MISD-SLAM: Multimodal Semantic SLAM for Dynamic Environments

Yingxuan You, Peng Wei, Jialun Cai, Weibo Huang, Risheng Kang, and Hong Liu

1Key Laboratory of Machine Perception, Shenzhen Graduate School, Peking University, Beijing 100871, China
2Department of Mechanical Engineering, KU Leuven, Leuven 3000, Belgium

Correspondence should be addressed to Hong Liu; hongliu@pku.edu.cn

Received 19 October 2021; Revised 26 February 2022; Accepted 14 March 2022; Published 5 April 2022

1. Introduction

Recently, robot technology has been developed rapidly with the wide range applications of the Internet of Things (IoT). Simultaneous localization and mapping (SLAM) is an essential technology for most mobile robots. SLAM system, using the data of its on-board sensors, constructs a map of unknown environment and simultaneously estimates its pose within the map. The on-board sensors carried by the robot to perceive surrounding environments can be divided into two categories, camera and lidar. Visual SLAM, whose main sensor is the camera, has received considerable attention and research efforts in the last few decades. An increasing number of excellent visual SLAM systems have been proposed, such as MonoSLAM [1], PTAM [2], LSD-SLAM [3], and ORB-SLAM1-3 [4–6]. Most of the visual SLAM systems can build 3D geometric map and estimate pose precisely [7, 8] and serve as the baseline for both indoor and outdoor SLAM systems [9]. Moreover, with the development of deep neural networks (DNN) in recent years, many people have begun to integrate visual SLAM with DNN to achieve object detection and semantic segmentation [10–16], which makes the systems able to understand the surrounding environments in semantic level.

Despite the progress of visual SLAM systems, the robustness of SLAM system in dynamic scenes is still a challenge. “Dynamic” means there are dynamic objects in the scenes. According to the motion state, objects can be divided into five cases: (1) immovable objects, such as the wall. (2) Objects with motion properties are moving, such as a moving car or a walking person. (3) Objects with motion properties are in the stationary state, such as a parking car on the...
side of the road. (4) Objects without motion properties are in the stationary state, such as a static desk. (5) Objects without motion properties are moved, such as a door being opened or closed and tables and chairs being moved. Among these cases, objects with motion properties and objects without motion properties but being moved are defined as dynamic objects in our work. The dynamic objects may lead to the pose estimation inaccurate or failed and make the map corrupted. However, many SLAM works are based on the common assumption that the environments are static. If there are dynamic objects, the motion of objects will be computed into the motion of the camera. Therefore, any dynamic objects in the frame may reduce the accuracy of camera pose estimation or even lead to localization and mapping failure.

In this paper, we are focusing on semantic understanding and dynamic robustness in visual SLAM. We propose a semantic visual SLAM system with high performance of accuracy and robustness in dynamic indoor environments, which removes the dynamic objects and reconstructs the static background with semantic information. The overview of the proposed system is shown in Figure 1.

The main contributions of this paper are as follows:

1. A multimodal semantic visual SLAM system for indoor dynamic environments (MISD-SLAM) is proposed, which significantly increases the accuracy of pose estimation and works more robust in indoor dynamic scenes
2. A real-time instance segmentation module is proposed to provide semantic knowledge for dynamic objects detection and semantic map reconstruction
3. A robust tracking strategy is proposed by detecting and removing dynamic features based on the semantic information, which not only reduces the impact of dynamic objects to improve the accuracy of pose evaluation but also remains static features as many as possible to improve the robustness in dynamic environments. Then, the method of multiview geometry constraint removes other dynamic pixels and provides static pixels for map reconstruction without the corruptions of dynamic objects
4. The high performance of MISD-SLAM in accuracy and robustness is evaluated by the comparison with the state-of-the-art visual SLAM systems on TUM RGB-D datasets [17] and real-world dynamic environments

The rest of this paper is structured as follows: Section 2 discusses an overview of various related work in the fields of visual SLAM with semantic mapping in dynamic environments. Section 3 demonstrates the method of our system in detail. In Section 4, MISD-SLAM is evaluated and compared with the state-of-the-art SLAM systems, DS-SLAM [18], DynaSLAM [19], DetectSLAM [20], SOF-SLAM [21], and SaD-SLAM [22]. And an experiment in real-world environments is carried out to evaluate the performance of the system in real scenes. Finally, Section 5 concludes with a brief conclusion.

