
Research Article
Optimal Model of Software Testing Path Selection Based on
Genetic Algorithm and Its Evolutionary Solution

Lili Zhan

School of Information Engineering, Harbin University, Harbin, Heilongjiang 150086, China

Correspondence should be addressed to Lili Zhan; zhanlili@hrbu.edu.cn

Received 4 May 2022; Revised 17 May 2022; Accepted 25 May 2022; Published 15 June 2022

Academic Editor: Kalidoss Rajakani

Copyright © 2022 Lili Zhan. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In software testing, the selection of test data is a difficult problem in structural testing. Whether the test data is appropriate or not
is directly related to whether the error can be expected to be detected. In the process of software testing, the generation of test data
is not only the core problem but also the key and difficulty of software testing. Because of the huge number of test cases and low
test efficiency, a powerful optimization algorithm is needed to optimize the initial test cases. As a robust search method, genetic
algorithm shows unique advantages and high efficiency in solving high-complexity problems such as large space, multipeak,
nonlinear, and global optimization. Based on the application of genetic algorithm, this paper analyzes the optimization path by
classifying and calculating the objective function and introducing NSGA-II algorithm, measures the distance between each
branch on the processing path sample set, and sorts the path set to obtain the optimal solution. On the basis of the designed
model, the experimental results show that the error control rate of the model is 89.4%. Moreover, because of the superiority of
NSGA-II algorithm, the probability of comprehensive cross mutation is increased by 56.7%.

1. Introduction

With the rapid development of computer science and tech-
nology, the continuous emergence of new computer soft-
ware and hardware technologies, and the wide and in-
depth application of computers in various industries of the
national economy, computer software technology, as an
indispensable part of computers, plays a more and more
important role [1]. Ensuring software quality has become
an important topic in the field of software in recent years.
Some defects in the software will probably directly lead to
software failure, especially in some key areas with large
number of users or high safety factor [2]. Software testing
is an indispensable part of the software life cycle, and it is
also a very complex process, which may greatly extend the
time of the software life cycle [3]. The rapid development
of computer makes software face more and more require-
ments. These requirements often make the software system
become huge and make the overall complexity of the soft-
ware system higher and higher, and the demand for software
testing and reliability is stronger and stronger [4]. However,
people’s ability to develop high-quality software lags far

behind the increasing demand of the society for computer
software, and there are many hidden faults and defects in
the developed software system.

Undoubtedly, improving software quality, like improv-
ing software productivity, has become a problem that must
be always concerned and solved in the whole software devel-
opment process [5]. The purpose of software testing is to
generate test data and find the errors in these test data.
Therefore, an excellent system test environment should have
the ability to differentiate good test data from bad test data.
It should be able to detect good test data and generate them
[6]. For general complex software, path coverage is an
important test method, and it has been proved that many
test methods can be transformed into path coverage test data
generation. Most genetic algorithm-based path coverage test
data generation methods generally cover one target path at a
time [7]. Testers generally use manual methods to design
test data. The automatic generation of test data will effec-
tively reduce the labor intensity of testers and save the cost
of software development [8]. For the multipath coverage test
data generation problem, it is transformed into a function
optimization problem, and a mathematical model is

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 7601096, 9 pages
https://doi.org/10.1155/2022/7601096

https://orcid.org/0000-0002-9138-5182
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7601096


established [9]. In order to reduce the computational cost,
the coarse-grained function is used as the objective function.
The target paths are grouped according to the objective
function, and each group of individuals conducts indepen-
dent evolution [10]. As a technology, genetic algorithm is
used in the process of automatic test cases. According to
the existing research, evolutionary testing is often called
genetic algorithm in the literature.

Software testing is one of the main feasible methods to
increase programmers’ great confidence in the correctness
and reliability of software [11]. Contrary to static analysis,
the software execution involved in dynamic testing tools is
the feedback of generating test data according to software
testing and relying on software implementation. Take the
logical precautions of the original software to ensure that
these additional instructions have no impact [12]. Optimiza-
tion technology is a risk-based regression testing strategy,
which aims at finding the most potential defects in the tested
software with the least number of test cases, including test
case selection technology, test case minimization technology,
and test case prioritization technology. The optimization
model of the above problem is established, and the multiob-
jective evolutionary algorithm is used to solve it [13]. The
idea is as follows: first, take multiple paths as decision vari-
ables; establish a multiobjective optimization model based
on the number of edges, paths, and their coverage difficulty
contained in the decision variables; then, use multiobjective
evolutionary algorithm to solve the model, and obtain the
target path set [14]. However, in the above research and
analysis, the problem of software test path selection optimi-
zation model and its evolutionary solution has not been well
solved. Therefore, this paper puts forward the following
innovations:

(1) For the software with random data and other uncer-
tain parameters, the test adequacy criterion of path
test with random data is given. According to the
given test criteria, the optimization model is estab-
lished. To solve the problem of test data generation,
an evolutionary solution method based on genetic
algorithm is adopted [15]. For the path coverage
problem of this kind of software, establish an appro-
priate test adequacy criterion

(2) Aiming at the problem of increased testing difficulty
caused by the existence of multiple processes and
communication statements in parallel programs, this
paper proposes a path test selection method suitable
for this situation. In the process of establishing the
design model, taking multiple parallel program paths
as decision variables, the objective function is com-
pared and analyzed through adaptive function,
NSGA-II, and other algorithms, and the optimal
solution is obtained under linear constraints

The chapters of this paper are arranged as follows: The
first chapter of this paper is the introduction, which dis-
cusses the background and significance of the topic selection
and expounds the innovation of the article. In the second
chapter of this paper, the innovative achievements and the

research ideas of this paper are put forward based on the
research achievements in the field of optimization model
and evolutionary solution of software testing path selection
by genetic algorithm at home and abroad. The third chapter
of this paper is the method part, which deeply discusses the
application and principle of related algorithms, and based on
the previous research results, combined with the innovation
of this paper, a new software testing path selection optimiza-
tion model and its evolutionary solution model are pro-
posed. The fourth chapter of this paper mainly discusses
the experimental part of the application of the algorithm.
Through the experimental results, on the basis of sorting
out the data, an optimization model is established. The fifth
chapter is the summary part, which summarizes the research
results and shortcomings of this paper, as well as the pros-
pect of follow-up research.

2. Related Work

Aghabeig and Jaszkiewicz think that regression testing is an
important stage in the process of software testing. When the
code is modified, the software hardware platform is changed
or the hardware configuration is changed; regression testing
must be carried out. As an integral part of the software life
cycle, regression testing occupies a large proportion of the
workload in the whole software testing process, and multiple
regression tests will be conducted in each stage of software
development [16]. Hu et al. proposed that the test case opti-
mization technique is a risk-based regression testing strat-
egy. Its purpose is to use the fewest test cases to find the
most potential defects in the software under test, and on
the one hand, it can save computing resources and time
and, on the other hand, can reflect the adequacy of the test
[17]. The static analysis tool pointed out by Tong et al. can
analyze the code not executed under the test software
whether manually or automatically. It is a limited plan that
contains array references, pointer variables, and other
dynamic structure analysis techniques [18]. Martowibowo
and Kaswadi put forward a theory and method of software
testability transformation based on the dominance relation-
ship of target statements. The basic idea is if there is another
target statement that makes the target statement dominate
the original target statement, the new target statement will
replace the original target statement to generate test data,
thus eliminating the adverse effects of the marked variables
[19]. Research by Adame and Salau shows that static testing
is the process of finding possible errors in program code or
evaluating program code without executing program code.
Dynamic testing examines the dynamic behavior and results
of a program by running it on sample test data to find bugs.
Dynamic testing consists of three core components: generat-
ing test cases, running programs, and verifying program
results [20]. Liu et al. proposed how to reasonably and effec-
tively select the test data as the input from the huge input, so
as to meet the specific coverage criteria, and how to design
good test data, which will affect the test quality and then
the software quality. Generating test data reasonably is the
basis of implementing efficient software testing [21].
WangPing et al. used interval operation to select the path

2 Wireless Communications and Mobile Computing



for the problem of unreachable path in cell coverage test.
The method first selects a section of the path, then judges
the reachability of the path through interval operation, and
if it is unreachable, it modifies it and finally obtains a reach-
able path containing elements to be covered [22]. Han
pointed out that software testing is the execution of a soft-
ware system or component under given conditions and the
act of observing or recording the results. A test case used
in software testing is a collection of data used for a specific
purpose, such as input data, program paths, execution con-
ditions, and test requirements [23]. The research results of
Cao et al. show that component-based software engineering
is a technology to ensure efficient and high-quality software
development. However, for component-based software, how
to ensure software reliability is also a difficult problem for
test engineers, and software testing is a necessary means to
ensure software reliability [24]. Li et al. put forward that
some representative operations or data will be selected in
software testing, and they will form test cases. By using these
operations and data on the tested program, the actual feed-
back information of the tested program will be obtained,
and then, it will be compared with the expected results,
and finally, the conclusion of whether the tested program
meets the expected results will be obtained [25]. Shakya
and Smys’ studies show that each chromosome corresponds
to a solution to the problem. The genetic algorithm starts
from the initial population, adopts the selection strategy
based on the proportion of fitness value to select individuals
in the current population, and uses hybridization and muta-
tion to generate the next generation population [26]. Al
pointed out that if the GA algorithm does not make corre-
sponding judgment on the test feedback and makes corre-
sponding adjustment when necessary, the GA algorithm
may derive illegal data that does not meet the definition of
the program under test. Bryan F. Jones converts variables
into bit strings and uses bits as nodes for mutation and

