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Unknown threats have caused severe damage in critical infrastructures. To solve this issue, the graph-based methods have been
proposed because of their ability for learning complex interaction patterns of network entities with discrete graph snapshots.
However, such methods are challenged by the computer networking model characterized by the natural continuous-time
dynamic heterogeneous graph (CDHG). In this paper, we propose a CDHG-based graph neural network model, namely,
CDHGN, for unknown threat detection. It first constructs the CDHG using interaction relationships among network entities
extracted from various log records. Then, it trains the detection model based on a heterogeneous attention network and
performs streaming detection for live online network events. We implement a prototype and conduct extensive experiments on
a comprehensive cybersecurity dataset with more than nine million records. Experimental result shows that the proposed
method can achieve superior detection performance than the state-of-the-art methods.

1. Introduction

The unknown threats of cyberspace represented by advanced
persistent threat (APT) attacks have become a worldwide
security problem. In the past few years, the national power
grids of Ukraine and Venezuela were attacked by unknown
threats and caused large-scale power outages. In the mean-
while, the industrial control systems (ICS) gradually changed
from isolated and static to open and interactive. Worryingly,
thousands of significant cyber incidents caused by such cyber-
attack occur every year around the world and have caused seri-
ous political, economic, and social adverse impacts [1].

In ICS environments, there are a large number of real-
time interactive IoT entities, such as mobile phones/tablets,
drones, hosts, and other devices. Unfortunately, it is hard
for the existing methods to detect malicious behaviours of
unknown threat in the continuous interactions among mas-

sive heterogeneous entities. To solve this issue, we aim to
develop a model to accurately detect the unknown threat
by capture latent features of heterogeneous entities and their
continuously ongoing interactions. Heterogeneous graphs
are often used to model complex systems and interactions
where entities of different types interact with each other in
different ways. Recently, detecting methods based on hetero-
geneous graph neural network have been developed to trace
the malicious behaviours of unknown threat in the network.
Log2vec [2] takes log records as graph nodes (entities) and
heuristically defines a set of rules for generating graph edges
(interactions). Then, node embeddings are calculated and
clustered to recognize anomaly behaviours. However, its
graph construction approach will lead to two problems: (1)
it cannot fully express the context of a log entry, for instance,
cannot trace or predict when who did what to whom. (2) It is
not an end-to-end approach and thus cannot universally
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construct graphs for massive and heterogeneous behaviours
in computer networks. Thus, the detection performance still
needs to be improved.

To overcome these limitations and challenges, we propose a
new detection method based on continuous-time dynamic het-
erogeneous graph network (CDHGN). The CDHG is con-
structed in a way that directly corresponds to the entities
(nodes) and their interactions (edges) in the network. The
CDHGN model can be seen as an encoder-decoder architec-
ture, where the encoder is a function that maps a CDHG to
node embeddings, and the decoder takes the node embeddings
as input and makes anomaly classifications. More specifically,
the CDHGN first transforms log data that carry behaviour
information of network entities into a CDHG. Next, the CDHG
is input into a time-encoding module to obtain the embedding
representation of the time factor. Then, the CDHG incorporat-
ing the time embedding is input into heterogeneous attention
networks for generating embeddings of both edges and nodes
where edge embeddings representing various interactions
among entities in network are obtained through an improved
attention mechanism. Finally, the embedding representations
of entities and their interactions are sent to the decoder that
consists of linear layer and SoftMax layer to determine whether
there are anomalous interactions, namely, malicious behav-
iours. The contributions of our work are summarized as
follows:

(i) We propose a new unknown threat detection model
based on continuous-time dynamic heterogeneous
graph network (CDHGN). It captures spatiotempo-
ral contextual information of network entities and
their interactions by an end-to-end approach. The
continuous-time dynamic heterogeneous graph
(CDHG) can be naturally constructed by raw
behaviour data generated by network entities

(ii) According to the complex behaviour characteristics
of unknown threat, we improve the message passing
and aggregation function of the attention block of
CDHGN by assigning different weight matrices to
different types of node features and edge features to
obtain the optimal node embedding representation

(iii) We develop a prototype and conduct various experi-
ments on a real-world cybersecurity dataset. Experi-
mental results show that by introducing
heterogeneous edge embedding, the proposed
CDHGN outperforms previous state-of-the-art
methods

The rest of this paper is organized as follows. Section 2
address the related work. Section 3 describes the design
and implementation of our approach. Experiments and per-
formance evaluation are presented in Section 4. Section 5
concludes the paper.