2. Related Work

2.1. Semantic Visual SLAM. Traditional visual SLAM mainly focus on geometric information without semantic knowledge of the surrounding environments, which limits the capabilities of robots for high-level tasks. In last few years, with the significant development of deep neural networks (DNN), integrating DNN into visual SLAM to build both geometric and semantic maps has become an important research direction. There are many DNN frameworks. SSD [10] and YOLO [11] can detect objects in boxes. PSPNet [23], SegNet [16], and DeepLab [24–27] are capable to segment objects in pixel level. Moreover, Mask-RCNN [13]
In this section, we will present the technical details about MISD-SLAM. Figure 2 presents the architecture of the system. We build MISD-SLAM on ORB-SLAM3 [6], which is one of the most novel feature-based visual SLAM systems and YOLACT [14, 15] can further distinguish different instances of the same object in pixel-level. The main usages of semantic knowledge obtained from DNN can be divided into two categories, moving dynamic objects and building semantic maps.

2.2. Visual SLAM in Dynamic Scenes. The majority of visual SLAM systems are based on the common assumption that the environments are static, while the real world is changeable and dynamic. In recent years, several dynamic SLAM methods have been proposed. DS-SLAM [18] combines dynamic object detection and moving consistency check to remove the feature points located on dynamic objects. But the categories it can detect is only 20, which limits its application in complex scenarios. DynaSLAM [19] integrates Mask-RCNN [13] and multiview geometry for motion segmentation, which performs well in dynamic environments. However, it removes all potentially moving objects, such as cars parked on the side of the road, which may lead to too few feature points and impact pose estimation. VDO-SLAM [28] maximizes the number of feature points on dynamic objects using the method of dense optical flow and gets impressive results. But it is complex for real-time operation. SaD-SLAM [22] proposes a RGB-D SLAM system based on ORB-SLAM2 [5], which uses epipolar constraint of feature points in two adjacent frames to detect the static feature points in dynamic environments. But the semantic segmentation has to be processed offline that limits its application in real world. PoseFusion [29] combines human detection method, OpenPose [30], and the dense RGB-D SLAM framework, ElasticFusion [31]. However, it is limited to human detection and may not work well if the human is incomplete in the input image. StaticFusion [32] proposes a method of static and dynamic segmentation to reconstruct the background structure and applies K-means clustering algorithm to reduce the computational complexity. But it will fail if the initial images have more than 30% moving objects. Co-Fusion [33] is a model-based method, which combines object segmentation method and the dense reconstruction framework of ElasticFusion [31]. However, the map of static environment is required to be reconstructed as the precondition for tracking, segmentation, and fusion of dynamic objects, which limits its application. If two or more objects move together, they are represented by the same model until they separate. FlowFusion [34] is a flow-based method, which proposes an optical flow residual base dynamic segmentation and dense RGB-D SLAM method. It can distinguish dynamic and static clusters by setting the thresholds for high and low residuals. But it is not sensitive to the slight motions and may fail in very fast motions.

In this paper, we propose a multimodal semantic visual SLAM system for dynamic environments (MISD-SLAM) based on ORB-SLAM3 [6], which can reduce the impact of dynamic objects to evaluate accurate poses and reconstruct a semantic 3D dense map of static background. Different from the prior works, MISD-SLAM combines multiview geometry constraint method and K-means clustering algorithm to reduce the impact of dynamic pixels for map reconstruction of static background. The experiments in both public datasets and real-world environments demonstrate that our method has high performance of accuracy and robustness in dynamic indoor scenes.