crossover. In small populations, better optimization results
can be obtained only by mutation [27]. Alphonse et al. think
that by combining complex network with software testing,
the program is constructed into a weighted complex net-
work, and the key nodes and key test paths in the program
are found out. Then, the software test paths are clustered,
and the representative paths are selected from each class to
get the minimum test path [28].

Based on the research of the abovementioned related
work, this paper determines the positive role of genetic algo-
rithm in the field of software testing path selection optimiza-
tion model and its evolutionary solution and builds a genetic
algorithm model that combines multiple algorithms. Genetic
algorithm analysis conducts in-depth analysis and research,
uses data more effectively, mines valuable knowledge hidden
behind data, and discovers and finds potential problems that
affect Ruan Jiyou’s test path selection optimization model
and evolutionary solution.

3. Methodology

3.1. Analysis and Research of Related Theories

3.1.1. Software Test Data Generation Based on Genetic
Algorithm. A general genetic algorithm is an adaptive global
optimization probabilistic search algorithm formed by simu-
lating the genetic and evolutionary processes of organisms in
the natural environment. GA search algorithm is an iterative
process search algorithm of “survival + detection.” In order
to solve the problem of circular path, this paper proposes a
new path exploration method, which reduces the number
of states required to achieve high coverage. This method first
determines the state priority and then prunes the new states
created without changing the code coverage state. The
genetic algorithm takes each chromosome in the population
as the object and uses random method to guide the coded

Gen = 0

Randomly generate initial
population

Meet
termination
conditions 

Calculate the fitness of each
individual in the population

i = 0

i = M?

Output result

End

Gen = Gen+1

Selection of genetic operators and
their probabilities

i = i+1

Perform
crossover

Perform
mutation

Perform
replication

i = i+1

True

False

True

Figure 1: General flow chart of genetic algorithm.

3Wireless Communications and Mobile Computing



parameter space to perform evolutionary search to find the
optimal solution. It has the characteristics of self-organiza-
tion, parallelism, independence, and multisolution, which
is in line with the analysis of the software test path experi-
ment in this paper. Figure 1 is the general flow of the genetic
algorithm.

As can be seen from the above figure, firstly, in the ran-
domly generated initial population, the number of individ-
uals is generally certain, and each individual is represented
as chromosome-based coding. Then, the fitness of each indi-
vidual is calculated to judge whether it meets the optimiza-
tion criteria. If it does, the optimal individual will be
output. At the same time, it also has the optimal solution.
If it does not meet the requirements, the circular calculation
will continue to screen. In the regenerated individuals, the
high and low fitness screening, the high fitness will have a
high probability of being selected; on the contrary, it will
have a low probability. According to a certain method of
variation and crossover, the optimal solution analysis is con-
tinued in the new generation of population selected by
Shuai. The optimal solution set can be obtained by recipro-
cating calculation.

The genetic algorithm is superior to the traditional opti-
mization method because its search space is a population,
not a single solution; the genetic algorithm uses the fitness
function in the evolution process, which can solve all kinds
of fitness functions and constraints; the genetic algorithm
does not use the determination The state transition rule
adopts probability, so it can perform global search very well.
Because the self-moderation should be considered when
applying genetic algorithm to solve the optimal analysis of
software path testing, it is necessary to design an appropriate
fitness function to evaluate the performance of test data. By
replacing the original samples and data on the template of
genetic algorithm, the process of generating software test
data using genetic algorithm can be expressed as follows:
coding the input data to form individuals in the initial pop-
ulation; using random method to produce a specific number
of individuals, so as to form the initial population; taking the
generated individual as input, the tested program can be run
after inserting, so as to obtain the individual fitness; genetic
screening of individuals according to fitness to form the next

generation of population; and cycle the above process until
an individual meeting the conditions is found, or the given
termination criteria are met.