2. Related Work

A lot of works have been addressed in intrusion detection
system (IDS) to detect unknown threat, which generally

can be divided into two approaches: misuse detection and
anomaly detection. Misuse detection approaches first define
abnormal entities’ behaviour and then defines all other
behaviour as normal. Specifically, it generates and stores sig-
natures of cyberattack behaviours in advance. Then, it mon-
itors various network data such as network traffics, user
operations, and process interactions. If a behaviour pattern
is matched with an attack signature, it is detected as a mali-
cious behaviour [3]. For instance, the network IDS Snort
exploits various rules based on expert experience, which
cover detection rules of timestamp, detector ID, IP address,
port number, alarm type, alarm priority, TCP flag, protocol
type, etc. [4]. Such signature-based methods are efficient
and accurate, however cannot detect unknown behaviours.

Anomaly detection approaches learn potential associations
in historical data through machine learning models. The base-
line model is trained by learning behaviours of network entities.
Whether a new behaviour is malicious or not is determined by
the learned classifier [5–7]. In [8], researchers combined meta-
learning and ensemble learning ideas to enforce anomaly detec-
tion. First, the basic detectors with poor performance are
preeliminated by the static selection process based on the isola-
tion forest. Then, the screened basic detectors are dynamically
selected and integrated to mitigate the inaccurate detection
problem. This kind of methods have certain generalization abil-
ity to detect unknown attack behaviours, while it usually needs a
careful designed feature engineering process based on security
experts’ knowledge and experience. Moreover, when facing
complex behaviour patterns, they were often challenged by
the high false positives because a very small percentage of
abnormal behaviour data is easily drowned in the massive nor-
mal behaviour data as noise. In recent years, toward massive
heterogeneous network security data, deep learning-based
end-to-end methods that do not need assistances of feature
engineering process have received more attention. In [9],
authors used long short-term memory (LSTM) network to
extract latent representation in time series and then use multi-
layer fully connected network to match feature to complete
the abnormal behaviour recognition. In [10], authors con-
structed a neural network model to learn feature vectors of user
behaviours which are then clustered to detect whether there
exist internal attack events. In [11], researchers analysed multi-
dimensional interaction patterns between users and entities,
such as email communication, web browsing, and server logins.
In [12], researchers developed a traceability system, from the
perspective of the calling relationship between hosts and pro-
cesses, to detect anomalies by monitoring the calling relation-
ship. Some provenance tracking systems are proposed to
monitor and analyse the activities of the system [13–16]. How-
ever, the long time interval and low-profile characteristics of
complex behaviours of APT kind of unknown attacks make
them still face the low detecting success rate problem. Another
difference between our approach and them is that we focus on
analysing logs that record user behaviour in computer networks
which extract relationships among log data that reflect typical
behaviours of users.

The graph-based deep learning approaches have been
developed to capture complex behaviour patterns in net-
works [2, 17]. The directed dynamic graph is used to
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describe operations (e.g., logon) between subjects (e.g., user)
and objects (e.g., PC). Accordingly, multidimension rela-
tionships (e.g., causality) among network entities are natu-
rally represented by the graph. Log2vec [2] developed ten
heuristic rules (edges) from causality (sequence), logical
(time), and interaction (interhost) aspects to connect log
records (nodes) to construct the network behaviour graph
and generate the corresponding graph embeddings. By
employing clustering algorithm on node embeddings of the
generated graph, Log2vec draws a boundary between mali-
cious and benign behaviours which belong to different clus-
ters. As previously mentioned, its ability of capturing
contextual information of network entities’ behaviours is
still limited. RShield [18] presented a detection method for
complex multistep attack based on the temporal graph net-
work (TGN) model [19]. However, it can only deal with
homogeneous graph network. In [20], researchers proposed
an ensemble detection method using graph-based modelling
of the security state of the target system and correlation of
diverse indicators of anomalous host behaviour, which needs
to manually extract domain-specific features. Some graph
representation learning techniques also have been utilized
to analyse dynamic graphs [21–24], while most of them are
not applicable to unknown threats detection, because they
cannot fully characterize the properties of computer net-
works where interactions between entities are continuous-
time based. Hindroid [25] modelled Android applications,
related APIs, and their relationships as heterogeneous net-
works. However, it measured the similarity of Android
applications based on different metapaths which requires
preparing man-made metapaths carefully in advance.