3. System Overview

In this section, we will present the technical details about MISD-SLAM. Figure 2 presents the architecture of the system. We build MISD-SLAM on ORB-SLAM3 [6], which is one of the most novel feature-based visual SLAM systems.
that performs impressively in many datasets as well as real-world scenarios. MISD-SLAM builds three new processes:

(i) Instance segmentation, based on a pretrained network, detects and segments different instances to provide semantic knowledge of surrounding environments

(ii) Dynamic pixel removal removes the ORB features located in predefined dynamic objects which are detected by instance segmentation network then combines multiview geometry constraint with K-means clustering algorithm to remove the undefined but moving pixels to improve the accuracy and robustness in changing environments

(iii) Semantic 3D map construction combines semantic knowledge obtained from instance segmentation network with geometric structure to construct a semantic 3D dense point cloud map in global

3.1. Instance Segmentation. Under the demand of dynamic pixel detection and semantic mapping, we adopt a deep learning-based network to provide instance segmentation and semantic labels in pixel-level. MISD-SLAM utilizes the network of YOLACT++ [15] that is pretrained on MS COCO datasets [35] and can segment 80 classes. The semantic knowledge of the surrounding environments has two purposes. On the one hand, it serves as a prior information for dynamic features removal. We predefined person as a dynamic object in indoor environments. System then removes the ORB features located on the predefined objects, which improves the accuracy of pose evaluation in tracking thread and remains static ORB features as many as possible to improve the robustness in dynamic environments. On the other hand, the semantic knowledge of the pixel is integrated into corresponding 3D point to reconstruct semantic dense point cloud map in the thread of map reconstruction.

3.2. Dynamic Pixels Removal. Although prior semantic information can filter out the predefined dynamic objects in images, there may be some missing detections due to image blurring, incomplete observation, and the moving of not predefined objects. Therefore, the method of multiview geometry constraint is applied to detect the real motion of the remaining image pixels.

As shown in Figure 3, a method of multiview geometry constraint [36], which is based on the relationship of corresponding points in two consecutive frames, can be used to detect whether a pixel is static or dynamic. For current frame \(i\) and the last frame \(j\), firstly, the pixel \(u\) in frame \(i\) is back-projected to 3D world coordinate as a point \(w^i p\) using the information of camera pose \(T^i\) of current frame and its depth value \(z\) from the depth image:

\[
w^i p = w^i T \pi^{-1}(u, z),
\]

where \(\pi^{-1}\) denotes the function of back-projection which depends on the camera types.

Then, the 3D point in world coordinate \(w^i p\) is projected to the image pixel \(u'\) of the last frame \(j\):

\[
u' = \pi^{-1}(w^j T^{-1} w^i p),
\]

where \(\pi\) denotes the function of perspective projection and \(w^j T\) is the camera pose of frame \(j\) estimated in tracking thread.

Furthermore, the 3D point \(w^j p'\) in the world coordinate of the pixel \(u'\) in the last frame \(j\) can be rebuilt as:

\[
w^j p' = w^j T \pi^{-1}(u', z'),
\]

where \(z'\) denotes the depth value of pixel \(u'\) in frame \(j\).

If the point is static in both current frame \(i\) and the last frame \(j\), as shown in Figure 3(a), the points in 3D world coordinate \(w^i p\) and \(w^j p'\) is pretty close to each other or even overlap. Otherwise, if the point is dynamic, the distance \(d\) between the two points \(w^i p\) and \(w^j p'\) in 3D world coordinate is large, as shown in Figure 3(b). Therefore, a threshold \(d_{th}\) is set to judge the dynamic points and static points. Due to the depth error increases with distance, the threshold \(d_{th}\) is set to linearly grow with the depth \(z\):

\[
d_{th} = d_{base} + kz,
\]

where \(d_{base}\) is the base value of distance and \(k\) is the scaling factor of depth \(z\). We set \(d_{base} = 0.2\) and \(k = 0.025\).

Figure 3: Multiview geometry constraint. \(C_i\) and \(C_j\) are two consecutive frames, \(u\) and \(u'\) are corresponding image pixels, and \(w^i p\) and \(w^j p'\) are their back-projection points.
If the distance d between $w\mathbf{p}$ and $w\mathbf{p}'$ is larger than the threshold d_{th}, then the image pixel of current frame is determined as dynamic. Otherwise, the pixel is static.

