. The concrete formula can be depicted as
the following equation:

s vi, v
j
i

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<uvi ,uvji >

q
: ð20Þ

Obviously, the value sðvi, vjiÞ describes the similarity
between vi and its jth first-order neighbor, and it is only a
local description in view point of NðviÞ. With the help of
equation (20), we can make a global description of the
similarity of pattern vi by the following equation:

S við Þ = s vi, v1i
� �

, s vi, v2i
� �

,⋯, s vi, v
p
i

� �� 
: ð21Þ

Up to now, the caring thing, that is, creating probability
set, can be realized by the following equation:

P við Þ = p vi, v1i
� �

, p vi, v2i
� �

,⋯, p vi, v
p
i

� �� 
, ð22Þ

where

p vi, v
j
i

� �
=

s vi, v
j
i

� �
∑p

k=1s vi, vki
� � : ð23Þ

By above aforementioned, the relative entropy between
the probability set PðviÞ and PðvjÞ, take vi, vj in G for exam-
ple, it can be determined by the equation

DKL P við Þ P vj
� ���� �

= 〠
m′

k=1
p vi, vki
� �

ln p vi, vki
� �

p vj, vkj
� � , ð24Þ

where m′ represents the maximal neighbors of patterns vi
and vj; that is, m′ =max fjNðviÞj, jNðvjÞjg.

It can be analyzed that, in the process of calculating rel-
ative value of pattern vi and vj, strength set of first-order
neighbors of pattern vi and vj is constructed, which contain
second-order neighbor information. That is to say, with the
help of Euclidean metric, the information of pattern’s
second-order neighbors is indirectly used during similarity
calculation process.

5. Similarity and Algorithm

The calculation of relative entropy among the patterns has
been discussed in detail. In this section, the calculated value
of relative entropy will be used to compute the similarity
between patterns. And then, an algorithm is proposed.

5.1. Quantify Similarity of Pattern. From the process men-
tioned above, relative entropy of any two patterns is
obtained based on the sorted probability sets. Therefore,
the relative entropy matrix R of graph data with respect to
any two patterns can be represented as

R =

r11 r12 ⋯ r1n

r21 r22 ⋯ r2n

⋮ ⋮ ⋱ ⋮

rn1 rn2 ⋯ rnn

0
BBBBB@

1
CCCCCA
: ð25Þ

And then, the similarity matrix S of graph data G can be
given as follows.

S =

s11 s12 ⋯ s1n

s21 s22 ⋯ s2n

⋮ ⋮ ⋱ ⋮

sn1 sn2 ⋯ snn

0
BBBBB@

1
CCCCCA
: ð26Þ

For the value of relative entropy is asymmetric, take vi
and vj for example, both DKLðPðviÞkPðvjÞÞ and DKLðPðvjÞk
PðviÞÞ describe dissimilarity of pattern vi and vj. To obtain
more accurate similarity of pattern, the value of relative
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entropy can be calculated by taking both DKLðPðviÞkPðvjÞÞ
and DKLðPðvjÞkPðviÞÞ into consideration, and the specific
calculations of it are shown as follows:

sij = 1 −
rij

max Rð Þ , ð27Þ

rij =
DKL P við Þ P vj

� ���� �
+DKL P vj

� �
P við Þk� �

2 : ð28Þ

5.2. Algorithm. With the purpose of a better understanding
for the proposed pattern similarity measure, this section will
give an algorithm containing detailed description of this
similarity measure. Notice that for briefness, “Relative
entropy-based similarity for patterns in graph data” can be
summarized as “RESG.” In terms of this algorithm, the sim-
ilarity of any two patterns will be computed, after which the
most similar patterns can be obtained. One can easily see
that there are four states of this algorithm. The input of
the RESG algorithm is a weighted directed graph data G,
and the output is a matrix S composed of similarity between
any two patterns in G.