3.1.2. Software Test Path and Data Filtering. In order to
improve the generation efficiency of multipath coverage test
data, a suitable mathematical model must be established. In
fact, in the process of evolution, the generated test data may
not cover the current target path but may cover other target
paths. Therefore, this paper chooses an appropriate method
to improve the utilization rate of test data. The success of the
fitness function directly affects the success of the algorithm.
The function value of fitness function represents the test effi-
ciency of test cases in the parameter domain corresponding
to an individual, and the test cases corresponding to individ-
uals with high fitness have higher test efficiency. Such test
cases can cover as many component-based software paths
as possible in a shorter time and find more component-
based software errors.

It is necessary to introduce the evaluation function. The
path crossed by the test data X is PðXÞ. It is assumed that the
branch distance of PðXÞ from the target path is BPðXÞ. Then,
for the test data X of the target path, the defined evaluation
function is expressed as follows:

gP Xð Þ = f P Xð Þ + 1 − 1:01−BP Xð Þ
� �

: ð1Þ

If and only if the path X traversed by PðXÞ is the target
path, that is, PðXÞ = P, then gPðXÞ = 0. Obviously, the
smaller the value of gPðXÞ, the closer X will be to the test tar-
get. Figure 2 shows an example of program control flow.

If there are three test data, and the second and third test
data will execute condition 2, the first test data will deviate
from the branch of the original objective function after com-
pleting condition 1, so the fitness of the second and third test
data will be much better than test data 1. At this time, this
paper assumes that the condition is if a ≥ 8. When inputting
data ϖ, the value of a after running the assumption is
recorded as aðϖÞ, and the calculation formula of branch dis-
tance corresponding to this input is as follows:

dist ϖð Þ =
0, a ϖð Þ ≥ 8,
8‐a ϖð Þ, a ϖð Þ < 8:

(
ð2Þ

At this time, this paper uses fitnessðϖÞ to represent the
fitness function of individual ϖ. In general, fitnessðϖÞ is the

e5

43

2 1

S

Figure 2: Example diagram of program control flow.

...

min f1 min f3min f2

{𝜛11, 𝜛12,..., 𝜛1m,} {𝜛21, 𝜛22,..., 𝜛2m,} {𝜛n1, 𝜛n2,..., 𝜛nm,}

...

Figure 3: Schematic diagram of information sharing among
individuals.

4 Wireless Communications and Mobile Computing



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5

Re
du

ct
io

n 
ra

te
s f

or
 d

iff
er

en
t

se
le

ct
ed

 p
at

h 
se

ts

Sample set quantization coefficient

M1
M2

Figure 4: Reduction rates for different selected path sets.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10

O
pt

im
iz

in
g 

th
e e

ffi
ci

en
cy

 o
f g

en
et

ic
al

go
rit

hm
s

Sample set quantization coefficient

M1
M2

Figure 5: Optimizing the efficiency of the genetic algorithm.

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5

Pa
th

 se
t t

es
t e

rr
or

 n
um

be
r

Sample quantitative index

A
B
C

Figure 6: Path set test error number.

5Wireless Communications and Mobile Computing



sum of layer proximity and branch distance, as follows:

fitness ϖð Þ = Appr ϖð Þ + Normal dist ϖð Þð Þ: ð3Þ

Among them,

Normal distð Þ = 1 − 1:001‐dist: ð4Þ

In the above formula, it is the calculation formula of
standardized branch distance. ϖ contains exactly all test
data, which is a necessary and sufficient condition for indi-
vidual fitness function fitnessðϖÞ = 0. Therefore, when the
individual fitness function ϖ is smaller, it means that the dis-
tance between fitnessðϖÞ and the target is smaller. In this
way, the genetic algorithm can be used to solve the problem
from the perspective of minimizing the problem.

With the solution of subproblems, the number of popu-
lation will decrease correspondingly. However, in the tradi-
tional multipopulation genetic algorithm, the number of
population is always the same. Finally, there are differences
in communication methods among populations. Therefore,
this paper proposes an individual information sharing
between different populations, so it is also necessary to share
information between individuals. Using the form of simulta-
neous evolution of multiple groups, each subpopulation
optimizes a subproblem. In this way, individual information
is shared among different populations during evolution to
increase the solution range of various groups, so as to
improve the solution efficiency. Generally, a random method
is selected to generate a subpopulation with a population size
of i for the min f iðϖiÞth suboptimization problem m as fol-
lows:

M Pið Þ = ϖi1, ϖi2,⋯, ϖimf g: ð5Þ

Including i = 1,⋯, n. ϖij represents the i individual in
the j subpopulation. All subspecies evolve independently.
Therefore, f iðϖijÞ represents the fitness of individual ϖij.
Figure 3 is a schematic diagram of information sharing
among individuals.