Furthermore, in order to reduce the calculation and running time, K-means clustering algorithm and voting method are proposed to detect dynamic pixels, as shown in Figure 4. Combining with the depth image and the camera pose estimated from the tacking thread, the remaining pixels of the RGB image are back-projected to 3D points in the world coordinate to create a point cloud. The 3D point cloud are divided into k clusters by K-means clustering algorithm, where k is calculated by the number of remaining pixels/2000. In each cluster, 100 points are randomly selected. If there are not 100 points in one cluster, then all of the points are selected. The motion property of each selected point is determined by the method of multiview geometry constraint method. Then, voting method is used to determine the motion property of each cluster according to the majority motion properties of its selected points:

$$\text{Motion}_i = \begin{cases} \text{dynamic}, & \text{num}_{\text{dynamic}} > \text{num}_{\text{static}} \\ \text{static}, & \text{num}_{\text{dynamic}} \leq \text{num}_{\text{static}} \end{cases}$$ (5)
where \(\text{Motion}_i \) denotes the motion property of the \(i \)th cluster, \(\text{num}_{\text{dynamic}}/\text{num}_{\text{static}} \) denotes the number of dynamic/static points among the selected points in \(i \)th cluster. If the number of dynamic points is larger than the number of static points, then the cluster is dynamic; otherwise, the cluster is static. Finally, the corresponding image pixels of the points in dynamic clusters are determined as dynamic.

Combining the predefined dynamic objects in instance segmentation and the dynamic pixels in motion detection, the total dynamic pixels are obtained. In the following process of map reconstruction, the dynamic pixels are removed, and the static pixels are used to reconstruct the map of static background.

3.3. Semantic 3D Map Construction. The thread focuses on reconstruct the static background of keyframes. The map type is 3D point cloud with semantic labels. As shown in Figure 1, the inputs of map reconstruction thread are the RGB-D image pair, semantic image, and camera pose estimated in the tracking thread. After the process of dynamic pixels removal, the total dynamic regions in RGB image are obtained, including the predefined dynamic objects
Table 1: Results of absolute trajectory error (ATE) and improvements of MISD-SLAM compared to ORB-SLAM3 in dynamic sequences.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>ORB-SLAM3 [6]</th>
<th>MISD-SLAM (ours)</th>
<th>Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSE</td>
<td>Mean</td>
<td>S.D.</td>
</tr>
<tr>
<td>Sitting_static</td>
<td>0.0067</td>
<td>0.0055</td>
<td>0.0037</td>
</tr>
<tr>
<td>Walking_static</td>
<td>0.0248</td>
<td>0.0199</td>
<td>0.0148</td>
</tr>
<tr>
<td>Walking_xyz</td>
<td>0.2895</td>
<td>0.2620</td>
<td>0.1232</td>
</tr>
<tr>
<td>Walking_rpy</td>
<td>0.1655</td>
<td>0.1396</td>
<td>0.0889</td>
</tr>
<tr>
<td>Walking_halfsphere</td>
<td>0.3305</td>
<td>0.2977</td>
<td>0.1434</td>
</tr>
</tbody>
</table>

Table 2: Results of absolute trajectory error (ATE) and improvements of processed PL-SVO compared to original PL-SVO in dynamic sequences.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>PL-SVO [37]</th>
<th>Processed PL-SVO</th>
<th>Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSE</td>
<td>Mean</td>
<td>S.D.</td>
</tr>
<tr>
<td>Sitting_static</td>
<td>0.0084</td>
<td>0.0077</td>
<td>0.0033</td>
</tr>
<tr>
<td>Walking_static</td>
<td>0.0075</td>
<td>0.0065</td>
<td>0.0037</td>
</tr>
<tr>
<td>Walking_xyz</td>
<td>0.2811</td>
<td>0.2409</td>
<td>0.1363</td>
</tr>
<tr>
<td>Walking_rpy</td>
<td>0.1770</td>
<td>0.1541</td>
<td>0.0872</td>
</tr>
<tr>
<td>Walking_halfsphere</td>
<td>0.1149</td>
<td>0.1112</td>
<td>0.0289</td>
</tr>
</tbody>
</table>