3. Continuous-Time Dynamic Heterogeneous
Graph Network

In this section, we begin with a brief overview of continuous-
time dynamic heterogeneous graph network (CDHGN). A
detailed explanation of each system component will be
introduced in the following parts.

3.1. Architecture Overview. An end-to-end anomaly detec-
tion model based on dynamic heterogeneous graph neural
network is developed to simultaneously detect intrusions
on a collection of networked hosts. The schematic diagram
of the method is shown in Figure 1.

First, a heterogeneous graph is constructed based on
event logs of entities’ behaviours. Second, the time embed-
ding of each behaviour is acquired. Third, the graph incor-
porating the time encoding is fed into the dynamic
heterogeneous graph neural network to generate the optimal
behaviour embedding representation. Finally, the behaviour
embedding represented by corresponding nodes and edge is
used to classify normal and abnormal behaviour.

3.2. Continuous-Time Dynamic Heterogeneous Graph
Construction. Heterogeneous graphs are an important
abstraction for modelling complex interactive relational data
in the real world. We denote the edge e connecting the source
node src and the destination node dst as e= (src, dst). Its

metarelationship can be represented as a triple such as <src,
e, dst>. To better model heterogeneous computer networks,
we assume that there may exist multiple relationships among
entities. For instance, the relationship between user and pc
can be divided into various types according to the operation
type, such as user logon pc and user insert-usb pc.

As shown in Figure 2, in order to show continuous-time
dynamic characteristics of data, we assign a unique time-
stamp t to each edge e= (src, dst), indicating that there is a
connection between the source node src and the destination
node dst at time t. For instance, when a user (User123) logon
a PC (PC456) at time t, the time t will be assigned to the edge
between the user and pc. Further, the pc node PC456 can be
assigned multiple timestamps: PC456@9 am denotes that the
PC456 performed an operation at 9 : 00 in the morning,
which probably means that the employee just turned on
the computer at the workstation in the morning, and
PC456@8pm indicates that the PC456 performed an opera-
tion at 8 : 00 in the evening, which probably means that the
employee turns off the computer after work. In order to gen-
erate data for constructing CDHG, we need to parse log
records (events) field by field and extract the metadata.
The format of an event metadata is defined as (src_id, dst_
id, src_type, dst_type, src_feature, dst_feature, edge_type,
edge_attr, t). Here, let src_id and dst_id be the identity of
source node and destination node, respectively; src_type
and dst_type the type of source node and destination node,
respectively; src_feature and dst_feature the node features
of source node and destination node, respectively; edge_type
the connection type between source node and destination
node; edge_attr the edge features; and t the timestamp of
the event. As far as we know, there have been some research
results in complex network attack modelling methods for
unknown threats, such as sequence-based and static isomor-
phic graphs, while anomaly detection for continuous-time
dynamic heterogeneous graphs has not been yet explored.

3.3. Time-Encoding Function. Traditional graph construc-
tion methods build a static graph in each time slot. However,
this may lose some structural dependencies between differ-
ent time periods. At the same time, edge connections occur-
ring at one moment may affect node representation at
another moment. Therefore, in order to make better use of
the time characteristics contained in the CDHG and allow
nodes and edges to better carry the information contained
in different time points in the aggregation stage, we develop
a relative dynamic encoding mechanism. Specifically, given a
source node src with timestamp ts and a destination node dst
with timestamps td, their time representations are denoted
by T(src@ts) and T(dst@td), respectively. We compute the
relative time interval by ΔT(dst@ts, src@td) = T(dst@ts) -
T(src@td), which is denoted by ΔT for brevity. Then, we will
feed the ΔT into the time-encoding function to get the cor-
responding time embedding.

We use the sinusoid function as time-encoding function
to calculate the time embedding over an interval. Because
the periodic variation law of the sin/cos function is stable,
the encoding function has certain invariance. The simple
function can take the form as Equation (1), where ΔT is
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the position and dim is the dimension, which means each
dimension of the positional encoding corresponds to a sinusoid.

RT ΔT , dimð Þ = sin
ΔT
dim

� �
, ð1Þ

since the mapping interval of this approach is only within
[-1, 1], which results in a limited range of spatial representation.

Thus, we need to compute temporal encoding with different
functions in different dimensions. Inspired by the Transformer
[26], the relative dynamic encoding mechanism is presented as
follows.