The first state of the RESG algorithm is lines 1-4,
strength set U of each pattern in G is generated, and each
strength set has four variables in terms of in-degree, out-
degree, in-weight, and out-weight. The second state is lines
5-11, to fully utilize information of pattern’s first-order
neighbors, the pattern with less neighbors will append aver-
age strength value in the end of strength set. The third state
of the RESG algorithm is lines 12-15, the similarity between
patterns and its one-order will be computed, and similarity
set is generated. With the help of similarity set, pattern’s

probability set will be obtained. It is not hard to find; during
the process of generating similarity set, the information of
pattern’s second-order neighbors will be used indirectly.
The last state is lines 16-20; by taking the above information
into account, the relative entropy and similarity of patterns
are measured.

6. Experimental Materials

In this section, we introduce some experimental materials
such as experimental environment, the graph data used in
experiment, and benchmark algorithms. The experimental
environment we used is listed in Table 1.

6.1. Data. This subsection will give a detailed description
about the directed weighted graph data used in experiments.

A synthetic graph data Datal generated by means of the
graph generator Gephi will be applied in first experiment.
Datal contains 21 patterns and 31 edges and can be used

Input: A directed weighted graph data G.
Output: Similarity matrix S of patterns in G.
1: for each vi ∈Gdo
2: Calculate first-order neighbors LðviÞ
3: Calculate UðviÞ by equation (10)- (13)
4: end
5: for each vi ∈G with p1 neighbors and vj ∈G with p2 neighbors do
6: if p1 > p2 then
7: ðp1 − p2Þuv∗j ⟶UðvjÞ
8: else
9: ðp2 − p1Þuv∗i ⟶UðviÞ
10: end
11: end

12: for vi ∈ V , v
j
i ∈ LðviÞ do

13: Compute SðviÞ by equation (20) and (21)
14: Compute PðviÞ by equation (22)
15: end
16: for each vi, vj ∈ G do
17: Compute DKLðPðviÞkPðvjÞÞ by equation (24)
18: Compute entropy matrix R by equation (25)
19: Compute similarity matrix sij by equation (27)
20: end
21: return Similarity matrix S

Algorithm 1: Relative entropy-based similarity for patterns in graph data.

Table 1: Experimental environment.

Parameter Parameter value

RAM 16GB

Speed 2.10GHz

Programming MATLAB 2018a

CPU AMD Ryzen 54600U

GUP AMD Radeon Graphics

System Windows 10 system with 8 cores
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to illustrate the feasibility of the proposed RESG algorithm
in the following illustrative example.

The following is a detailed description of graph data used
in second experiment. Data2 and Gene [33] will be used to
demonstrate the similarity of our proposed RESG index
and other similarity measures. For the edge connections of
Data 2 and Gene [33], see Figures 1 and 2 for detail. Stmarks,
FWEW, FWMW, FWFW, Celegans, and Email167 are
directed weighted graph data collected from Stanford Data-
set. Each of them will be used to show the effectiveness of

the proposed RESG algorithm in link prediction. The topol-
ogy information of these eight graph data are shown in
Table 2, where n is the number of patterns, m is the number
of edges, hdi is the average shortest distance, hρi is the
density, hki is the average degree, and hci is the clustering
coefficient.

6.2. Benchmark Algorithms. Here, we introduce several
benchmark pattern’s similarity indices, which are usually
used for similarity measure and link prediction. Adamic-

Figure 1: Data2.

Figure 2: Gene.

7Wireless Communications and Mobile Computing



Adar (AA) [10], weighted Adamic-Adar (WAA) [11], local
relative entropy (LRE) [21], common neighbors (CN) [13],
Katz [17], local path (LP) [12], and Local Random Walk
(LRW) [16] are often used for the purpose of comparing
results with the RESG algorithm. The basic definitions of
these indexes are given below.

AA index is the extended version of CN index, which is
defined as

sAAij = 〠
vz∈N við Þ∩N vjð Þ

1
log d vkð Þ : ð29Þ

WAA index is the weighted version of AA index, which
is defined as

sij
WAA = 〠

vz∈N við Þ∩N vjð Þ
w við Þ +w vj

� �
log 1 + að Þ , ð30Þ

where a may be smaller than 1; so, we use log ð1 + aÞ to
avoid a negative value.