detected in instance segmentation and the dynamic pixels determined by their motion properties. To reduce the impact of the region edges, the dynamic region edges in the image are expanded 20 pixels. The depth values of the expanded dynamic regions in the depth image are set to zero. Except the image pixels located in the expanded dynamic regions, the other image pixels are static pixels. However, the static pixels are not all reconstructed to the map, because the points of some static pixels may have existed in the map, which are called redundant points. To avoid redundant points, before back-projecting the static image pixels into 3D points in the local point cloud, we perform an operation of pixel-point association. As for each point in the global point cloud, it is projected to a pixel in current image based on the camera pose and camera internal parameters, so that we can get the position \((x, y)\) and depth value \(z\) of the projected pixel. Then, according to the position \((x, y)\) of the projected pixel, we obtain four pixels around it in current image. If the minimum depth difference between the four image pixels and the projected pixel is smaller than the threshold (0.02 in our work), which indicates that the image pixel has been reconstructed in the map, then the image pixel of the minimum depth difference will not be used to be back-projected into the 3D space. We set the depth value of this pixel to zero. Then, the image pixels with depth value in the range of \(z_{\text{min}}\) to \(z_{\text{max}}\) are back-projected into 3D points to generate the local point cloud of current keyframe, based on the camera internal parameters and the camera pose that is estimated in the tracking thread. We set the threshold values \(z_{\text{min}} = 0.2\) and \(z_{\text{max}} = 8.0\). In this way, the dynamic pixels and the redundant pixels in the image are not reconstructed in the point cloud because their depth values were set to zero. For semantic labels, a color attribute of point is applied to represent its category according to the semantic image. For example, the point classified to chair is labeled in orange color, and the keyboard is purple color. As for the point without semantic information, its color attribute is set the corresponding pixel value in RGB image. Then, the local static point cloud with semantic labels of current keyframe is fused into the global point cloud in the world coordinate, which reconstructs the map of static background incrementally.

4. Experiments

In this section, we demonstrate our MISD-SLAM system in public TUM RGB-D datasets [17] and real-world scenes to evaluate its performance of accuracy and robustness in dynamic environments. First, MISD-SLAM system is compared with original ORB-SLAM3 [6] to verify the improvement of performance. Then, we replace ORB-SLAM3 to another backbone, PL-SVO [37] to validate the effectiveness of the proposed method. In addition, our MISD-SLAM system is compared with the state-of-the-art SLAM systems in dynamic environments. Besides, the semantic 3D dense point cloud maps and the time performance are presented. Finally, an experiment in real-world environments is carried out to evaluate the performance of the system in real scenes. All the experiments run on a computer with Intel E5-2683 CPU and Nvidia GTX 1080 GPU. The GPU is only used for instance segmentation.

4.1. Experiments in TUM RGB-D Datasets. The TUM RGB-D datasets [17] provide video sequences of indoor scenes recorded by Microsoft Kinect at the frame rate of 30 Hz. The datasets include RGB images and depth images with 640×480 resolution, as well as ground truth trajectories. We select the sequences of dynamic scenes to evaluate our MISD-SLAM system. In the sequences of sitting series, there are two people sitting on chairs in front of a desk and talking with each other. These sequences represent low-dynamic environments. In the sequences of walking series, people
walk most of the time. These sequences are in high-dynamic, which would seriously impact the accuracy and robustness of ordinary SLAM systems. ORB-SLAM3 [6] is a state-of-the-art visual system and serves as the backbone of our MISD-SLAM, so we firstly compare these two systems and make a quantitative evaluation.

We compare ORB-SLAM3 [6] and MISD-SLAM in dynamic sequences of TUM RGB-D datasets [17], which are composed of four patterns of camera ego-motions including keeping still in one place (static), moving along three directions (xyz), rotating along the principle axes (rpy) and moving on a small half sphere (halfsphere). The comparison results are presented in Figure 5, where the two camera trajectories obtained from these systems in sequence walking_xyz are, respectively, plotted with the ground truth trajectory. The difference between trajectories of ORB-SLAM3 and ground truth is apparent in Figure 5(a), while in Figure 5(b), the two trajectories of MISD-SLAM and ground truth are very close, which shows the robustness and accuracy of our system. The reason is

Figure 7: Trajectory comparison of original PL-SVO [37] and processed PL-SVO in dynamic sequences. Sitting series is in low-dynamic, and walking series is in high-dynamic. The green line is the trajectory of original PL-SVO, the blue line is the trajectory of processed PL-SVO, and the black dotted line is the ground truth.

that the dynamic features detected by ORB-SLAM3 are assumed as static features to estimate the trajectory, which leads the wrong results. While in MISD-SLAM system, these dynamic features are removed and the impact on trajectory prediction are reduced significantly.

