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With the development of location-based social networks, the point-of-interest recommendation has become one of the research
hotspots in the field of recommendation. However, traditional technologies like collaborative filtering are limited by the
influence of data sparsity and cannot accurately capture the users’ preferences from the complex context. In order to address
this problem, a recommendation model based on graph convolutional neural network is proposed, named RMGCN. RMGCN
is composed of three parts: graph structure features extraction module, geographical factor evaluation module, and score
calculation module. The graph structure feature extraction module is used to extract node features from the graph structure
data composed of user check-in records. The geographical factor evaluation module is used to calculate the influence
coefficient of geographical factors on user’s decision-making behaviors. The score calculation module is used to combine the
output results of the above two modules and calculate the user’s preference scores of point-of-interests combined with
temporal context and spatial context. Experimental results on two real-world datasets show that RMGCN has better
recommendation performance than baselines.

1. Introduction

In location-based social networks, users communicate with
other users on the platform by sharing check-in information.
The core content of check-in information is the location,
which is called point-of-interest (POI) in location-based social
networks. With the rapid development of location-based
social networks, the scale of social platforms has been expand-
ing. On the one hand, the large-scale platform attracts a large
number ofmerchants, which increases the variety and scope of
choices available to users, resulting in the problem of informa-
tion overload—users cannot make efficient choice decisions in
a short time; on the other hand, a large-scale platform can
accommodate more active users, who generate a large amount
of user behavior data during interaction with social platforms.
Obviously, fully mining user behavior data can create great
economic value for the platform. In order to improve the user
experience and increase the economic benefits of the platform,
POI [1] recommendation emerged at the right time and grad-
ually became a hot research topic.

Compared with traditional recommendation tasks, such
as music recommendation and film recommendation, the
challenges faced by POI recommendation are more severe.
This challenge mainly consists of two aspects: data sparsity
and complex context. First, data sparsity: in the scenario of
POI recommendation, the cost of generating an activity
record is relatively high, resulting in fewer check-in records
for most users, i.e., serious data sparsity problems will be
faced during modeling; second, complex context: a check-
in decision of a user is affected not only by the temporal con-
text but also by the geographical context, which also means
that the decision of a user is affected by multiple contexts,
that is, a user’s preference [2, 3] will vary with the context.
How to accurately capture a user’s preference in a complex
context is another challenge in the field of POI
recommendation.

To address the above-mentioned two challenges, recent
works have been carried out from the perspective of integrated
multifactor joint modeling. Zhang and Chow [4] integrated
geographical factors, social relationships, and POI
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classification into the same framework and combined various
information to assess users’ preferences for POIs. Xie et al. [5]
reconstructed users’ check-in records in the form of a bipartite
graph and used the network embedding model to learn the
characteristic representation of users and POIs and finally
generated a recommendation list for users through the scoring
calculation formula integrating time, geography, and seman-
tics. Li et al. [6] proposed a high-order tensor decomposition
algorithm based on time perception to capture the influence
of time information, geographical location, and POI classifica-
tion on user decision-making.

As can be seen from the above researches, integrating
various context information is conducive to modeling users’
preferences, and the graph-based approach can naturally
and intuitively reconstruct user check-in behaviors in com-
plex contexts [5]; however, most recent research works are
shallow models, lacking the ability to deeply mine user char-
acteristics from graph structure data.

For this purpose, a POI recommendation method based
on Graph Convolutional Network (GCN) and multiple con-
texts is proposed to mine the characteristic representation of
users and POIs from graph structure data. Firstly, two kinds
of bipartite graphs are constructed according to the check-in
information of users to capture the correlation between POIs
and users and that between POIs and time factors, respec-
tively; then, features of users, POIs, and various contexts are
extracted by the improved GCN model; finally, a unified scor-
ing formula is used to calculate the preference score of each
POI for the target user and generate a recommendation list.

The contributions of this paper are summarized as
follows:

(1) We construct two novel graphs for capture user pref-
erences in complex context

(2) We propose an enhanced neighborhood aggregation
function for precisely representing the user
preferences

(3) Extensive experiments show that our proposed
model is superior, compared with representative
baselines

2. Related Work

This chapter will review recent research works from two
aspects: POI recommendation and GCN.