RT ΔT , 2 dimð Þ = sin
ΔT

10000 2 dim/dð Þ

� �
, ð2Þ
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Figure 1: The schematic diagram of spatiotemporal graph network based on CTDHG. (a) Continuous-time dynamic heterogeneous graph
construction. The green node is the destination node, and the yellow and orange are different types of source nodes connected to the
destination node. The solid and dashed lines represent two different types of edge connections. (b) Input the graph data into periodic
and time linear function to obtain time embedding. (c) The data integrating graph data and time embedding is input into the behaviour
embedding computing layers (CDHGN layers): (i) the destination node is mapped through Q-linear-node. (ii) The node features of the
source node are mapped with K-linear-node and V-linear-node, respectively. (iii) The edge features of the source node are mapped with
K-linear-edge and V-linear-edge, respectively. Assign different weights according to different node types and edge types. Use the self-
attention mechanism to learn the adjacency information that contributes the most to downstream tasks, and aggregate the adjacency
information to obtain the best embedding representation. (d) Input the embedding representation into the anomaly detection module in
decoder. In the training phase, backpropagation is performed through the loss function to update the model parameters; in the testing
phase, the anomaly detection results are obtained through the linear layer and SoftMax layer.
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Figure 2: An instance of continuous-time dynamic heterogeneous graph. Different colours represent different types of nodes. Solid and
dotted lines represent different types of edges.
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RT ΔT , 2 dim + 1ð Þ = cos
ΔT

10000 2 dim+1ð Þ/dð Þ

� �
: ð3Þ

In Equations (2) and (3), d represents the dimension of the
vector. The wavelengths form a geometric progression from 2π
to 10000·2π. Then, we use a linear function in Equation (4) to
get the final time-encoding function, where RTðΔTÞ is the gen-
eral term for Equations (2) and (3), and TimeLinear is a simple
learnable linear projection function.

RTE ΔTð Þ = TimeLinear RT ΔTð Þð Þ: ð4Þ

Finally, the relative time embedding information generated
by the RTE function is to be added to the feature representation
(presented in Section 3.4) of a source node to capture the rela-
tive dynamic information between the source node and the des-
tination node.

3.4. Heterogeneous Behaviour Embedding and Anomaly
Detection. The behaviour embeddings are computed to
anomaly edge prediction. Embedding representation of each
edge mainly includes three basic operators calculating: (1)
Attention, which calculates the importance of the source
nodes connected to each different edge; (2) Message, which
extracts the information of source nodes and edges; and
(3) Aggregate, which passes the neighbour information of
the destination node through aggregation of attention
weight coefficients.

Inspired by the Transformer model [26], the destination
node dst is mapped to a Query vector, and the source node
src is mapped to a Key vector. In the unknown complex
attack detection task, in order to better exploit the embed-
ding information contained in edges, we calculate node fea-
tures and edge features’ attention score, respectively. In
order to maximize parameter sharing while still maintaining
the uniqueness among different relationships, we propose to
use corresponding parameter matrices for different types of
nodes and edges. The attention score computing mechanism
is presented as Equations (5)–(11):

Attention src, dstð Þ = Softmax
∀src∈N dstð Þ

Ahead
i src, dstð Þ��

i∈ 1,m½ �

 !
, ð5Þ

Ahead
i src, dstð Þ = Ki srcnð ÞQi dstnð Þ� �

ffiffiffi
d

p , ð6Þ

Ki srcnð Þ = K‐linear‐nodei H l−1ð Þ src½ �
� 	

, ð7Þ

Qi dstnð Þ =Q‐linear‐nodei H l−1ð Þ dst½ �
� 	

, ð8Þ

Attention src, e, dstð Þ = Softmax
∀src∈N dstð Þ

Ahead
i src, e, dstð Þ��
i∈ 1,m½ �

 !
,

ð9Þ

Ahead
i src, e, dstð Þ = Ki eð ÞWA

e Q
i dstnð Þ� �
ffiffiffi
d

p , ð10Þ

Ki eð Þ = K‐linear‐edgei H l−1ð Þ e½ �
� 	

: ð11Þ

First, for the i-th node attention head Ahead
iðsrc, dstÞ, we

need to calculate the similarity between the Query vector and
the Key vector. We input the destination node features and
the source node features into Qlinearnode and Klinearnode,
respectively, for feature mapping. Then, we calculate the dot
product of the KiðsrcnÞ and the QiðdstnÞ. Since there are dif-
ferent connecting edges between different node pairs, unlike
the original Transformer which directly calculates the dot
product of the KiðeÞ vector and the QiðdstnÞ vector, we
assign a specific weight matrix WA

e to each edge type. In this
way, the model can capture different semantic information
contained in node pairs. Finally, for the destination node
dst, we aggregate the attention scores of all adjacent nodes
N(dst) into the SoftMax layer to normalize the attention
scores, where m denotes the total number of multiheads.