Furthermore, we compare ORB-SLAM3 [6] and our MISD-SLAM system in other dynamic sequences. The results are shown in Figure 6, where the trajectory of ORB-SLAM3 [6] is green line, the MISD-SLAM is blue line, and the ground truth is black dotted line. In Figures 6(a) and 6(b), the three trajectories are very close which indicates the accuracies of both systems are high in low-dynamic sequences. However, in Figure 6(c) and 6(d), the trajectories of ORB-SLAM3 [6] are deformed seriously, while the trajectories of MISD-SLAM are still close to the ground truth. We perform a quantitative evaluation of the two SLAM systems in different sequences in Table 1, using the values of root mean squared error (RMSE), mean error, and standard deviation (S.D.) of absolute trajectory. It can be seen that due to the removal of dynamic feature points, MISD-SLAM significantly reduce the impact of dynamic objects and effectively

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitting_static</td>
<td>0.0065</td>
<td>—</td>
<td>—</td>
<td>0.010</td>
<td>0.0060</td>
<td>0.0059</td>
</tr>
<tr>
<td>Walking_static</td>
<td>0.0081</td>
<td>0.006</td>
<td>—</td>
<td>0.007</td>
<td>0.0166</td>
<td>0.0091</td>
</tr>
<tr>
<td>Walking_xyz</td>
<td>0.0247</td>
<td>0.015</td>
<td>0.0241</td>
<td>0.018</td>
<td>0.0167</td>
<td>0.0129</td>
</tr>
<tr>
<td>Walking_rpy</td>
<td>0.4442</td>
<td>0.035</td>
<td>0.2959</td>
<td>0.027</td>
<td>0.0318</td>
<td>0.1252</td>
</tr>
<tr>
<td>Walking_halfsphere</td>
<td>0.0303</td>
<td>0.025</td>
<td>0.0514</td>
<td>0.029</td>
<td>0.0257</td>
<td>0.0168</td>
</tr>
</tbody>
</table>

Table 3: Comparison results of absolute trajectory RMSE (m) against the state-of-the-art dynamic SLAM systems.

![Figure 8](image-url)

Figure 8: The semantic 3D dense point cloud maps built by MISD-SLAM. (a) is the map without dynamic point removal, and (b) is the map with dynamic point removal.

Table 4: Time evaluation of MISD-SLAM in dynamic sequences of TUM RGB-D datasets (ms). The results of each row are the running time of corresponding modules in each sequence. The last row is the average time of above sequences in corresponding modules.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>ORB feature extraction (ms)</th>
<th>Instance segmentation (ms)</th>
<th>Multiview geometry (ms)</th>
<th>Semantic map construction (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitting_static</td>
<td>12.981</td>
<td>36.465</td>
<td>144.085</td>
<td>121.388</td>
</tr>
<tr>
<td>Walking_static</td>
<td>14.575</td>
<td>36.109</td>
<td>205.484</td>
<td>296.667</td>
</tr>
<tr>
<td>Walking_xyz</td>
<td>14.146</td>
<td>36.150</td>
<td>180.533</td>
<td>338.903</td>
</tr>
<tr>
<td>Walking_rpy</td>
<td>12.345</td>
<td>36.640</td>
<td>200.591</td>
<td>274.928</td>
</tr>
<tr>
<td>Walking_halfsphere</td>
<td>12.484</td>
<td>36.536</td>
<td>161.401</td>
<td>244.241</td>
</tr>
<tr>
<td>Average time</td>
<td>13.306</td>
<td>36.380</td>
<td>178.419</td>
<td>255.225</td>
</tr>
</tbody>
</table>

Table 5: Comparison of the time performance to other methods. The total time includes the time of feature extraction, semantic segmentation, and dynamic objects removal but without the time of map construction.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Total time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-SLAM [18]</td>
<td>76.46</td>
</tr>
<tr>
<td>DynaSLAM [19]</td>
<td>286.47</td>
</tr>
<tr>
<td>Detect-SLAM [20]</td>
<td>340.00</td>
</tr>
<tr>
<td>MISD-SLAM (ours)</td>
<td>228.11</td>
</tr>
</tbody>
</table>
estimate the correct trajectory, which demonstrates high robustness and correctness of the system.