2.1. Researches on POI Recommendation. In recent years, the
research works deeply mine the influence of various factors
such as time factor, geographical factor, and POI classifica-
tion on user behaviors. Zhang and Chow [7] divided users’
check-in time into workdays and weekends to explore the
temporal correlation of users’ check-in behaviors and used
the kernel density estimation method to model the influence
of geographical factors on user preferences. Finally, a recom-
mendation model TICRec that integrated time correlation
and regional correlation was proposed. Liu et al. [8] deeply
mined the influence of time factors on users’ decision-
making and proposed a double-weighted low-rank graph

construction model, which combines users’ interest and
their changing sequential preferences with time interval
assessment to provide POI recommendations for specific
time periods. Lian et al. [9] performed visualized analysis
on the locations of users’ check-in behaviors and found a
spatial aggregation phenomenon, that is, individual visit
locations tend to aggregate; in addition, they defined the user
activity region and POI influence region to capture this phe-
nomenon. Li et al. [10] introduced the idea of learning-to-
rank into the field of POI recommendation, constructed a
partial order relationship for POIs by using the check-in fre-
quency of users, and proposed a ranking-based geographic
factorization model Rank-GeoFM to mitigate the negative
impact of data sparsity on the recommendation performance
of the model. Feng et al. [11] proposed a recommendation
model for joint modeling of user preferences and POI
sequence transformation effects by integrating the influence
of geographical factors based on the representation learning
method. Yang et al. [12] integrated time factors and space
factors and proposed a model UPOST for user preference
of space-time topics. This model infers user preferences for
different types of locations in different periods by learning
space-time topics from users’ historical semantic locations.

It can be seen from the above studies that time factors and
geographical factors play an important role in modeling user
preferences in the POI recommendation field. Therefore, this
paper will comprehensively consider the influence of time fac-
tors and geographical factors and introduce them into the
joint modeling of user preferences in the unified model to
improve the recommendation performance of the model.

2.2. Researches on GCN. Graph Convolutional Network
(GCN) was first proposed by Kipf and Welling [13] and used
for semisupervised learning tasks. It aggregates features from
neighbor nodes of target nodes through a message transfer
mechanism to enhance the feature representation of target
nodes. Although GCN has a powerful ability to extract node
features from graph structures, it is still subject to graph size
and aggregation mode. In order to solve the problem that
GCN cannot be applied to large-scale graph data, Hamilton
et al. [14] proposed the GraphSAGE model, changing the tra-
ditional aggregation mode in GCN to sampling aggregation
and randomly sampling a certain number of nodes from its
two-step neighbor nodes for feature aggregation according to
the topological structure of the target node in the network.
This reduced the computational size of the aggregation opera-
tion. Veličković et al. [15] introduced the attention mecha-
nism from the perspective of aggregation mode and
constructed the graph attention network (GAT). Different
from the average aggregation method in traditional GCN,
GAT learns the attention coefficient between nodes through
a layer of feedforward neural network and applies it to aggre-
gation operations to realize weighted feature aggregation. In
addition, He et al. [16] pointed out that there is redundant fea-
ture mapping operation in traditional GCN from the perspec-
tive of efficiency of GCN and proposed a simplified version of
GCN called LightGCN. In LightGCN, only the node aggrega-
tion operation is retained. The results show that LightGCN
has higher training efficiency without losing model accuracy.
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In order to consider the training efficiency and recom-
mendation performance of the model, this paper uses
LightGCN as a basic model to construct a graph neural net-
work to extract node features.

3. Background Knowledge and
Definition of Concepts

This chapter introduces the traditional GCN and LightGCN
models and defines the core concepts relevant to the
research work in this paper.

3.1. Basic GCN and LightGCN. GCN was inspired by convo-
lutional neural networks (CNN). The core modules of CNN
are the convolution layer and pooling layer. The convolution
layer is used for feature extraction, and the pooling layer is
used for feature compression. The combination of the two
can demonstrate a powerful feature extraction capability in
data based on Euclidean space, but cannot be used in non-
Euclidean-space data such as graph data. Therefore, Kipf
and Welling [13] redefined CNN’s core operations, convolu-
tion, and pooling on the data of the graph structure.

For a given static undirected graph G = ðV , EÞ, V repre-
sents the set of nodes in the graph; E represents the set of
edges in the graph. The calculation method of the h + 1 fea-

ture representation vector z!
h+1
vi

of the node vi ∈ V in GCN in
the figure is shown in
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where NðviÞ represents the first-order neighbor node of the
node vi in the figure, and the denominator of the fraction
in Formula (1) represents the degree normalization of the
two nodes, which corresponds to the convolution operation
in CNN, namely, the feature extraction operation.Wh+1 rep-
resents the weighting matrix of GCN in h + 1, used for fea-
ture mapping of feature vectors. σð:Þ represents a
nonlinear activation function.