Next, in the message passing stage, the information of
the source node is passed to the destination node while com-
puting the heterogeneous mutual attention as shown in
Equations (12)–(15). Similar to the attention computing
process, different weight matrices are set according to differ-
ent edge types in the message passing process to alleviate the
distribution differences of different types of nodes and edges.

Message src, dstð Þ = Mi
head−node

��
i∈ 1,m½ �

, ð12Þ

Mi
head−node =V‐linear‐nodei H l−1ð Þ src½ �

� 	
WM

n , ð13Þ

Message src, e, dstð Þ = Mi
head−edge

���
i∈ 1,m½ �

, ð14Þ

Mi
head−edge = V‐linear‐edgei H l−1ð Þ e½ �

� 	
WM

e : ð15Þ

For the i-th node message head Mi
head−node, we project

the source node features Hðl−1Þ½src� into the i-th message
vector with a linear projection Vlinearnodei. For the i-th
edge message head Mi

head−edge, we project the edge features

Hðl−1Þ½e� into the i-th message vector Mi
head−edge with a linear

projection Vlinearedgei. We use a matrixWM
e to incorporate

the edge dependency and assign different message weight
matrices WM

n to different node types.
Finally, in the aggregation stage, the information of the

source node and the destination node is aggregated accord-
ing to different edge connection relationships as shown in
Equation (16). Since the sum of attention has been normal-
ized using SoftMax before, the attention score can be directly
used as a weight to equalize the embedding representation of
nodes whose neighbour node information has been updated:

Hl dst½ � = ⊕
∀src∈N dstð Þ

Attention src, dstð Þ · Message src, dstð Þ, Attention src, e, dstð Þð

· Message src, e, dstð ÞÞ:
ð16Þ
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For brevity, we give the pseudocode of our algorithm as
shown in Algorithm 1, which outlines the heterogeneous
behaviour embedding algorithm for a node through L
CDHGN layers. Let l be the l -th CDHGN layer, L the total
number of CDHGN layers, i the i-th multihead, m the total
number of multihead, ∀src ∈NðdstÞ all the source nodes
which connected to the destination node, Ahead

iðsrc, dstÞ
the i-th node attention head, Mi

head−nodeðsrcÞ the i-th node
message head, Ahead

iðsrc, e, dstÞ the i-th edge attention head,
Mi

head−edgeðeÞ the i-th edge message head, Attentionðsrc, dstÞ
the attention score of node, MessageðsrcÞ the feature repre-
sentation extracted from the node, Attentionðsrc, e, dstÞ the
attention score of edge, Message ðeÞ the feature representa-
tion extracted from the edge, Hl½dst� the dst’s node embed-
ding in the l-th CDHGN layer, and HL½dst� the final dst’s
node embedding after L rounds.

Most graph neural networks focus on fetching the
embedded representation of nodes. However, the complex
unknown threat detection task relies on the relationship of
edges to determine whether it is an attack behaviour. To this
end, we splice the embedding representations of the nodes
on both sides of the edge to obtain the embedding represen-
tation of the edge according to the type of the edge. Then, we
use the fully connected layer to map the embedding repre-
sentation of the edge back to its unique distribution and
finally rely on the SoftMax layer to get the probability that
a connected edge belongs to an attack event. As shown in
Equation (17), in the decoder module, we use the cross-
entropy loss function for backward propagation:

loss x, classð Þ = − log exp x class½ �ð Þ
∑jexp x j½ �ð Þ

 !
, ð17Þ

where x represents embedding representation, j represents
the index of elements of x, and class represent the ground
truth index of the x.

4. Experiment and Evaluation

4.1. Experiment Setup. In this section, we set up experiments
to verify the research question that compared with state-of-
the-art baselines: does the proposed method improve the
detection performance of unknown threat?