To validate the effectiveness and application of the proposed method, we replace ORB-SLAM3 [6] to another backbone, PL-SVO [37], and evaluate its performance of trajectory accuracy. PL-SVO [37] is a monocular visual odometry algorithm combining point features and line features with RGB image inputs, which is appropriate for this experiment of backbone replacement. We processed PL-SVO [37] by adding the modules of instance segmentation and dynamic features removal to remove the point features and line features located in the dynamic objects. We compare original PL-SVO and processed PL-SVO in the dynamic sequences of TUM RGB-D datasets. The quantitative results are shown in Table 2. It can be seen that the performance of accuracy is improved in all of the dynamic sequences. Especially, the improvement in sequence walking_xyz is over 90%. Figure 7 shows the qualitative results by visualizing their trajectories, where the green line is the trajectory of original PL-SVO, the blue line is the trajectory of processed PL-SVO, and the black dotted line is the ground truth. Figures 6 and 7 indicate that the original ORB-SLAM3 and the original PL-SVO are impacted by the dynamic objects in the environments, and their trajectory accuracy is low compared to the ground truth, especially in high-dynamic sequences. Processed by the proposed method, the dynamic features are removed, and the accuracy performance is improved significantly, which validates the effectiveness and application of the proposed method. Although we provide the experiment using another backbone, our goal is not to explore the effect of different backbones. We focus our attention on the following experiments based on MISD-SLAM with the backbone of ORB-SLAM3.

4.2. Comparison with Other Visual SLAM Systems. In this part, we adopt dynamic sequences of TUM RGB-D datasets [17] to compare our MISD-SLAM against the five state-of-the-art visual SLAM systems, DS-SLAM [18], DynaSLAM [19], Detect-SLAM [20], SOF-SLAM [21], and SaD-SLAM [22] which have been proposed for dynamic environments and semantic tasks in last three years. The results are shown in Table 3, and the results of the five SLAM systems come from published papers. The results of our MISD-SLAM gained after running on the datasets for five times and taking the average values. The sequence sitting_static is in low-dynamic, and walking series is in high-dynamic. MISD-SLAM performs better in sequences of sitting_static, walking_xyz, and walking_halfsphere.

The experiment results indicate the high performance of our system. MISD-SLAM removes dynamic features according to the result of instance segmentation, then remaining pixels with potential movement are detected and removed through multiview geometry constraint method. After these two steps, the moving image pixels are deleted, and the impact of dynamic objects is reduced.

However, if there are too few features, the system may estimate wrong pose, or even track failure. Compared with the other four systems, MISD-SLAM reduces the impact of dynamic objects to improve the accuracy of pose evaluation and remains static features as many as possible to improve the robustness in dynamic environments, which improves the performance of accuracy and robustness.

4.3. Semantic 3D Maps. This part presents the semantic 3D dense point cloud maps built by MISD-SLAM system. Figure 8 compares two maps built in the high-dynamic sequence of TUM RGB-D datasets [17], walking_xyz. Figure 8(a) is reconstructed without dynamic pixels removal. It can be seen that the dynamic persons reduce the accuracy of camera pose estimation, which make the things misplaced. Besides, the moving persons are modeled in the map. Therefore, Figure 8(a) is corrupted and difficult to use. Figure 8(b) is constructed after dynamic pixel removal, which reduces the influence of dynamic objects, so that the static background can be reconstructed with the accurate camera pose. The map with dynamic pixels removal is
4.4. Evaluation of Time Performance. Time performance is another important indicator to evaluate the proposed method. We evaluate the time performance in four major modules: ORB feature extraction, instance segmentation, dynamic pixels removal, and semantic map construction. The results shown in Table 4 are the running time of corresponding modules in each sequence and the average time of all the sequences. The time performances of ORB feature extraction and instance segmentation are achieved in real time. The most time-consuming module is the semantic map construction module. But it only operates in keyframes, which is selected from input frames so the number of keyframes is less than the number of input frames. And the semantic map construction module operates in parallel with other modules. Therefore, the time cost of semantic map construction module affects little to the whole process. The multiview geometry constraint method slowdowns the process compared to other modules in MIDS-SLAM. However, compared to the modules with similar function, MIDS-SLAM has higher time performance than DynaSLAM [19] (333.68 ms in sequence walking_halfsphere and 235.98 ms in sequence walking_rpy) and Detect-SLAM [20] (310 ms), due to its reduction of computational complexity by K-means clustering algorithm and voting method.