He et al. [16] analyzed the convolution operation of
GCN from the perspective of efficiency and proposed a light
graph convolution operation (LightGC) through theoretical
and experimental verification. The calculation method of
this operation is shown in
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It can be seen from Formula (2) that the step of feature
mapping in traditional GCN is omitted in LightGC, and only
the operation of aggregating features from node neighbor
sets is retained. It can be seen from the theoretical analysis
of LightGCN [16] and experimental data that the omission
of feature mapping does not affect the performance of
GCN on recommendation tasks, and the overhead of the

model is reduced due to the omission of this step. Therefore,
this paper will take LightGCN based on LightGC as the basic
model to construct the POI recommendation method.

3.2. Definition of Concepts. This section defines the concepts
of the graph structure involved in this article and gives a
description of the POI recommendation problem.

In order to analyze the users’ check-in behaviors, this
paper converts users’ check-in records into graph-structure
data where nodes represent users, POIs, and timestamps.
Further, we construct two undirected and weighted graphs:
user-POI graph and time-POI graph. The two graphs are
defined as follows:

Definition 1 (user-POI graph). If U = fu1,⋯, umg is used to
represent user set and P = fp1,⋯, png is used to represent
POI set,m, n represents the number of users and the number
of POIs, respectively. Then, the bipartite graph of user-POI
can be expressed as GUP = ðU , P, EupÞ. The composition rule
of graph GUP is: if a user u signs in to POI p, there will be an
edge eup in graph GUP , and the weight of this edge is the fre-
quency of user u signing in to POI p, which is recorded
aswup.

The user-POI graph is used to describe the user’s check-
in behaviors and visually express the user’s preference for
the POI by taking the check-in frequency as the edge weight.
Without loss of generality, the weights are normalized.

Definition 2 (time-POI graph). If T = ft1,⋯, tbg is used to
represent the time set and P = fp1,⋯, png is used to repre-
sent the POI set, b, n represents the time and the number
of POIs, respectively. Then, the bipartite graph of time-
POI can be expressed as GTP = ðT , P, EtpÞ. The composition
rule of graph GTP is: if POI p is within a time t, there will be
an edge etp in graph GTP , and the weight of this edge is the
frequency of POI p being signed in within the time t, which
is recorded as wtp. The weights of time-POI graph are also
normalized.

The time-POI graph is used to describe the correlation
between POIs and check-in time. According to the conclu-
sions of the research works [5, 6], the check-in frequencies
of the same POI are different at different times; the check-
in frequencies of different POIs are different at the same
time. This indicates that users’ check-in behaviors are largely
influenced by time factors. In this paper, the time is divided
according to a model of 12 hours a day to capture the check-
in rules of users at different times of the day.

Definition 3 (POI recommendation). According to the
description of POI recommendation in researches [5, 10],
POI recommendation is defined as follows: for a recommen-
dation request q = ðu, l, tÞ, u indicates the target user; l indi-
cates the location of the user, and t indicates the time when
the request is initiated. POI recommendation is to generate a
list of recommended POIs List = fp1,⋯,pkg (length: k) that
the user has not visited.
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4. Recommendation Model Based on Graph
Convolution Neural Network (RMGCN)

This chapter will detail the proposed model, including the
overall framework, core modules, and model optimization.

4.1. Model Framework. In view of the above-mentioned
statements, this paper proposes a Recommendation Model
Based on Graph Convolution Neural Network (RMGCN),
which consists of three core modules: a graph structure fea-
ture extraction module, geographical factor evaluation mod-
ule, and score calculation module.

The graph structure feature extraction module is used to
extract the feature representation of nodes from two types of
bipartite graphs, a user-POI graph, and a time-POI graph.
The geographical factor evaluation module is used to model
the influence of geographical factors on user decision-
making behaviors. Finally, the score calculation module is
used to calculate user preference scores for each POI and
generate a final recommendation list.

4.2. Graph Structure Feature Extraction Module. The graph
structure feature extraction module is used to extract the fea-
tures of nodes from two bipartite graphs. Specifically, the
feature vector u!,pu! of a user-POI graph is extracted from
the user-POI graph to describe the correlation between the

user and the point-of-interest; the feature vector t
!
, pt! of

time and POI is extracted from the time-POI graph to
describe the direct correlation between time and POI.