CN index directly takes the number of all common
neighbors between patterns as similarity into consideration,
which is defined as

sij
CN = N við Þ ∩N vj

� ��� ��: ð31Þ

LRE index is a similarity measure based on relative
entropy and local structure of patterns, which is defined as

sLREij = 1 −
DKL Pi Pj

��� �
+DKL Pj Pk i

� �
m DKL Pi Pj

��� �
+DKL Pj Pk i

� �� � , ð32Þ

whereinto

DKL Pi Pj

��� �
= 〠

Δ Gð Þ

k=1
pi kð Þ ln pi kð Þ

pj kð Þ ,

pi kð Þ =
d við Þ

∑vk∈N við Þd vkð Þ , k ≤ d við Þ,

0, d við Þ + 1 ≤ k ≤ Δ Gð Þ:

8><
>:

ð33Þ

Hereinto, ΔðGÞ is the maximum degree of the graph
data, and G, Pi is the probability set of pattern vi with respect
to degree.

Katz index is based on the global information of graph
data, which is defined as

sKatzij = 〠
∞

k=1
⋅ βl ⋅ path sij < l >

�� ��, ð34Þ

where jpath sij < l > j represents the set of all paths with dis-
tance l between pattern vi and vj, β is the damping factor
used to control the path weight.

LP index considers the third-order paths on the basis of
common neighbors, which is defined as

sij
LP = A2 + αA3, ð35Þ

where A is the adjacency matrix of graph data [34], ðA3Þij
represents the number of paths with length of 3 between pat-
terns vi and vj, and α is adjustable parameter.

LRW index is proposed based on the local random walk
of particles between two patterns, which is defined as

sij
LRW = d við Þ

2 ⋅ Ej j ⋅ πij tð Þ +
d vj
� �

2 ⋅ Ej j ⋅ πji tð Þ, ð36Þ

where jEj is the number of the edges in the graph data, πijðtÞ
is obtained according to the density vector evolution equa-
tion: π

!
iðt + 1Þ = PT ⋅ π!iðtÞ, the P is the transition probability

matrix, and T is the matrix transpose.

7. Experimental Analysis

In this section, we evaluated the proposed RESG index into
different real-world graph data, and two different forms of
experiments are used to demonstrate experimental results,
which aims to further prove the effectiveness and efficiency
of proposed RESG index.

7.1. Illustrative Example. Data1 is used to illustrate the pro-
posed RESG index, for the edge connections of Data1, see
Figure 3 for detail. Taking pattern v15 and v10 for example,

Table 2: Topological properties of graph data.

Graph data n m dh i ρh i kh i ch i
Data2 297 2358 6.0000 0.0492 14.5000 0.3092

Gene 636 3959 4.0000 0.0226 12.0000 0.5701

Stmarks 54 350 3.0000 0.2446 12.9630 0.4128

EW 69 880 3.0000 0.3751 25.5072 0.5521

FWMW 97 1446 3.0000 0.3106 29.9144 0.4683

FWFW 128 2075 3.0000 0.2540 32.4129 0.3364

Celegans 297 2148 2.4550 0.0489 14.4646 0.3079

Email167 167 3250 5.0000 0.2345 38.9222 0.6864
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in terms of RESG index, next, we deal with the problem of
pattern similarity step by step.

Firstly, we find pattern’s first-order neighbors of them,
respectively, and put them in LðviÞ, and relevant strength
value about topological information ud− , ud+ , uw−

, uw+
of v15

and v10 is calculated and shown in Tables 3 and 4, respec-
tively. However, it can be easily found that d15 = 5 and
d10 = 4. Based on this, a pattern v0 with the average value of
v10 for ud− , ud+ , uw−

and uw+
is added as the one-neighbor of

v10. After that, the neighbors of the two patterns reached
the same number, which avoided the partial information loss
of v15 in the subsequent calculation of relative entropy.