Furthermore, Table 5 shows the comparison of the time performance to other methods, including DS-SLAM [18], DynaSLAM [19], and Detect-SLAM [20]. Given that some methods do not provide the time of map construction in their papers and the large variability of map construction time in different hardware conditions of computing, rendering, and displaying, it is more fair to compare the total time except map construction. Table 5 lists the total time except map construction to represent the time performance, which is the sum of the average time of feature extraction, semantic segmentation, and dynamic objects removal. Among these methods, DS-SLAM [18] is optimized for real time, and the other three methods are not optimized for real time. It can be seen that MIDS-SLAM has higher time performance among the not optimized methods and achieves comparable performance to the optimized method. The comparison results of time performance indicates that the proposed method plays an important role in reducing the computational complexity and achieves high time performance.

4.5. Experiments in Real-World Environments. Experiments in real-world environments are carried out to evaluate the performance of the MIDS-SLAM system in real scenes.
The images of RGB and depth are captured by iPad Pro with 320×240 resolution. The experiment scene is an office, where a person is walking around, and the camera is doing translational motion.

In Figure 9, the images from left to right are raw ORB feature extraction image of ORB-SLAM3 [6] and images in our system including instance segmentation image, clustering image, and ORB features extraction image after dynamic feature removal. It can be seen that the moving people are detected in the instance segmentation image. The dynamic features located in the dynamic objects are removed. The removal of dynamic features reduces the influence of dynamic objects for better camera pose estimation, and semantic mapping. Furthermore, after K-means clustering and multiview geometry constraint, dynamic pixels in the scene are removed significantly.

Figure 10 shows the 3D semantic map constructed by MISDSLAM system in these two real scenes. Because the dynamic features are removed, the camera pose can be correctly estimated. The system back-projects the static image pixels into 3D space based on the camera pose to build a static point cloud map of the real scene. 2D map with semantic information generated by 3D semantic point cloud map can be applied in navigation and planning tasks [18, 38].

5. Conclusions

In this paper, we propose a novel multimodal semantic SLAM system (MISDSLAM), which could perform robustly in dynamic environments and build a semantic 3D point cloud map. MISDSLAM builds three main processes: instance segmentation, dynamic pixel removal, and semantic 3D map construction. An instance segmentation network [15] is introduced to provide semantic knowledge of surrounding environments. The ORB features located on the predefined dynamic objects are removed directly. In this way, MISDSLAM effectively reduces the impact of dynamic objects to provide precise pose estimation. Then, combining multiview geometry constraint with K-means clustering algorithm, our system removes the undefined but moving pixels. Meanwhile, a 3D dense point cloud map with semantic information is reconstructed. Moreover, experiments are carried out on challenging sequences of TUM RGB-D datasets [17] as well as the real-world scenes to evaluate the performance of MISDSLAM. Compared to original ORB-SLAM3 [6] and the state-of-the-art SLAM systems, the results indicate that our method significantly improves the localization accuracy and system robustness, especially in high-dynamic environments.

However, there exists some limitations in MISDSLAM. First, the process of dynamic objects is not flexible enough, because the objects may be static in some frames and dynamic in other frames. Second, the depth range of the RGB-D camera is restricted, which limits its application in larger scenes. In the future, the developments of MISDSLAM will focus on optimizing the strategy of dynamic objects removal in the reconstructed map and improving the real-time performance. Furthermore, we will adopt inertial measurement unit (IMU) to expand the scope of application in larger environments.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (no. 62073004) and Science and Technology Plan of Shenzhen (no. JCYJ20190808182209321).

References