A real-world cybersecurity dataset is used in the experi-
ment: Los Alamos National Lab’s (LANL’s) comprehensive
cybersecurity events dataset [27]. The LANL dataset represents
58 consecutive days of event data collected from four sources
(authentication, process, network flow, DNS, and redteam)
within LANL’s internal computer network. The authentication
events of LANL dataset includes 1,648,275,307 log records col-
lected over 58 days for 12,425 users and 17,684 computers,
within LANL’s corporate, internal computer network. The red-
team data presents specific events taken from the authentication
data that present known compromise events, which is used as
ground truth of abnormal behaviour that is different from nor-
mal users’ behaviours. We use the authentication data to form
the continuous-time dynamic heterogeneous graph for detect-
ing malicious logs. We randomly selected a subset of the LANL
dataset which contains 9,918,928 total edges generated from
10,895 nodes (user host pairs), and all 691 malicious interac-
tions are generated by 104 users.

To answer the research question, we compare our
method with the state-of-the-art methods on the same data-
set. Baselines are Tiresias [28], ensemble method [20], and
Log2vec [2], which cover both supervised and unsupervised
methods. Tiresias is an advanced log-entry-level supervised
approach on anomaly detection for security event prediction

Input: src, dst, e, src node type, dst node type, edge type
Output: dst’s node embedding HL[dst]
forl ←1 to Ldo

fori ←1 to mdo
for∀src ∈NðdstÞdo
forsrc node type, dst node type do
calculate node attention score Ahead

iðsrc, dstÞ:
extract node src’s feature Mi

head−nodeðsrcÞ and assign/update WM
n

end for
foredge type
calculate edge attention score Ahead

iðsrc, e, dstÞ and assign/update WA
e

extract edge e’s feature Mi
head−edgeðeÞ and assign/update WM

e

end for
end for

end for
concat all node attention Attention ðsrc, dst Þ and featureMessageðsrcÞrespectively
concat all edge attention Attention ðsrc, e, dstÞ and feature Message ðeÞ respectively
Aggregate Attention and Message by dot product to get Hl½dst�
dst ←Hl½dst�

end for
returnHL[dst]

Algorithm 1: Heterogeneous behaviour embedding.
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in various events with noise. Ensemble method and Log2vec
are unsupervised approach to separate malicious and benign
activities into different clusters and identify malicious ones.

We adopt the area under the curve (AUC) as the main
performance metric. It is used as a summary of the receiver
characteristic operator (ROC) curve, which is insensitive to
the imbalance of dataset. An AUC value reaches its best
value at 1 and worst at 0. The higher the AUC, the better
the performance of the model at predicting between the pos-
itive and negative classes.

4.2. Evaluation. To prove the effectiveness of the proposed
method CDHGN, the LANL dataset is divided into training
set, validation set, and test set. The CDHGN model is
trained with the training set. The specific computing envi-
ronment and parameters are as follows: the training and
testing platform is a workstation with GV100 graphics card,
and the model optimizer uses Adam algorithm [29], the
learning rate is set to 0.01, and the model is iteratively
trained for 300 rounds. Experimental results are shown in
the following tables. In Table 1, we summarize the AUC
results of baseline methods and our method in LANL data-
set. In Table 2, we present the detection result of our method
on different division of train, validation, and test sets on the
dataset. The result includes specific percentage of division,
number of malicious logs in training, validation, and testing
phases and their corresponding AUC value. In Table 3, we
show the detection result of the proposed method only based
on the quantity of the abnormal entries.

In Table 1, we see that the CDHGN method performs
better than baseline methods. CDHGN increased the AUC
by 14.1%, 9.0%, and 6.6%, compared to Tiresias, ensemble
method, and Log2vec, respectively. In Table 2, we see that,
on the one hand, when more data is used for training, that
is, when the training set, validation set, and test set are
divided according to 0.8 : 0.1 : 0.1, the AUC value can reach
0.9844. On the other hand, when less data is used for train-
ing, that is, when the training set, validation set, and test set
are divided according to 0.22 : 0.04 : 0.74, the AUC can still
reach 0.9121. In Table 3, we divide the dataset into training
set, validation set, and test set only based on the quantity of
the abnormal entries. We can see that the proposed CDHGN
has a better detection effect than baselines, while it does not
need a large number of training samples.

We conduct an experimental analysis of the hyperpara-
meters in the CDHGN network structure as illustrated in
Figures 3–5, whose experiment results are shown in Tables 4–
6. There are three hyperparameters involved as follows.