Secondly, the similarity sets are generated in the process
of calculating the similarity between patterns and its first-
order neighbors, and the details of Sðv15Þ and Sðv10Þ are
shown as

S v15ð Þ = 0:5115, 0:2313, 0:7248, 0:1860, 0:1225½ �, ð37Þ

S v10ð Þ = 0:2821, 0:5212, 0:6099, 0:3965, 0:3533½ �: ð38Þ

The details of probability set based on strength set of v15
and v10 can be calculated and arranged each element in
descending order, which can be shown as

P v15ð Þ = 0:4801, 0:2880, 0:1302, 0:1047, 0:0690½ �,
P v10ð Þ = 0:2820, 0:2410, 0:1833, 0:1633, 0:1304½ �:

ð39Þ

Then, with the help of equation (24), the relative entropy
r10,15 of pattern v15 and v10 can be computed as follows.

r10,15 =
DKL P v15ð Þ P v10ð Þkð Þ +DKL P v10ð Þ P v15ð Þkð Þ

2 = 0:0986:

ð40Þ

Finally, by computing pattern’s similarity of the graph
data G, the maximum value of pattern similarity can be
found from Figure 4; in terms of equation (25), similarity
of v15 and v10 is 0:8901. Obviously, the similarity calculation
process of v15 and v10 can help better understand RESG
index. The details of relevance matrix of graph data G are

Table 3: The LðviÞ and UðviÞ of pattern v15.

Serial number kout kin wout win ukout ukin uwout
uwin

v15 2 3 5 10 0:0727 0:1800 0:0556 0:2564
v12 2 0 5 0 0:1818 0:0000 0:1667 0:0000
v13 1 1 2 3 0:0455 0:0500 0:0267 0:0692
v17 1 3 0 12 0:2727 0:0000 0:0333 0:0000
v18 1 3 2 6 0:0227 0:2250 0:0667 0:1731
v21 1 2 3 6 0:0303 0:1333 0:0333 0:1538

14

19

10

17

20

21

8

16

4

13

9

6

3 1

2
12

7

11

18

5

15

Figure 3: Data1.
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shown in Figure 4, and the most similar pattern in G is
shown in Table 5.

According to Figure 3, we can find that compared with
patterns v10, v5 and v15, they have more similar topological
structures. Depending on Table 5, the most similar pattern
of v15 is exactly identified as pattern v5. Illustrative example

given shows that RESG index is simple, efficient, and reliable
with highly satisfactory accuracy.

7.2. Result Analysis. To further illustrate the efficiency of the
proposed RESG algorithm in measuring pattern’s similarity,
this subsection gives comparative experiments with serval

Table 5: The most similar pattern of each pattern in G.

Pattern Most similar pattern Pattern Most similar pattern Pattern Most similar pattern

v1 v6 v8 v21 v15 v5
v2 v6 v9 v12 v16 v13
v3 v13 v10 v7 v17 v21
v4 v3 v11 v16 v18 v7
v5 v15 v12 v10 v19 v21
v6 v1 v13 v3 v20 v21
v7 v18 v14 v16 v21 v20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4: The relevance value and similarity of G.

Table 4: The LðviÞ and UðviÞ of pattern v10.

Serial number kout kin wout win ukout ukin uwout
uwin

v10 1 3 1 8 0:0313 0:2500 0:0056 0:4183
v4 1 2 2 4 0:0417 0:1481 0:0333 0:1569
v6 2 1 5 1 0:1667 0:0370 0:2083 0:0098
v14 2 0 6 0 0:2500 0:0000 0:3000 0:0000
v20 1 2 5 3 0:0417 0:1481 0:1563 0:0662
v0 0:1063 0:1166 0:1407 0:1302
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Figure 5: Continued.
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Figure 5: Continued.
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proposed similarity measures. In order to make a detailed
description of experimental results, two ways are given.
The first way of comparative experiment is to show the
experimental results through scatter plots and table of the
most similar pattern. The second way is to demonstrate
the effectiveness by applying the RESG to link prediction.

The scatter plot reflects the distribution of similarity
between patterns. For example, if the most similar pattern
of v1 is v12, then there exists draw points on ð1, 12Þ in plane.
There is a good similarity measure, whose scatter plot is dis-
persed on the plane, rather than concentrated on both sides
of diagonal. The reason is that if the points are concentrated
on both sides of the diagonal line, it shows that this method
is easier to identify its neighbors as most similar patterns,
which is not accurate enough. In the following, under Data2
and Gene, the scatter plots of the proposed RESG index and
other seven similarity indices are used to further validate the

performance of similarity measure, which are vividly shown
in Figures 5 and 6, respectively.