It can be understood from the description in Section 3.1
that the LightGC operation is capable of efficiently complet-
ing node feature aggregation and extraction, though the
valuable ability to combine edge weight in the graph is
absent from LightGC. Edge weight attributes are extremely
important in graphs for both a user-POI graph and a time-
POI graph: for a user-POI graph, the weight of the edge indi-

cates the frequency at which the user accesses the POI. The
greater the weight, the higher the frequency, which reflects
user preference for the POI; likewise, for a time-POI graph,
the weight of the edge indicates how often the POI is
accessed during that time. The higher the weight, the more
frequently it is accessed, which also reflects a significant
probability of the POI’s being accessed during the same time
in the next cycle.

Therefore, in order to incorporate the important edge
weight attribute into the aggregation operation, Equation
(2) has been improved upon in this paper. Retention nor-
malization is employed and a convolution operation of
WD-LightGC with fusion degree and weight normalization
is proposed for the purpose of integrating edge weight:

z!
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= 〠
vj∈N við Þ

wvivj

∑vx∈N við Þwvivx

z
!h

vjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N vj
� ��� �� N við Þj j

q : ð3Þ

Equation (3) involves the calculation formula of WD-
LightGC, which optimizes the process of node feature
extraction by introducing edge weight coefficients and then
improves the recommendation performance of the model.

The corresponding node feature vectors u!,pu!, t
!
, pt! can be

extracted from the two bipartite graphs with the help of
Equation (3).

4.3. Geographical Factor Evaluation Module. Researches [5,
6, 9] have shown geographical distance to be an important
factor in user decision-making. An analysis of real-life situa-
tions has indicated that the geographical factor may exert
less influence on users within an acceptable distance range.
Beyond that range, however, users will abstain from visiting
a location even if they would like to because of the effort
required to reach it. For example, if the desired restaurant

Input User check-in set D, regularization coefficient λ, user-POI graph GUP , time-POI graph GTP , geographical thresholddo
Output Model parametersΘ
1. Initialize model parametersΘ;

2. Calculate the feature vector u!,pu!, t
!
, pt! according to Equation (3);

3. Calculate the geographical factor coefficient gc according to Equation (4);
4. Calculate the user preference scores for the POI according to Equation (6);
5. Minimize Equation (7) and optimize model parameters with a stochastic gradient descent algorithm, repeating steps 2, 3, 4, and 5
before model convergence.

Algorithm 1: Model Training.

Input Model parameters Θ, Recommendation request q = ðu, l, tÞ
Output Recommended list List = fp1,⋯,pkg
1. Calculate the user preference scores for the POI according to Equation (6);
2. Sort the POIs in descending order of preference score;
3. Take the first k POIs to form a recommendation list for the user.

Algorithm 2: Recommendation List Generation.
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is 20 km away from the current location at lunchtime, then
the user will most likely forego undertaking the journey.

In order to grasp the impact of geographical factors on
user check-in behaviors, the geographical factor evaluation
module has been incorporated in RMGCN to calculate the
geographical factor coefficient of the current POI p, as
shown in

gc l, lp
� �

=
1

dis l, lp
� � , ð4Þ

where disðl, lpÞ represents the geographical distance coeffi-
cient between the POI p and the current location l, which
is calculated as shown in

dis l, lp
� �

=
max geo l, lp

� �
, do

� �
do

, ð5Þ

where geoðl, lpÞ represents a function that calculates the geo-
graphical distance between two points through latitude and
longitude, both of which are expressed in latitude and longi-
tude. do denotes the geographic distance threshold, which is
the hyperparameter of the model, and max ð:Þ denotes tak-
ing the maximum value. As shown in Equation (4) and
Equation (5), within the range do, the geographical factor
exerts less influence on user choice, and gc is a constant; out-
side the range do, gc will decrease as the value of disðl, lpÞ
increases, which means that users are less likely to visit
places that are too far away.

4.4. Score Calculation Module. Based on the node feature
and geographical factor coefficients calculated in Sections
4.2 and 4.3, this paper has designed a score calculation mod-
ule that incorporates temporal and spatial contexts. To be

more specific, the calculation method of the user ui and
POI pj preference scores at time tx and location lo is shown
in

sui ,pj = ui
!Τ ⋅ puj

�! + tx
!Τ

⋅ pt j
�!� �

⋅ gc lo, lp
� �

: ð6Þ

Through Equation (6), the preference scores of the target
user for each POI at the current time and geographical loca-
tion can be obtained to generate the recommendation list
under the current time and location for the user according
to the preference scores in descending order.