(i) Whether to Use Layer Normalization (CDHGN
structure, Figure 3 and Table 4)

(ii) The number of Attention Heads in a CDHGN Layer
(#Multihead, Figure 4 and Table 5)

(iii) The number of CDHGN Convolution Layer
(#CDHGNLayer, Figure 5 and Table 6)

From the three results of comparison experiments
shown in Tables 4–6, for the LANL dataset, the CDHGN

network can effectively identify anomaly behaviours. (1)
After adding the LayerNorm layer to normalize layer data,
the influence of the dimension between the data is elimi-
nated, and the recognition effect can be effectively improved
by about 2.8 points. (2) When the number of attention head
is increased, there are slight fluctuations in the recognition
results. It is considered that because the number of feature
dimensions in the LANL dataset is not large, the 2-head
attention has been able to extract the effective features of
the data. (3) When the number of CDHGN convolution
layer is increased, the detection effect has little effect, indicat-
ing that the shallow network structure has been able to learn
effective features.

Since the LANL dataset in the experiment is a mature
dataset that have been widely used, which also were used
by baseline methods for their experiments. Therefore, we
consider that the experiment we conducted on the datasets
is sufficiently generalized to keep external validity.

4.3. Case Study. With the development of the Energy Inter-
net and the wide application of advanced information and
communication technologies, such as Internet+, in the
power grid, the power system has gradually broken the pre-
vious closed and proprietary boundary. We developed a
CDHGN prototype to monitor unknown anomaly behav-
iour in a power information network.

Table 1: Detection result of different methods (Table 1 is
reproduced from Yang et al., 2022).

Approach AUC

Tiresias 0.85

Ensemble 0.89

Log2vec 0.91

CDHGN (proposed) 0.97

Table 2: Detection result on different dataset divisions of CDHGN.

Dataset division #Train #Val #Test AUC (test)

0.8 : 0.1 : 0.1 1673 209 209 0.9844

0.7 : 0.1 : 0.2 1463 209 419 0.9787

0.6 : 0.2 : 0.2 1253 419 419 0.9714

0.5 : 0.3 : 0.2 1045 627 419 0.9569

0.27 : 0.03 : 0.7 565 63 1463 0.9344

0.22 : 0.04 : 0.74 460 84 1547 0.9121

0.258 : 0.002 : 0.74 539 5 1547 0.9412

Table 3: Detection result on different number of the abnormal
samples of CDHGN.

Dataset division
Abnormal sample

AUC (test)
#Train #Val #Test

0.27 : 0.03 : 0.7 187 21 483 0.9366

0.22 : 0.04 : 0.74 152 28 511 0.9400

0.258 : 0.002 : 0.74 179 1 511 0.9400
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(i) Malicious scanning attacks were tracked during the
monitoring process. In March of a certain year, a
large-scale network scanning attack was encoun-

tered on an external power information network
and CDHGN reported an alarm. Network security
analysts took advantage of CDHG’s ability to con-
tinuously capture events and found the IP address
of the attack source from massive logs. The attacker
was quickly banned, and thus, subsequent attack
behaviours were effectively curbed

(ii) During a major international conference, CDHGN
noticed an internal email account and found that

Base structure
(2-head; 

2-CDHGN layer; 
no LayerNorm)

Input

Linear

CDHGN (2-head;⁎2)

Linear

Output

(a)

Layernorm
(2-head; 

2-CDHGN layer; 
add LayerNorm)

Input

Linear

Linear

Output

LayerNorm

CDHGN (2-head;⁎2)

(b)

Figure 3: Abstract structure of Base and LayerNorm of CDHGN.

LayerNorm
(2-head; 

2-CDHGN layer; 
add LayerNorm)

Input

Linear

CDHGN (2-head;⁎2)

Linear

Output

LayerNorm

LayerNorm
(8, 16, 32-head; 

2-CDHGN layer; 
add LayerNorm)

Input

Linear

CDHGN (8, 16, 32-head;⁎2)

Linear

Output

LayerNorm

Figure 4: Abstract structure of LayerNorm with different number
of attention heads in a CDHGN layer.

LayerNorm
(2-head; 

2-CDHGN layer; 
add LayerNorm)

Input

Linear

CDHGN (2-head;⁎2)

Linear

Output

LayerNorm

LayerNorm
(2-head; 

8, 16, 32-CDHGN layer; 
add LayerNorm)

Input

Linear

CDHGN (2-head;⁎8, ⁎16, ⁎32)

Linear

Output

LayerNorm

Figure 5: Abstract structure of LayerNorm with different number
of CDHGN convolution layers.

Table 4: Detection result on Base and LayerNorm structure of
CDHGN.

CDHGN
structure

Dataset
division

#Train #Val #Test
AUC
(test)

Base 0.22 : 0.04 : 0.74 152 28 511 0.9127

LayerNorm 0.22 : 0.04 : 0.74 152 28 511 0.9400

Table 5: Detection result on different number of attention heads in
a CDHGN layer.