Figures 5(a), 6(a), 5(b), 6(b), 5(c), and 6(c) show scatter
plots formed by AA index, WAA index, and CN index,
respectively. As we can see, the most similar patterns are
concentrated near to diagonal. There is no denying that
these three indices are low computational complexity; never-
theless, it uses very limited information. Generally speaking,
similarity is determined by the number of common neigh-
bors between patterns. Accordingly, the most similar pat-
terns are distributed near the corresponding patterns.
Although the symmetry of patterns is good, it is difficult to
accurately describe the similarity between patterns when
only one path is considered.

Figures 5(d) and 6(d) show scatter plots formed by LRE,
respectively. It can be found that the most similar patterns
are not distributed near to diagonal nevertheless. From
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Figure 5: The scatter plots under Data2.
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overall view, LRE takes information of the local structure
into consideration, and it remains a daunting challenge on
obtaining accurate similarity value. In addition, with the size
of graph data increasing, the symmetry between patterns
decreases significantly.

Figures 5(e) and 6(e) show scatter plots formed by Katz.
It is worth noting that the adjustable parameter of Katz
index is set to α = 0:001, whereby the scatter plot under Katz
index is concentrated around the diagonal line. Further-
more, the symmetry is not desirable. Katz index relies more

on path among patterns in graph data, and patterns with
larger degree are more likely to be in the path between
different patterns; so, there is a greater probability that most
patterns are similar to the patterns with greater degree in
graph data.

Figures 5(f) and 6(f) show scatter plots formed by LRW
index, and the number of random walks in this experiment
is set to 3. One can see that the scatter plots are unevenly dis-
tributed, and the accuracy of similarity obtained by this sim-
ilarity measure needs to be further improved. Moreover,
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Figure 6: The scatter plots under Gene.
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LRW index considers the random walk with finite number
of steps, and the computational complexity of this measure
is higher.

The scatter plots of LP index are vividly showed in
Figures 5(g) and 6(g). The advantage of LP index is low
computational complexity. However, due to the limited
information used, the distribution of similarity values is
too concentrated, which makes distinguishable similarity
between patterns.

Figures 5(h) and 6(h) show scatter plots formed by
RESG index, respectively. As we can see that the most simi-
lar pattern is not distributed near to diagonal, and with the
size of graph data increasing, the scatter plot formed RESG
index still maintains good symmetry. RESG index measures
the similarity between patterns using influence of pattern
degree and weight and takes the information of first-order
neighbors and second-order neighbors of patterns into
account, which can get more accurate similarity of any two
patterns. Under the circumstances, most patterns avoid
becoming general patterns and avoid being identified as
certain patterns with common structure that are most simi-
lar to multiple patterns. Moreover, in terms of runtime,
RESG index is higher to LRW index, CN index, and AA
index. However, compared with the same type of relative
entropy-based similarity LRE index, the running time of
RESG index is only 1/4 of it. In addition, comparing with
the normal algorithm, RESG index is simple and efficient
and can satisfy measure the similarity of patterns in large
graph data efficiently.

For a different method, a quantification named most
similar pattern listed in Table 6 is used to demonstrate the
difference between RESG index and three existing measures:
LRE index, CN index, and EI index [35], so as to verify the
good effect of RESG index from another perspective. The
first line of Table 6 is the pattern’s label, three of every 100
patterns are selected randomly, and a total of 20 will be used
as experimental patterns listed. “/” represents that the pat-
tern does not have the most similar pattern. Since there is
such a situation that pattern in graph data has more than
one of the most similar patterns, only the same pattern
sequence numbers are listed, and the rest of most similar
patterns are shown in the table with abbreviation numbers.
Take pattern v5 under the EI index for example, (148) repre-
sents pattern v5 which has 148 most similar patterns.