Therefore, when it is necessary to judge whether the
individual ϖij is the optimal solution of the kth optimization
subproblem min f i, it is not necessary to calculate f kðϖijÞ,
and it is only necessary to judge whether the path ϖij tra-
versed by the individual PðϖijÞ is equal to the target path
Pk. If PðϖijÞ = Pk, then ϖij is the optimal solution of the k
subproblem; otherwise, ϖij will not participate in the evolu-
tion of the k subpopulation. At the same time, there is no
need to calculate the fitness value ϖij of k to the f kðϖijÞ opti-
mization problem at this time.

3.2. Optimization Algorithm Design and Evolutionary
Computation. We want to get as many test path sets as pos-
sible, so that more sample sets can be included in the calcu-
lation, so as to meet the adequacy criterion of the test. Set the
path set corresponding to the decision variable as X, and the

set including edges is

E = x1 ∪ x2∪⋯∪xm: ð6Þ

Then, the number of edges jEj contained in the path at
this time can be expressed as follows:

f1 Xð Þ = − Ej j = − x1 ∪ x2∪⋯∪xmj j: ð7Þ

In the set of selectable paths, it is hoped that redundant
paths can be reduced, so the number of paths needs to be
as small as possible. This is because the fewer paths, the less
test data need to be generated, thus reducing the time con-
sumption of path testing. Halstead measure is introduced
here, which can effectively express the complexity of the pro-
gram, and it is expressed as follows:

D xð Þ = θin
∗ + θjN̂

∗
: ð8Þ

In the above formula, n∗, N̂∗
is obtained after the linear

normalization of n, N̂ . When the influence on Halstead mea-
sure is different, the given θ is also different. In the process-
ing of the above indicators, it is found that the smaller the
difficulty of path coverage, the fewer functions and expres-
sions in the path set, and the fewer edges and paths may
be included. Therefore, there is a linear relationship f ðxÞ,
and it is in a positive correlation. So the optimization model
of the objective function is

min f i Xð Þ, f j Xð Þ
� �

: ð9Þ

Generally speaking, if a path set contains more edges,
then more paths should be needed, and the path set coverage
is difficult. However, we expect that the path set contains
fewer paths and the coverage is less difficult. Therefore,
including f iðxÞ, f jðxÞ two conflicting goals is a typical two-
goal minimization problem. At this time, it is necessary to

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5

Pr
ob

ab
ili

ty
 o

f c
ro

ss
ov

er

Sample quantitative index

X1
X2

Figure 7: Probability of cross-variation.

6 Wireless Communications and Mobile Computing



adopt targeted methods to efficiently obtain the optimal
solution set on the objective function of the problem.

Since NSGA-II is one of the most widely used and best
effective methods for solving continuous optimization prob-
lems, it is quite reasonable to use this method to solve evolu-
tionary problems in this paper. In the process of finding the
target path set, the individual scale can be changed through
the crossover operation, and new individuals can be gener-
ated. As can be seen from the above section, the individuals
in this chapter are a set, and there are two ways to generate
new individuals through crossing, the crossing between sets
and the crossing within sets. Because of the crossover oper-
ation within the set, the newly generated individual will con-
tain unreachable or incomplete paths. At this time, you can
get:

X1 = x11, x21,⋯, xα1
� �

, ð10Þ

X2 = x12, x22,⋯, xβ2
� �

: ð11Þ

This is for individuals in a single set, but it also has a
good effect in the whole changeable genetic process. Judge
the individuals who need to perform mutation operation
according to the individual mutation probability: then, ran-
domly select a gene position that needs mutation, that is,
the mutation point; finally, a path is randomly selected from
the initial path set to judge whether the path is repeated with
the path in the current individual. If the formula is repeated
on this path, a new path needs to be selected. If it is not
repeated, the path needs to be replaced by the path on the
mutation point. If no such path exists in the initial set of
paths, no replacement is required.