4.5. Model Optimization and Recommendation Process. For
model optimization, this paper has adopted a framework
based on Bayesian personalized ranking (BPR) [17] for
model parameter learning.

The loss function based on BPR is defined as shown in

L = ‐〠
m

u=1
〠
pi∈Du

〠
pj∉Du

Inτ su,pi − su,pj

� �
+ λ Θk k2, ð7Þ

where Du represents the set of user u check-ins, τð:Þ repre-
sents the sigmoid function, λ represents the regularization
coefficient, and Θ represents the model parameters. The
training of the model can be accomplished by employing
the stochastic gradient descent algorithm and minimizing
Equation (7). The optimization process is shown in
Algorithm 1.

After the trained model parameters Θ have been
obtained, the recommendation list is generated for the user
as shown in Algorithm 2.

5. Experimental Results and Analysis

This chapter focuses on the experimental setup and an anal-
ysis of the results. The experimental setup includes the data-
sets, baselines, and experimental settings; the result analysis
contains reporting on the results of various implemented
projects and provides a corresponding experimental
analysis.

5.1. Datasets. The datasets used in this experiment are open-
source datasets published on real social platforms: Yelp
(https://www.yelp.com/dataset) and Foursquare (https://
sites.google.com/site/yangdingqi/home/). The content of
the datasets is the check-in records of users in two cities.
Each check-in record consists of four parts: user ID, POI
ID, check-in time, and check-in location. Specific statistics
are shown in Table 1.

Four datasets represent the activity records of users in
four cities, with Yelp_LV (hereinafter referred to as LV) rep-
resenting Las Vegas and Foursqaure_TKY (hereinafter
referred to as TKY) representing Tokyo. Density is
employed to measure the sparsity of the datasets. The data-
sets are divided by sorting each user’s check-in records by
check-in time and taking the top 80% of check-in records
as the training set and the remaining part as the test set.

Table 1: Statistics in the datasets.

Dataset name Number of users Number of POI Density

Yelp_LV 6359 16435 0.13%

Foursqaure_TKY 2987 5235 0.26%
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Figure 1: Precision on TKY dataset.
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5.2. Comparison Algorithm and Evaluation Metrics. For the
experiment in this paper, the following POI recommenda-
tion model has been selected to compare the performance
with the model RMGCN proposed in the text:

GE [5]: based on the POI recommendation model
embedded in the graph, the sequence factor, time factor,
and geographical factor have been integrated into a unified
model in the form of a bipartite graph.

TAD-FPMC [6]: based on the POI recommendation
model of high-order tensor decomposition, this model has
divided the POI recommendation into two steps: the first
step generates recommendations of POI classification
according to user behavior; the second step recommends
specific POIs for users according to POI classification.

PRME-G [18]: based on the POI recommendation
model of embedded representation, the user preference fea-
tures are learned by mapping user check-in behaviors to
two potential spaces.

To evaluate the recommendation performance of the
model, we adopt precision and recall as evaluation metrics.
The evaluation indexes are calculated as shown in

Precision = Dtest ∩ Top kj j
Top kj j , ð8Þ

Recall =
Dtest ∩ Top kj j

Dtestj j , ð9Þ

where Dtest represents the test set and Top k represents the
recommendation list with a length of k.

For baselines, we adopt the recommendation parameter
settings in their papers. For our proposed model, we set
learning rate 0.05 and set λ 0.0005.

5.3. Parameter Sensitivity Experiment. There are two hyper-
parameters in the RMGCN model: the dimension f of the
feature vector and the threshold do of geographical factor.

Since the feature mapping step is omitted in GCN, the
dimension of the extracted node feature vector is the same
as that of the node vector at initialization time, so the dimen-
sion value should be the hyperparameter of the model. In
order to set an optimal group of parameter values, the per-
formance of RMGCN is evaluated by setting different values
on two datasets, the best of which is selected as the optimal
values in the end.

For the experiment of the dimension f of feature vector,
the value do of is fixed at 20 km, the recommendation list
length is fixed at 15, and a series of values f are assigned
to f = ð80, 100, 120, 140, 160Þ. Finally, the experiment is car-
ried out on two datasets, with the experiment results shown
in Figures 1–4.