#Multihead
(LayerNorm)

Dataset
division

#Train #Val #Test
AUC
(test)

2-head 0.22 : 0.04 : 0.74 152 28 511 0.9400

8-head 0.22 : 0.04 : 0.74 152 28 511 0.9348

16-head 0.22 : 0.04 : 0.74 152 28 511 0.9400

32-head 0.22 : 0.04 : 0.74 152 28 511 0.9316

Table 6: Detection result on different number of CDHGN
convolution layers.

#CDHGNLayer
(LayerNorm)

Dataset
division

#Train #Val #Test
AUC
(test)

∗2-layer 0.22 : 0.04 : 0.74 152 28 511 0.9400

∗8-layer 0.22 : 0.04 : 0.74 152 28 511 0.9398

∗16-layer 0.22 : 0.04 : 0.74 152 28 511 0.9401

∗32-layer 0.22 : 0.04 : 0.74 152 28 511 0.9400
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this account would send emails to an Internet mail
address every 450 seconds periodically, with a total
of 2,882 emails sent. After retrospective analysis by
network security analysts, it was found that the
user’s Outlook was infected with a virus Trojan,
and the Trojan automatically collected documents
containing the “schemes” text and sent them to
the designated outside mail address

(iii) In January of a certain year, the CDHGN prototype
found that the operation of some hosts on the intra-
net showed unknown anomalies. They frequently
initiated communication with other hosts on the
intranet and regularly sent data packets to the exter-
nal network. After the prototype system issued the
abnormal alarm, a malicious file sample was found
through the traceability analysis by security experts.
Through in-depth tracking of the sample file, we
collected 7 C&C hosts and 18 IP addresses used by
them and finally recovered the attacker’s attack
steps and purpose. The attacker first remotely con-
trolled the target server through the Weblogic
XMLDecoder deserialization vulnerability and then
used multiple exploit tools such as EternalBlue and
Doublepulsar backdoor program to infect the inter-
nal network of the previous controlled server and
finally implanted mining programs and remote con-
trol programs. Attackers mainly target corporate
users. They use extranet sites as a breakthrough to
spread malware in the corporate intranet, mine
Monero through mining programs to gain profits,
and use remote control programs to steal corporate
internal data

(iv) In addition, some port scans and webshell upload
attacks were found, and network security analysts
blocked malicious IP addresses through firewalls in
a timely manner

With the popularization of the open and interconnected
characteristic, the power web service system has become the
fortress of the power network security. The adoption of
intelligent intrusion detection techniques like CDHGN in
this environment has become an urgent need.

5. Conclusion

Based on the analysis of complex behaviours of unknown
threat, this paper proposes a detection model based on
continuous-time dynamic heterogeneous graph network
(CDHGN). It first constructs the continuous-time dynamic
heterogeneous graph (CDHG) based on event logs of enti-
ties’ behaviours. Next, it computes the time embedding of
each behaviour based on relative time-encoding function.
Then, the CDHG incorporating the time encoding is fed into
CDHGN to compute behaviour embedding representation.
At last, the behaviour embedding represented by corre-
sponding nodes and edge is used to detect abnormal behav-
iours. To the best of our knowledge, it is the first to use
continuous-time heterogeneous graph construction to detect

anomaly events in computer networks. We have imple-
mented a prototype. The experimental evaluation demon-
strates that our method outperforms other state-of-the-art
methods.

As future work, we will focus on the following issues.
The sinusoidal time-encoding function is neat, while many
attacks of unknown threat will lurk for a long time interval.
A more refined model is needed to capture the complex
attack pattern in the time dimension. Further, we believe
that by introducing malicious network behaviour knowledge
bases, such as attack chain models, to map and weight net-
work behaviours, certain network behaviours that were orig-
inally “inconspicuous” can be amplified and well correlated
in the spatial dimension. Thereby, it would further improve
the detection performance. On the other hand, we are inter-
ested in associating unknown attacks by graph similarity.
The calculation of entity similarity of knowledge graph has
realized many industrial applications, such as recommenda-
tion systems. In the network security, users’ behaviours on
important assets are recorded in real time, and each behav-
iour process and its related equipment information can be
mapped into the CDHG. Therefore, the graph similarity
algorithm can be applied to calculate the similarity between
the CDHG and the attack graph in the security knowledge
base. Then, we can leverage this similarity to further
improve the detection performance.
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