4. Result Analysis and Discussion

In order to establish a scientific, feasible, and practical model
system, it is the prerequisite and foundation for correctly
calculating the optimization path and the software testing
path of evolutionary analysis. Therefore, the principles of

integrity, scientificity, and accuracy should be followed when
establishing the model structure. This paper designs the
optimization and evolutionary calculation model of software
test path based on genetic algorithm. In the experiment, the
reliability and accuracy of the model will be described from
several important parameters: the reduction rate of different
selected path sets, the efficiency of optimized genetic algo-
rithm, the number of path set test errors, the probability of
cross mutation, and the overall path optimization rate. In
the following, M1 and M2 are selected as the experiments
on the reduction rate and the optimization of the efficiency
of the genetic algorithm for different path sets, as shown in
Figures 4 and 5.

For each selected experiment path set, the selected
method is path set, which can greatly reduce the number
of paths. Among them, the average reduction rate is the larg-
est M1, up to 57.33%, and the smallest M2. Compared with
the same multiobjective function, the number of paths will
be less, and the reduction rate will be higher. However, the
algorithm designed in this paper can not include all edges,
including reachable edges, which means that it can not meet
the adequacy criterion of the test. Therefore, when selecting
the path set, we should pay attention to the number of
redundant paths in order to affect the final result. In terms
of the efficiency of the genetic algorithm, it can be clearly
found that the optimized calculation process has been
greatly simplified. With the increase of the number of sam-
ple sets, the overall trend is upward, which also shows that
the efficiency is continuously increasing. However, accord-
ing to the actual calculation, it will not increase when it
reaches the average value of 75.8%. Although there is infinite
growth in theory, in practice, due to the constraints of the
site and energy, there will be no extreme growth. But overall,
the efficiency of the optimized genetic algorithm is improved
by 70.9%. Let A, B, and C be the experimental set of the
selected unprocessed path set on the number of path set test
errors, as shown in Figure 6.

Since there are always errors in the actual test, it is nec-
essary to control the number of error individuals, which is
also necessary to obtain accurate results. In the figure above,

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5

O
ve

ra
ll 

pa
th

 o
pt

im
iz

at
io

n 
ra

te

Sample quantitative index

X1
X2

Figure 8: Overall path optimization rate.

7Wireless Communications and Mobile Computing



it can be found that sample set A has a good stability and is
at a low level on the whole quantization axis. The other two
sample sets B and C, although compared with each other,
have a large number of error individuals, but in the whole
sample set, their error individuals are extremely few. Because
the cyclic calculation in genetic algorithm often produces
repeated results, there are still repeated errors in the error
individuals, but they will also be counted as the second error
individuals or even multiple error individuals in model
detection. Therefore, but overall, the error control of the
model designed in this paper has been in a reasonable range,
and the comprehensive error control rate is 89.4%. Let X1
and X2 be the test sample set on the probability of cross
mutation and the overall path optimization rate. The exper-
imental analysis are shown in Figures 7 and 8.

In the calculation of genetic algorithm, crossover and
mutation often occur, which is also determined by the char-
acteristics of genetic algorithm. In the general sense of inher-
itance, the increase of the probability of crossover and
mutation means that the number of samples that can be gen-
erated is greatly increased, which is conducive to the emer-
gence of excellent samples, and an optimized sample set
can be formed as soon as possible. After the experiment,
the cross mutation rate of the model designed in this paper
basically keeps a high state, which will be more powerful
than the selection of excellent subsets and facilitate the opti-
mization calculation. Because NSGA-II algorithm is embed-
ded in the analysis, it also strengthens the efficiency and
accuracy of continuous optimization. With the support of
optimization calculation, the probability of comprehensive
cross-mutation is increased by 56.7%. Figure 8 shows the
analysis of the overall model, which basically maintains the
stability in the optimization scheme and calculation, which
plays a good role in a large number of repeated calculations
to prevent large differences in the processing of different
sample sets, resulting in the failure of sample sets.

5. Conclusions

The path generation and selection method in the existing
path test have low test efficiency, high test overhead, and
easy generation of redundant test paths, which makes the
test efficiency difficult to meet the requirements. This paper
studies the path selection optimization model for software
testing and its evolutionary solution. Test case prioritization
is implemented with genetic algorithm. Genetic algorithm is
a method to search the optimal solution by simulating the
natural evolution process. This paper proposes a genetic
algorithm suitable for the optimal path prioritization of test
software. In the selection stage, in order to select individuals
more accurately, we use fine-grained fitness function to
select individuals. By using local evolutionary genetic algo-
rithm, we can generate test data more efficiently, and by
selecting different evaluation functions at different stages of
the algorithm, the calculation cost is greatly reduced. The
model is based on genetic algorithm, combined with the fit-
ness function formulated according to the actual situation;
uses the selection, replication, crossover, mutation, and
other operations in genetic algorithm; takes the methods of

data flow chart analysis and selection, program insertion,
and so on as the auxiliary; and calculates the test data of
the optimal path according to the evolution of the selected
path. But overall, the model designed in this paper has been
in a reasonable range for error control, and the comprehen-
sive error control rate is 89.4%. Moreover, due to the superi-
ority of the NSGA-II algorithm, it also strengthens the
efficiency and accuracy of continuous optimization. With
the support of optimization calculations, the probability of
comprehensive crossover variation is improved by 56.7%.