From Figures 1–4, it can be found that the performance
of the model shows a tendency to increase initially and then
decrease as the dimension of the feature vector increases.
This is due to the fact that when the dimension is relatively
small, the features that can be expressed have less meaning
and cannot carry more information. Therefore, when the
dimension increases, the performance of the model also
tends to increase. When the dimension increases by a certain
value, the model is set to a fixed number of iterations, which
results in the high-dimensional feature vector’s not being
trained sufficiently with the limited number of iterations,
resulting in performance degradation of the model. This also
means that when larger dimensions are set, more iterations
are needed during model training to ensure adequate train-
ing. For efficiency and performance, the dimension is set to
120 on TKY dataset and 140 on LV dataset.

f
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Figure 2: Recall on TKY dataset.
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Figure 3: Precision on LV dataset.
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Figure 4: Recall on LV dataset.
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The value of the geographical threshold is determined
after the value of the feature vector dimension. The experi-
mental method also entails fixing the feature dimension,
adjusting the value of the geographical threshold, and
observing the performance of the model. The geographical
threshold takes a value in the range of do = ð10, 20, 30, 40,
50Þ, in kilometers. The value range for setting the geograph-
ical threshold here is estimated on the basis of experience,
assuming a vehicle speed of 50 km/h in an urban area, and
an hourly distance as the maximum range that can be con-
sidered by the user. The experimental results are shown in
Figures 5–8.

Figures 5–8 show the same trend, which is related to
the equation for calculating the geographical threshold.
The geographical threshold represents a tendency on the
part of the user when making choices to disregard the dis-
tance from the current location to the target location
within a certain geographical distance. Beyond this dis-
tance, the probability that the location will be selected by
the user decreases as the distance increases. The experi-
mental results in Figures 5–8 also confirm this hypothesis.
It is worth noting that the two cities manifest different
geographical thresholds, which may be related to the con-
struction of the city.
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Figure 5: Precision on TKY dataset.
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Figure 6: Recall on TKY dataset.
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Figure 7: Precision on LV dataset.
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So far, the values of two important hyperparameters on
two datasets have been determined through experiments:
on the TKY dataset, the values of dimension and geograph-
ical threshold are 120 and 20 km; on the LV dataset, the
values of both are 140 and 30 km. These two sets of values
will be employed as optimal parameters to train RMGCN
and for model comparison experiments.

5.4. Model Comparison Experiment. This section compares
the recommendation performance of RMGCN with the
other three baselines on two datasets. The recommendation
list has a value range of k = ð5, 10, 15, 20Þ. Experimental
results are detailed in Figures 9–12.

Throughout the experimental results of the two datasets,
the RMGCN model proposed in this paper has shown a
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Figure 9: Precision on TKY dataset.

k

0.06

0.1

0.14

0.18

5 10 15 20

Re
ca
ll

GE
TAD-FPMC

PRME-G
RMGCN

Figure 10: Recall on TKY dataset.
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stronger performance than the baseline model, which to a
certain extent indicates that in-depth mining of graph struc-
ture information can boost the recommendation perfor-
mance of the model. GE is not as effective as RMGCN.
Though both are recommendation models based on a graph
structure, GE is a shallow-layer model that is less capable of
in-depth mining node features. Moreover, the user prefer-
ence features generated by GE depend on the time delay
function, which is difficult to apply to cases with sparse data.
Both TAD-FPMC and PRME-G suffer from data sparsity
because of the large weight of the user check-in sequence
in the modeling processes of both. However, when the user
check-in data is sparse, the user check-in sequence informa-
tion fails to be effectively extracted from the data, resulting
in a failure to accurately capture user preference features
and the degraded performance of the model in the end.
Moreover, the performance of various models on the TKY
dataset is stronger than that of the LV dataset because the
TKY dataset is much denser than the LV dataset (as can be
seen from Section 4.1), which also shows that data sparsity
has a greater impact on the performance of recommendation
models.

6. Conclusion

In order to blunt the effect of data sparsity on recommenda-
tion models, a recommendation model of RMGCN based on
convolutional neural networks has been presented in this
paper from a deep exploration of graph structure data con-
structed by user check-in records. RMGCN extracts the
node features through a convolutional neural network based
on edge weight normalization and evaluates the user prefer-
ence scores for POI from the perspective of temporal and
spatial contexts. Experimental results on two real-world
datasets make it clear that RMGCN can boast a better rec-
ommendation performance than the baseline model.

Subsequent research will investigate how to use graph
structure data to deal with the cold start problem of the
POI recommendations.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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