As it shows in Table 6, pattern v7 is identified as the most
similar pattern of 7 different patterns under LRE index,
including pattern v5, v52, v172. LRE index takes the degree
of patterns into consideration simply; so, it is possible that
most patterns may have the same degree distribution, which
leads to the same similarity of patterns. Analogously, under
the EI index, several patterns have more than one most
similar pattern. For example, a number of 148 most similar
patterns are identified by patterns v5, v104, v297 and so on.
However, there are also patterns without the most similar
pattern, for instance, patterns v52, v81.

As we can see, there is no situation that multiple patterns
identify the same most similar patterns under RESG index.
RESG index takes information of pattern’s one-order and
second-order neighbors into account, which can accurately

calculate the similarity. Meanwhile, the weight of patterns
also contains a lot of topological information, and there
may be a situation that the degree distribution is the same
but the weight is different. RESG index starts from the per-
spective of degree and weight, which may make it exact to
distinguish the similarity. As a result, RESG index is feasible
and effective.

To further verify the feasibility of the proposed similarity
measure, RESG index is applied to link prediction and com-
pared the prediction performance with CN index, LP index,
Katz index, and LRW index. The experiment is carried out
on six graph data collected from Stanford Dataset, and
AUC is selected as an index to evaluate the prediction per-
formance of effective path topology stability. For the more
information of AUC, see reference [34] for details.

Figure 7 shows the comparison of AUC results on RESG
and other four similarity measures. Among them, CN index
only considers the degree information of patterns, LRW
index, LP index, and Katz index either consider the local
path or the global path of graph data; so, their time complex-
ity is relatively high. As we can see from Figure 7, compared
with RESG index and LRW index, the AUC value of CN
index, LP index, and Katz value on Stmarks and FWEW is
not ideal. However, compared with RESG index, LRW index
has higher time complexity. The AUC of RESG index is the
highest on four graph data: FWMW, FWFW, Celegans, and
Email167, second only to LRW index on Stmarks and FW
EW. Meanwhile, compared with the AUC of other four

Table 6: The most similar pattern in Gene.

Pattern RESG LRE EI CN

v5 v76 v76 148ð Þ (15)

v52 v32 v76 / v6
v81 v127 v85 / v6
v104 v376 v557 148ð Þ /
v157 v9 v126 / /
v172 v156 v76 / 2ð Þ
v201 v129 v76. / v172
v253 2ð Þ v251 7ð Þ 2ð Þ
v297 v192 v557 148ð Þ /
v314 v578 v520 18ð Þ /
v348 v324 v346 148ð Þ v340
v397 v480 v251 / /
v429 v87 v434 148ð Þ 7ð Þ
v459 v193 v76 / v457
v498 v181 v76 / v592
v518 v100 v557 7ð Þ /
v552 v482 v76 / /
v590 v100 v154 148ð Þ /
v616 v241 v483 / /
v636 v459 v181 148ð Þ v631
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measures, the improvement rate can reach 2% − 21%. The
experiment suggests that RESG index can achieve the high-
est AUC value in four graph data; to some extent, it shows
the effectiveness and feasibility of RESG index.

However, it deserves our attention that the proposed
RESG index also has limitations, and it can achieve better
link prediction effect on graph data with small clustering
coefficients. For graph data with large clustering coefficient,
the effect of this measure needs to be further improved and
optimized.

8. Conclusion

Measuring similarity of patterns in graph data is a significant
work in many fields. In this paper, to overcome the short-
comings and limitations of existing similarity measures, a
relative entropy-based similarity for patterns in graph data
abbreviated as RESG index is constructed. Our main work
is divided into three aspects. Firstly, strength set is given
by degree and weight, which proposed four variables that
contains the information of topological relationship in
first-order neighbors. Then, in order to generate probability
set, patterns with smaller neighbors are redefined by
appending empty neighbors up to the same neighbors as
another. Finally, relative entropy is computed, and pattern’s
similarity will be calculated. In addition, two sets of compar-
ison experiments with serval classic similarity measure are
used to show effectiveness and feasibility of the proposed
RESG index algorithm. Experiments indicate that by taking
pattern’s degree, weight and second-order neighbors into

consideration, the RESG index algorithm can better identify
similarity between patterns. To some extent, our purposed
approach can enrich the research in area of pattern’s similar-
ity in graph data.
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