Data Availability

The figures used to support the findings of this study are
included in the article.

Conflicts of Interest

The author declares that there are no conflicts of interest.

References

[1] S. Wang, J. Li, and X. Gao, “Optimization of cutting parame-
ters for complex surface NC machining based on genetic algo-
rithm,” Boletin Tecnico/Technical Bulletin, vol. 55, no. 12,
pp. 86–92, 2017.

[2] M. Nabil and E. A. Hamra, “A hybrid approach based on
genetic algorithm and particle swarm optimization to improve
neural network classification,” Journal of Information Technol-
ogy Research, vol. 10, no. 3, pp. 48–68, 2017.

[3] E. Chiarito, F. Cigna, G. Cuozzo et al., “Biomass retrieval based
on genetic algorithm feature selection and support vector
regression in Alpine grassland using ground-based hyperspec-
tral and Sentinel-1 SAR data,” European Journal of Remote
Sensing, vol. 54, no. 1, pp. 209–225, 2021.

[4] S. Sui, H. Ma, H. W. Chang, J. F. Wang, Z. Xu, and S. B. Qu,
“Optimization design of metamaterial absorbers based on an
improved adaptive genetic algorithm,” Applied Computational
Electromagnetics Society Journal, vol. 34, no. 8, pp. 1198–1203,
2019.

[5] V. Jamshidi, V. Nekoukar, and M. H. Refan, “Analysis of asyn-
chronous distributed multi-master parallel genetic algorithm
optimization on CAN bus,” Evolving Systems, vol. 11, no. 4,
pp. 673–682, 2020.

[6] C. Jiang, K. Hao, W. Pedrycz, L. Chen, and X. Cai, “Optimiza-
tion control method for industrial Internet of Things based on
biological adaptive coevolutionary,” Wireless Networks,
vol. 27, no. 8, pp. 5145–5160, 2021.

[7] A. A. Taleizadeh, R. Askari, and I. Konstantaras, “An optimi-
zation model for a manufacturing-inventory system with
rework process based on failure severity under multiple con-
straints,” Neural Computing and Applications, vol. 34, no. 6,
pp. 4221–4264, 2022.

[8] H. Moayedi, M. A. Mu'Azu, and L. K. Foong, “Swarm-based
analysis through social behavior of grey wolf optimization
and genetic programming to predict friction capacity of driven
piles,” Engineering with Computers, vol. 37, no. 2, pp. 1277–
1293, 2021.

[9] N. Charhouni, M. El Amine, M. Sallaou, and K. Mansouri, “A
preference-based multi-objective model for wind farm design
layout optimization,” International Journal on Interactive

8 Wireless Communications and Mobile Computing



Design and Manufacturing (IJIDeM), vol. 16, no. 1, pp. 323–
337, 2022.

[10] T. Cui, W. Zhao, and C. Wang, “Design optimization of vehi-
cle EHPS system based on multi-objective genetic algorithm,”
Energy, vol. 179, no. 15, pp. 100–110, 2019.

[11] A. Davahli, M. Shamsi, and G. Abaei, “Hybridizing genetic
algorithm and grey wolf optimizer to advance an intelligent
and lightweight intrusion detection system for IoT wireless
networks,” Journal of Ambient Intelligence and Humanized
Computing, vol. 11, no. 11, pp. 5581–5609, 2020.

[12] E. Gunpinar and S. Khan, “A multi-criteria based selection
method using non-dominated sorting for genetic algorithm
based design,” Optimization and Engineering, vol. 21, no. 4,
pp. 1319–1357, 2020.

[13] Z. Xie, L. Li, and X. Luo, “A foot-ground interaction model
based on contact stability optimization for legged robot,” Jour-
nal of Mechanical Science and Technology, vol. 36, no. 2,
pp. 921–932, 2022.

[14] J. Wang, Z. Cheng, O. K. Ersoy, F. Wang, P. Zhang, and
Z. Dong, “Crop planting structure optimization based on
improved real genetic algorithm,” International Agricultural
Engineering Journal, vol. 27, no. 2, pp. 169–185, 2018.

[15] M. Kamalinejad, H. Arzani, and A. Kaveh, “Quantum evolu-
tionary algorithm with rotational gate and Hϵ-gate updating
in real and integer domains for optimization,” Acta Mechan-
ica, vol. 230, no. 8, pp. 2937–2961, 2019.

[16] M. Aghabeig and A. Jaszkiewicz, “Experimental analysis of
design elements of scalarizing function-based multiobjective
evolutionary algorithms,” Soft Computing, vol. 23, no. 21,
pp. 10769–10780, 2019.

[17] Q. Hu, J. Jia, Y. Zhu, J. Cao, and J. Li, “A multisource PNT
fusion algorithm based on a variance genetic model,” Interna-
tional Journal of Control, Automation and Systems, vol. 20,
no. 4, pp. 1294–1304, 2022.

[18] X. Tong, J. Shen, and S. Yu, “Double optimization of the meso-
scopic geometric parameters of ball-end milling cutters based
on interactive experiment,” International Journal on Interac-
tive Design and Manufacturing (IJIDeM), vol. 16, no. 1,
pp. 37–47, 2022.

[19] S. Y. Martowibowo and A. Kaswadi, “Optimization and simu-
lation of plastic injection process using genetic algorithm and
moldflow,” Chinese Journal of Mechanical Engineering,
vol. 30, no. 2, pp. 398–406, 2017.

[20] B. O. Adame and A. O. Salau, “Genetic algorithm based opti-
mum finger selection for adaptive minimum mean square
error rake receivers discrete sequence-CDMA ultra-wide band
systems,” Wireless Personal Communications, vol. 123, no. 2,
pp. 1537–1551, 2021.

[21] R. Liu, R. Wang, R. Bian, J. Liu, and L. Jiao, “A decomposition-
based evolutionary algorithm with correlative selection mech-
anism for many-objective optimization,” Evolutionary Com-
putation, vol. 29, no. 3, pp. 1–36, 2020.

[22] Z. WangPing, J. Min, Y. JunFeng, L. KunHong, and
W. QingQiang, “The design of evolutionary feature selection
operator for the micro-expression recognition,” Memetic
Computing, vol. 14, no. 1, pp. 61–76, 2022.

[23] X. Han, “A study of performance testing in configurable soft-
ware systems,” Journal of Software Engineering and Applica-
tions, vol. 14, no. 9, pp. 474–492, 2021.

[24] B.-w. Cao, X.-h. Liu, W. Chen, Y. Zhang, and A.-m. Li, “depth
optimization analysis of articulated steering hinge position

based on genetic algorithm,” Algorithms, vol. 12, no. 3,
pp. 55–55, 2019.

[25] G. Li, H. Wang, L. Xu, M. Wu, and N. Cao, “A hybrid optimi-
sation algorithm based on genetic algorithm and ACO algo-
rithm improvements for routing selection in heterogeneous
sensor networks,” International Journal of Embedded Systems,
vol. 1, no. 1, p. 1, 2019.

[26] S. Shakya and S. Smys, “Reliable automated software testing
through hybrid optimization algorithm,” Journal of Ubiqui-
tous Computing and Communication Technologies, vol. 2,
no. 3, pp. 126–135, 2020.

[27] C. Al, “Genetic algorithm for test suite optimization: an exper-
imental investigation of different selection methods,” Turkish
Journal of Computer and Mathematics Education (TURCO-
MAT), vol. 12, no. 3, pp. 3778–3787, 2021.

[28] S. Alphonse, B. Jacques, N. Kitmo, R. Djidimbele, P. Andre,
and K. Cesar, “Optimization PV/batteries system: application
in Wouro Kessoum Village Ngaoundere Cameroon,” Journal
of Power and Energy Engineering, vol. 9, no. 11, pp. 50–59,
2021.

9Wireless Communications and Mobile Computing


	Optimal Model of Software Testing Path Selection Based on Genetic Algorithm and Its Evolutionary Solution
	1. Introduction
	2. Related Work
	3. Methodology
	3.1. Analysis and Research of Related Theories
	3.1.1. Software Test Data Generation Based on Genetic Algorithm
	3.1.2. Software Test Path and Data Filtering

	3.2. Optimization Algorithm Design and Evolutionary Computation

	4. Result Analysis and Discussion
	5. Conclusions
	Data Availability
	Conflicts of Interest

